1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
import os
import h5py
import pandas as pd
import numpy as np
def convert_nodes(nodes_file, node_types_file, **params):
is_h5 = False
try:
h5file = h5py.File(nodes_file, 'r')
is_h5 = True
except Exception as e:
pass
if is_h5:
update_h5_nodes(nodes_file, node_types_file, **params)
return
update_csv_nodes(nodes_file, node_types_file, **params)
# columns which need to be renamed, key is original name and value is the updated name
column_renames = {
'id': 'node_id',
'model_id': 'node_type_id',
'electrophysiology': 'dynamics_params',
'level_of_detail': 'model_type',
'morphology': 'morphology',
'params_file': 'dynamics_params',
'x_soma': 'x',
'y_soma': 'y',
'z_soma': 'z'
}
def update_h5_nodes(nodes_file, node_types_file, network_name, output_dir='output',
column_order=('node_type_id', 'model_type', 'model_template', 'model_processing', 'dynamics_params',
'morphology')):
# open nodes and node-types into a single table
input_h5 = h5py.File(nodes_file, 'r')
output_name = '{}_nodes.h5'.format(network_name)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
nodes_output_fn = os.path.join(output_dir, output_name)
# save nodes hdf5
with h5py.File(nodes_output_fn, 'w') as h5:
#h5.copy()
#grp = h5.create_group('/nodes/{}'.format(network_name))
#input_grp = input_h5['/nodes/']
nodes_path = '/nodes/{}'.format(network_name)
h5.copy(input_h5['/nodes/'], nodes_path)
grp = h5[nodes_path]
grp.move('node_gid', 'node_id')
grp.move('node_group', 'node_group_id')
node_types_csv = pd.read_csv(node_types_file, sep=' ')
node_types_csv = node_types_csv.rename(index=str, columns=column_renames)
# Change values for model type
model_type_map = {
'biophysical': 'biophysical',
'point_IntFire1': 'point_process',
'intfire': 'point_process',
'virtual': 'virtual',
'iaf_psc_alpha': 'nest:iaf_psc_alpha',
'filter': 'virtual'
}
node_types_csv['model_type'] = node_types_csv.apply(lambda row: model_type_map[row['model_type']], axis=1)
# Add model_template column
def model_template(row):
model_type = row['model_type']
if model_type == 'biophysical':
return 'ctdb:Biophys1.hoc'
elif model_type == 'point_process':
return 'nrn:IntFire1'
else:
return 'NONE'
node_types_csv['model_template'] = node_types_csv.apply(model_template, axis=1)
# Add model_processing column
def model_processing(row):
model_type = row['model_type']
if model_type == 'biophysical':
return 'aibs_perisomatic'
else:
return 'NONE'
node_types_csv['model_processing'] = node_types_csv.apply(model_processing, axis=1)
# Reorder columns
orig_columns = node_types_csv.columns
col_order = [cn for cn in column_order if cn in orig_columns]
col_order += [cn for cn in node_types_csv.columns if cn not in column_order]
node_types_csv = node_types_csv[col_order]
# Save node-types csv
node_types_output_fn = os.path.join(output_dir, '{}_node_types.csv'.format(network_name))
node_types_csv.to_csv(node_types_output_fn, sep=' ', index=False, na_rep='NONE')
# open nodes and node-types into a single table
'''
print('loading csv files')
nodes_tmp = pd.read_csv(nodes_file, sep=' ')
node_types_tmp = pd.read_csv(node_types_file, sep=' ')
nodes_df = pd.merge(nodes_tmp, node_types_tmp, on='node_type_id')
n_nodes = len(nodes_df.index)
# rename required columns
nodes_df = nodes_df.rename(index=str, columns=column_renames)
# Old versions of node_type_id may be set to strings/floats, convert to integers
dtype_ntid = nodes_df['node_type_id'].dtype
if dtype_ntid == 'object':
# if string, move model_id to pop_name and create an integer node_type_id column
if 'pop_name' in nodes_df.columns:
nodes_df = nodes_df.drop('pop_name', axis=1)
nodes_df = nodes_df.rename(index=str, columns={'node_type_id': 'pop_name'})
ntid_map = {pop_name: indx for indx, pop_name in enumerate(nodes_df['pop_name'].unique())}
nodes_df['node_type_id'] = nodes_df.apply(lambda row: ntid_map[row['pop_name']], axis=1)
elif dtype_ntid == 'float64':
nodes_df['node_type_id'] = nodes_df['node_type_id'].astype('uint64')
# divide columns up into nodes and node-types columns, and for nodes determine which columns are valid for every
# node-type. The rules are
# 1. If all values are the same for a node-type-id, column belongs in node_types csv. If there's any intra
# node-type heterogenity then the column belongs in the nodes h5.
# 2. For nodes h5 columns, a column belongs to a node-type-id if it contains at least one non-null value
print('parsing input')
opt_columns = [n for n in nodes_df.columns if n not in ['node_id', 'node_type_id']]
heterogeneous_cols = {cn: False for cn in opt_columns}
nonnull_cols = {} # for each node-type, a list of columns that contains at least one non-null value
for node_type_id, nt_group in nodes_df.groupby(['node_type_id']):
nonnull_cols[node_type_id] = set(nt_group.columns[nt_group.isnull().any() == False].tolist())
for col_name in opt_columns:
heterogeneous_cols[col_name] |= len(nt_group[col_name].unique()) > 1
nodes_columns = set(cn for cn, val in heterogeneous_cols.items() if val)
nodes_types_columns = [cn for cn, val in heterogeneous_cols.items() if not val]
# Check for nodes columns that has non-numeric values, these will require some special processing to save to hdf5
string_nodes_columns = set()
for col_name in nodes_columns:
if nodes_df[col_name].dtype == 'object':
string_nodes_columns.add(col_name)
if len(string_nodes_columns) > 0:
print('Warning: column(s) {} have non-numeric values that vary within a node-type and will be stored in h5 format'.format(list(string_nodes_columns)))
# Divide the nodes columns into groups and create neccessary lookup tables. If two node-types share the same
# non-null columns then they belong to the same group
grp_idx2cols = {} # group-id --> group-columns
grp_cols2idx = {} # group-columns --> group-id
grp_id2idx = {} # node-type-id --> group-id
group_index = -1
for nt_id, cols in nonnull_cols.items():
group_columns = sorted(list(nodes_columns & cols))
col_key = tuple(group_columns)
if col_key in grp_cols2idx:
grp_id2idx[nt_id] = grp_cols2idx[col_key]
else:
group_index += 1
grp_cols2idx[col_key] = group_index
grp_idx2cols[group_index] = group_columns
grp_id2idx[nt_id] = group_index
# merge x,y,z columns, if they exists, into 'positions' dataset
grp_pos_cols = {}
for grp_idx, cols in grp_idx2cols.items():
pos_list = []
for coord in ['x', 'y', 'z']:
if coord in cols:
pos_list += coord
grp_idx2cols[grp_idx].remove(coord)
if len(pos_list) > 0:
grp_pos_cols[grp_idx] = pos_list
# Create the node_group and node_group_index columns
nodes_df['__bmtk_node_group'] = nodes_df.apply(lambda row: grp_id2idx[row['node_type_id']], axis=1)
nodes_df['__bmtk_node_group_index'] = [0]*n_nodes
for grpid in grp_idx2cols.keys():
group_size = len(nodes_df[nodes_df['__bmtk_node_group'] == grpid])
nodes_df.loc[nodes_df['__bmtk_node_group'] == grpid, '__bmtk_node_group_index'] = range(group_size)
# Save nodes.h5 file
nodes_output_fn = os.path.join(output_dir, '{}_nodes.h5'.format(network_name))
node_types_output_fn = os.path.join(output_dir, '{}_node_types.csv'.format(network_name))
if not os.path.exists(output_dir):
os.mkdir(output_dir)
print('Creating {}'.format(nodes_output_fn))
with h5py.File(nodes_output_fn, 'w') as hf:
hf.create_dataset('nodes/node_gid', data=nodes_df['node_id'], dtype='uint64')
hf['nodes/node_gid'].attrs['network'] = network_name
hf.create_dataset('nodes/node_type_id', data=nodes_df['node_type_id'], dtype='uint64')
hf.create_dataset('nodes/node_group', data=nodes_df['__bmtk_node_group'], dtype='uint32')
hf.create_dataset('nodes/node_group_index', data=nodes_df['__bmtk_node_group_index'], dtype='uint64')
for grpid, cols in grp_idx2cols.items():
group_slice = nodes_df[nodes_df['__bmtk_node_group'] == grpid]
for col_name in cols:
dataset_name = 'nodes/{}/{}'.format(grpid, col_name)
if col_name in string_nodes_columns:
# for columns with non-numeric values
dt = h5py.special_dtype(vlen=bytes)
hf.create_dataset(dataset_name, data=group_slice[col_name], dtype=dt)
else:
hf.create_dataset(dataset_name, data=group_slice[col_name])
# special case for positions
if grpid in grp_pos_cols:
hf.create_dataset('nodes/{}/positions'.format(grpid),
data=group_slice.as_matrix(columns=grp_pos_cols[grpid]))
# Save the node_types.csv file
print('Creating {}'.format(node_types_output_fn))
node_types_table = nodes_df[['node_type_id'] + nodes_types_columns]
node_types_table = node_types_table.drop_duplicates()
if len(sort_order) > 0:
node_types_table = node_types_table.sort_values(by=sort_order)
node_types_table.to_csv(node_types_output_fn, sep=' ', index=False) # , na_rep='NONE')
'''
def update_csv_nodes(nodes_file, node_types_file, network_name, output_dir='network',
column_order=('node_type_id', 'model_type', 'model_template', 'model_processing',
'dynamics_params', 'morphology')):
# open nodes and node-types into a single table
print('loading csv files')
nodes_tmp = pd.read_csv(nodes_file, sep=' ')
node_types_tmp = pd.read_csv(node_types_file, sep=' ')
if 'model_id' in nodes_tmp:
nodes_df = pd.merge(nodes_tmp, node_types_tmp, on='model_id')
elif 'node_type_id' in nodes_tmp:
nodes_df = pd.merge(nodes_tmp, node_types_tmp, on='node_type_id')
else:
raise Exception('Could not find column to merge nodes and node_types')
n_nodes = len(nodes_df.index)
# rename required columns
nodes_df = nodes_df.rename(index=str, columns=column_renames)
# Old versions of node_type_id may be set to strings/floats, convert to integers
dtype_ntid = nodes_df['node_type_id'].dtype
if dtype_ntid == 'object':
# if string, move model_id to pop_name and create an integer node_type_id column
if 'pop_name' in nodes_df:
nodes_df = nodes_df.drop('pop_name', axis=1)
nodes_df = nodes_df.rename(index=str, columns={'node_type_id': 'pop_name'})
ntid_map = {pop_name: indx for indx, pop_name in enumerate(nodes_df['pop_name'].unique())}
nodes_df['node_type_id'] = nodes_df.apply(lambda row: ntid_map[row['pop_name']], axis=1)
elif dtype_ntid == 'float64':
nodes_df['node_type_id'] = nodes_df['node_type_id'].astype('uint64')
# divide columns up into nodes and node-types columns, and for nodes determine which columns are valid for every
# node-type. The rules are
# 1. If all values are the same for a node-type-id, column belongs in node_types csv. If there's any intra
# node-type heterogenity then the column belongs in the nodes h5.
# 2. For nodes h5 columns, a column belongs to a node-type-id if it contains at least one non-null value
print('parsing input')
opt_columns = [n for n in nodes_df.columns if n not in ['node_id', 'node_type_id']]
heterogeneous_cols = {cn: False for cn in opt_columns}
nonnull_cols = {} # for each node-type, a list of columns that contains at least one non-null value
for node_type_id, nt_group in nodes_df.groupby(['node_type_id']):
nonnull_cols[node_type_id] = set(nt_group.columns[nt_group.isnull().any() == False].tolist())
for col_name in opt_columns:
heterogeneous_cols[col_name] |= len(nt_group[col_name].unique()) > 1
nodes_columns = set(cn for cn, val in heterogeneous_cols.items() if val)
nodes_types_columns = [cn for cn, val in heterogeneous_cols.items() if not val]
# Check for nodes columns that has non-numeric values, these will require some special processing to save to hdf5
string_nodes_columns = set()
for col_name in nodes_columns:
if nodes_df[col_name].dtype == 'object':
string_nodes_columns.add(col_name)
if len(string_nodes_columns) > 0:
print('Warning: column(s) {} have non-numeric values that vary within a node-type and will be stored in h5 format'.format(list(string_nodes_columns)))
# Divide the nodes columns into groups and create neccessary lookup tables. If two node-types share the same
# non-null columns then they belong to the same group
grp_idx2cols = {} # group-id --> group-columns
grp_cols2idx = {} # group-columns --> group-id
grp_id2idx = {} # node-type-id --> group-id
group_index = -1
for nt_id, cols in nonnull_cols.items():
group_columns = sorted(list(nodes_columns & cols))
col_key = tuple(group_columns)
if col_key in grp_cols2idx:
grp_id2idx[nt_id] = grp_cols2idx[col_key]
else:
group_index += 1
grp_cols2idx[col_key] = group_index
grp_idx2cols[group_index] = group_columns
grp_id2idx[nt_id] = group_index
# merge x,y,z columns, if they exists, into 'positions' dataset
grp_pos_cols = {}
for grp_idx, cols in grp_idx2cols.items():
pos_list = []
for coord in ['x', 'y', 'z']:
if coord in cols:
pos_list += coord
grp_idx2cols[grp_idx].remove(coord)
if len(pos_list) > 0:
grp_pos_cols[grp_idx] = pos_list
# Create the node_group and node_group_index columns
nodes_df['__bmtk_node_group'] = nodes_df.apply(lambda row: grp_id2idx[row['node_type_id']], axis=1)
nodes_df['__bmtk_node_group_index'] = [0]*n_nodes
for grpid in grp_idx2cols.keys():
group_size = len(nodes_df[nodes_df['__bmtk_node_group'] == grpid])
nodes_df.loc[nodes_df['__bmtk_node_group'] == grpid, '__bmtk_node_group_index'] = range(group_size)
# Save nodes.h5 file
nodes_output_fn = os.path.join(output_dir, '{}_nodes.h5'.format(network_name))
node_types_output_fn = os.path.join(output_dir, '{}_node_types.csv'.format(network_name))
if not os.path.exists(output_dir):
os.mkdir(output_dir)
print('Creating {}'.format(nodes_output_fn))
with h5py.File(nodes_output_fn, 'w') as hf:
grp = hf.create_group('/nodes/{}'.format(network_name))
grp.create_dataset('node_id', data=nodes_df['node_id'], dtype='uint64')
grp.create_dataset('node_type_id', data=nodes_df['node_type_id'], dtype='uint64')
grp.create_dataset('node_group_id', data=nodes_df['__bmtk_node_group'], dtype='uint32')
grp.create_dataset('node_group_index', data=nodes_df['__bmtk_node_group_index'], dtype='uint64')
for grpid, cols in grp_idx2cols.items():
group_slice = nodes_df[nodes_df['__bmtk_node_group'] == grpid]
for col_name in cols:
dataset_name = '{}/{}'.format(grpid, col_name)
if col_name in string_nodes_columns:
# for columns with non-numeric values
dt = h5py.special_dtype(vlen=bytes)
grp.create_dataset(dataset_name, data=group_slice[col_name], dtype=dt)
else:
grp.create_dataset(dataset_name, data=group_slice[col_name])
# special case for positions
if grpid in grp_pos_cols:
grp.create_dataset('{}/positions'.format(grpid),
data=group_slice.as_matrix(columns=grp_pos_cols[grpid]))
# Create empty dynamics_params
grp.create_group('{}/dynamics_params'.format(grpid))
# Save the node_types.csv file
print('Creating {}'.format(node_types_output_fn))
node_types_table = nodes_df[['node_type_id'] + nodes_types_columns]
node_types_table = node_types_table.drop_duplicates()
# Change values for model type
model_type_map = {
'biophysical': 'biophysical',
'point_IntFire1': 'point_process',
'virtual': 'virtual',
'intfire': 'point_process',
'filter': 'virtual'
}
node_types_table['model_type'] = node_types_table.apply(lambda row: model_type_map[row['model_type']], axis=1)
if 'set_params_function' in node_types_table:
node_types_table = node_types_table.drop('set_params_function', axis=1)
# Add model_template column
def model_template(row):
model_type = row['model_type']
if model_type == 'biophysical':
return 'ctdb:Biophys1.hoc'
elif model_type == 'point_process':
return 'nrn:IntFire1'
else:
return 'NONE'
node_types_table['model_template'] = node_types_table.apply(model_template, axis=1)
# Add model_processing column
def model_processing(row):
model_type = row['model_type']
if model_type == 'biophysical':
return 'aibs_perisomatic'
else:
return 'NONE'
node_types_table['model_processing'] = node_types_table.apply(model_processing, axis=1)
# Reorder columns
orig_columns = node_types_table.columns
col_order = [cn for cn in column_order if cn in orig_columns]
col_order += [cn for cn in node_types_table.columns if cn not in column_order]
node_types_table = node_types_table[col_order]
node_types_table.to_csv(node_types_output_fn, sep=' ', index=False, na_rep='NONE')
|