1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
import os
import numpy as np
from bmtk.builder import NetworkBuilder
from bmtk.builder.auxi.node_params import positions_columinar, xiter_random
# List of non-virtual cell models
bio_models = [
# {
# 'pop_name': 'Scnn1a', 'ei': 'e',
# 'morphology': 'Scnn1a_473845048_m.swc',
# 'model_template': 'ctdb:Biophys1.hoc',
# 'dynamics_params': '472363762_fit.json'
# },
{
'pop_name': 'Rorb', 'ei': 'e',
'morphology': 'Rorb_325404214_m.swc',
'model_template': 'ctdb:Biophys1.hoc',
'dynamics_params': '473863510_fit.json'
},
{
'pop_name': 'Nr5a1', 'ei': 'e',
'morphology': 'Nr5a1_471087815_m.swc',
'model_template': 'ctdb:Biophys1.hoc',
'dynamics_params': '473863035_fit.json'
},
{
'pop_name': 'PV', 'ei': 'i',
'morphology': 'Pvalb_469628681_m.swc',
'model_template': 'ctdb:Biophys1.hoc',
'dynamics_params': '473862421_fit.json'
}
]
# Build a network of 300 biophysical cells to simulate
print('Build internal "V1" network')
v1 = NetworkBuilder("V1")
# for i, model_props in enumerate(bio_models):
# n_cells = 80 if model_props['ei'] == 'e' else 60 # 80% excitatory, 20% inhib
#
# # Randomly get positions uniformly distributed in a column
# positions = positions_columinar(N=n_cells, center=[0, 10.0, 0], max_radius=50.0, height=200.0)
#
# v1.add_nodes(N=n_cells,
# x=positions[:, 0], y=positions[:, 1], z=positions[:, 2],
# rotation_angle_yaxis=xiter_random(N=n_cells, min_x=0.0, max_x=2 * np.pi), # randomly rotate y axis
# rotation_angle_zaxis=xiter_random(N=n_cells, min_x=0.0, max_x=2 * np.pi), #
# model_type='biophysical',
# model_processing='aibs_perisomatic',
# **model_props)
v1.add_nodes(
N=80,
# Reserved SONATA keywords used during simulation
model_type='biophysical',
model_template='ctdb:Biophys1.hoc',
dynamics_params='472363762_fit.json',
morphology='Scnn1a_473845048_m.swc',
model_processing='aibs_perisomatic',
# The x, y, z locations of each cell in a column
x=np.random.normal(0.0, 20.0, size=80),
y=np.random.uniform(400.0, 500.0, size=80),
z=np.random.normal(0.0, 20.0, size=80),
# Euler rotations of the cells
rotation_angle_xaxis=np.random.uniform(0.0, 2 * np.pi, size=80),
rotation_angle_yaxis=np.random.uniform(0.0, 2 * np.pi, size=80),
rotation_angle_zaxis=-3.646878266,
# Optional parameters
tuning_angle=np.linspace(start=0.0, stop=360.0, num=80, endpoint=False),
pop_name='Scnn1a',
location='L4',
ei='e',
)
v1.add_nodes(
# Rorb excitatory cells
N=80, pop_name='Rorb', location='L4', ei='e',
model_type='biophysical',
model_template='ctdb:Biophys1.hoc',
dynamics_params='473863510_fit.json',
morphology='Rorb_325404214_m.swc',
model_processing='aibs_perisomatic',
x=np.random.normal(0.0, 20.0, size=80),
y=np.random.uniform(400.0, 500.0, size=80),
z=np.random.normal(0.0, 20.0, size=80),
rotation_angle_xaxis=np.random.uniform(0.0, 2*np.pi, size=80),
rotation_angle_yaxis=np.random.uniform(0.0, 2*np.pi, size=80),
rotation_angle_zaxis=-4.159763785,
tuning_angle=np.linspace(start=0.0, stop=360.0, num=80, endpoint=False),
)
v1.add_nodes(
# Nr5a1 excitatory cells
N=80, pop_name='Nr5a1', location='L4', ei='e',
model_type='biophysical',
model_template='ctdb:Biophys1.hoc',
dynamics_params='473863035_fit.json',
morphology='Nr5a1_471087815_m.swc',
model_processing='aibs_perisomatic',
x=np.random.normal(0.0, 20.0, size=80),
y=np.random.uniform(400.0, 500.0, size=80),
z=np.random.normal(0.0, 20.0, size=80),
rotation_angle_xaxis=np.random.uniform(0.0, 2*np.pi, size=80),
rotation_angle_yaxis=np.random.uniform(0.0, 2*np.pi, size=80),
rotation_angle_zaxis=-4.159763785,
tuning_angle=np.linspace(start=0.0, stop=360.0, num=80, endpoint=False),
)
v1.add_nodes(
# Parvalbuim inhibitory cells, note these don't have a tuning angle and ei=i
N=60, pop_name='PV1', location='L4', ei='i',
model_type='biophysical',
model_template='ctdb:Biophys1.hoc',
dynamics_params='473862421_fit.json',
morphology='Pvalb_469628681_m.swc',
model_processing='aibs_perisomatic',
x=np.random.normal(0.0, 20.0, size=60),
y=np.random.uniform(400.0, 500.0, size=60),
z=np.random.normal(0.0, 20.0, size=60),
rotation_angle_xaxis=np.random.uniform(0.0, 2*np.pi, size=60),
rotation_angle_yaxis=np.random.uniform(0.0, 2*np.pi, size=60),
rotation_angle_zaxis=-2.539551891
)
def n_connections(src, trg, prob=0.1, min_syns=1, max_syns=5):
"""Referenced by add_edges() and called by build() for every source/target pair. For every given target/source
pair will connect the two with a probability prob (excludes self-connections)"""
if src.node_id == trg.node_id:
return 0
return 0 if np.random.uniform() > prob else np.random.randint(min_syns, max_syns)
v1.add_edges(
# Exc --> Inh connections
source={'ei': 'e'},
target={'ei': 'i'},
connection_rule=1, # n_connections,
dynamics_params='ExcToInh.json',
model_template='Exp2Syn',
syn_weight=0.0006,
delay=2.0,
target_sections=['somatic', 'basal'],
distance_range=[0.0, 1.0e+20])
v1.add_edges(
# Inh --> Exc connections
source={'ei': 'i'},
target={'ei': 'e'},
connection_rule=1, # n_connections,
dynamics_params='InhToExc.json',
model_template='Exp2Syn',
syn_weight=0.0002,
delay=2.0,
target_sections=['somatic', 'basal', 'apical'],
distance_range=[0.0, 50.0]
)
def ignore_autopases(source, target):
# No synapses if source == target, otherwise randomize
if source['node_id'] == target['node_id']:
return 0
else:
return np.random.randint(1, 5)
v1.add_edges(
# Inh --> Inh connections
source={'ei': 'i'},
target={'ei': 'i'},
# connection_rule=n_connections,
# connection_params={'prob': 0.2},
# syn_weight=0.00015,
connection_rule=ignore_autopases,
syn_weight=0.00015,
delay=2.0,
dynamics_params='InhToInh.json',
model_template='Exp2Syn',
target_sections=['somatic', 'basal'],
distance_range=[0.0, 1.0e+20]
)
def tunning_angle(source, target, max_syns):
# ignore autoapses
if source['node_id'] == target['node_id']:
return 0
# num of synapses is higher the closer the tuning_angles
src_tuning = source['tuning_angle']
trg_tuning = target['tuning_angle']
dist = np.abs((src_tuning - trg_tuning + 180) % 360 - 180)
p_dist = 1.0 - (np.max((dist, 10.0)) / 180.0)
return np.random.binomial(n=max_syns, p=p_dist)
v1.add_edges(
# Exc --> Exc connections
source={'ei': 'e'},
target={'ei': 'e'},
# connection_rule=n_connections,
# connection_params={'prob': 0.2},
# syn_weight=6.0e-05,
connection_rule=tunning_angle,
connection_params={'max_syns': 5},
syn_weight=3.0e-05,
delay=2.0,
dynamics_params='ExcToExc.json',
model_template='Exp2Syn',
target_sections=['basal', 'apical'],
distance_range=[30.0, 150.0],
weight_function='set_syn_weight'
)
# Build and save internal network
v1.build()
print('Saving V1')
v1.save(output_dir='network')
# Build a network of 100 virtual cells that will connect to and drive the simulation of the internal network
print('Building external "LGN" connections')
lgn = NetworkBuilder("LGN")
lgn.add_nodes(
N=50,
model_type='virtual',
ei='e',
model_template='lgnmodel:sOFF_TF8',
x=np.random.uniform(0.0, 240.0, 50),
y=np.random.uniform(0.0, 120.0, 50),
spatial_size=1.0,
dynamics_params='sOFF_TF8.json'
)
lgn.add_nodes(
N=50,
model_type='virtual',
model_template='lgnmodel:sON_TF8',
x=np.random.uniform(0.0, 240.0, 50),
y=np.random.uniform(0.0, 120.0, 50),
spatial_size=1.0,
dynamics_params='sON_TF8.json'
)
lgn.add_edges(
# Targets all V1 excitatory cells
source=lgn.nodes(),
target=v1.nodes(ei='e'),
connection_rule=lambda *_: np.random.randint(0, 5),
dynamics_params='LGN_ExcToExc.json',
model_template='Exp2Syn',
delay=2.0,
syn_weight=0.0003,
target_sections=['basal', 'apical', 'somatic'],
distance_range=[0.0, 50.0]
)
lgn.add_edges(
# Targets all biophysical inhibitory cells
source=lgn.nodes(),
target=v1.nodes(ei='i'),
connection_rule=lambda *_: np.random.randint(0, 5),
dynamics_params='LGN_ExcToInh.json',
model_template='Exp2Syn',
delay=2.0,
syn_weight=0.002,
target_sections=['basal', 'apical'],
distance_range=[0.0, 1e+20]
)
lgn.build()
print('Saving LGN')
lgn.save(output_dir='network')
|