1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
import numpy as np
from bmtk.builder.networks import NetworkBuilder
from bmtk.builder.auxi.node_params import positions_columinar
from bmtk.builder.auxi.edge_connectors import distance_connector
"""Create Nodes"""
net = NetworkBuilder("V1")
net.add_nodes(N=80, # Create a population of 80 neurons
positions=positions_columinar(N=80, center=[0, 50.0, 0], max_radius=30.0, height=100.0),
pop_name='Scnn1a', location='VisL4', ei='e', # optional parameters
model_type='point_process', # Tells the simulator to use point-based neurons
model_template='nest:iaf_psc_alpha', # tells the simulator to use NEST iaf_psc_alpha models
dynamics_params='472363762_point.json' # File containing iaf_psc_alpha mdoel parameters
)
net.add_nodes(N=20, pop_name='PV', location='VisL4', ei='i',
positions=positions_columinar(N=20, center=[0, 50.0, 0], max_radius=30.0, height=100.0),
model_type='point_process',
model_template='nest:iaf_psc_alpha',
dynamics_params='472912177_point.json')
net.add_nodes(N=200, pop_name='LIF_exc', location='L4', ei='e',
positions=positions_columinar(N=200, center=[0, 50.0, 0], min_radius=30.0, max_radius=60.0, height=100.0),
model_type='point_process',
model_template='nest:iaf_psc_alpha',
dynamics_params='IntFire1_exc_point.json')
net.add_nodes(N=100, pop_name='LIF_inh', location='L4', ei='i',
positions=positions_columinar(N=100, center=[0, 50.0, 0], min_radius=30.0, max_radius=60.0, height=100.0),
model_type='point_process',
model_template='nest:iaf_psc_alpha',
dynamics_params='IntFire1_inh_point.json')
"""Create edges"""
## E-to-E connections
net.add_edges(source={'ei': 'e'}, target={'pop_name': 'Scnn1a'},
connection_rule=distance_connector,
connection_params={'d_weight_min': 0.0, 'd_weight_max': 0.34, 'd_max': 300.0, 'nsyn_min': 3, 'nsyn_max': 7},
syn_weight=5.0,
delay=2.0,
dynamics_params='ExcToExc.json',
model_template='static_synapse')
net.add_edges(source={'ei': 'e'}, target={'pop_name': 'LIF_exc'},
connection_rule=distance_connector,
connection_params={'d_weight_min': 0.0, 'd_weight_max': 0.34, 'd_max': 300.0, 'nsyn_min': 3, 'nsyn_max': 7},
syn_weight=10.0,
delay=2.0,
dynamics_params='instanteneousExc.json',
model_template='static_synapse')
### Generating I-to-I connections
net.add_edges(source={'ei': 'i'}, target={'pop_name': 'PV'},
connection_rule=distance_connector,
connection_params={'d_weight_min': 0.0, 'd_weight_max': 1.0, 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7},
syn_weight=-1.0,
delay=2.0,
dynamics_params='InhToInh.json',
model_template='static_synapse')
net.add_edges(source={'ei': 'i'}, target={'ei': 'i', 'pop_name': 'LIF_inh'},
connection_rule=distance_connector,
connection_params={'d_weight_min': 0.0, 'd_weight_max': 1.0, 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7},
syn_weight=-1.0,
delay=2.0,
dynamics_params='instanteneousInh.json',
model_template='static_synapse')
### Generating I-to-E connections
net.add_edges(source={'ei': 'i'}, target={'ei': 'e', 'pop_name': 'Scnn1a'},
connection_rule=distance_connector,
connection_params={'d_weight_min': 0.0, 'd_weight_max': 1.0, 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7},
syn_weight=-15.0,
delay=2.0,
dynamics_params='InhToExc.json',
model_template='static_synapse')
net.add_edges(source={'ei': 'i'}, target={'ei': 'e', 'pop_name': 'LIF_exc'},
connection_rule=distance_connector,
connection_params={'d_weight_min': 0.0, 'd_weight_max': 1.0, 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7},
syn_weight=-15.0,
delay=2.0,
dynamics_params='instanteneousInh.json',
model_template='static_synapse')
### Generating E-to-I connections
net.add_edges(source={'ei': 'e'}, target={'pop_name': 'PV'},
connection_rule=distance_connector,
connection_params={'d_weight_min': 0.0, 'd_weight_max': 0.26, 'd_max': 300.0, 'nsyn_min': 3, 'nsyn_max': 7},
syn_weight=15.0,
delay=2.0,
dynamics_params='ExcToInh.json',
model_template='static_synapse')
net.add_edges(source={'ei': 'e'}, target={'pop_name': 'LIF_inh'},
connection_rule=distance_connector,
connection_params={'d_weight_min': 0.0, 'd_weight_max': 0.26, 'd_max': 300.0, 'nsyn_min': 3, 'nsyn_max': 7},
syn_weight=5.0,
delay=2.0,
dynamics_params='instanteneousExc.json',
model_template='static_synapse')
net.build()
net.save_nodes(output_dir='network')
net.save_edges(output_dir='network')
lgn = NetworkBuilder('LGN')
lgn.add_nodes(N=500,
pop_name='tON',
potential='exc',
model_type='virtual')
def select_source_cells(sources, target, nsources_min=10, nsources_max=30, nsyns_min=3, nsyns_max=12):
total_sources = len(sources)
nsources = np.random.randint(nsources_min, nsources_max)
selected_sources = np.random.choice(total_sources, nsources, replace=False)
syns = np.zeros(total_sources)
syns[selected_sources] = np.random.randint(nsyns_min, nsyns_max, size=nsources)
return syns
lgn.add_edges(source=lgn.nodes(), target=net.nodes(pop_name='Scnn1a'),
iterator='all_to_one',
connection_rule=select_source_cells,
connection_params={'nsources_min': 10, 'nsources_max': 25},
syn_weight=20.0,
delay=2.0,
dynamics_params='ExcToExc.json',
model_template='static_synapse')
lgn.add_edges(source=lgn.nodes(), target=net.nodes(pop_name='PV1'),
connection_rule=select_source_cells,
connection_params={'nsources_min': 15, 'nsources_max': 30},
iterator='all_to_one',
syn_weight=20.0,
delay=2.0,
dynamics_params='ExcToInh.json',
model_template='static_synapse')
lgn.add_edges(source=lgn.nodes(), target=net.nodes(pop_name='LIF_exc'),
connection_rule=select_source_cells,
connection_params={'nsources_min': 10, 'nsources_max': 25},
iterator='all_to_one',
syn_weight=10.0,
delay=2.0,
dynamics_params='instanteneousExc.json',
model_template='static_synapse')
lgn.add_edges(source=lgn.nodes(), target=net.nodes(pop_name='LIF_inh'),
connection_rule=select_source_cells,
connection_params={'nsources_min': 15, 'nsources_max': 30},
iterator='all_to_one',
syn_weight=10.0,
delay=2.0,
dynamics_params='instanteneousExc.json',
model_template='static_synapse')
lgn.build()
lgn.save_nodes(output_dir='network')
lgn.save_edges(output_dir='network')
|