1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
|
// Intensity Shuttle USB3 capture driver, v0.7.8
// Can download 8-bit and 10-bit UYVY/v210-ish frames from HDMI, quite stable
// (can do captures for hours at a time with no drops), except during startup
// 576p60/720p60/1080i60 works, 1080p60 does not work (firmware limitation)
// Audio comes out as 8-channel 24-bit raw audio.
#if (defined(__i386__) || defined(__x86_64__)) && defined(__GNUC__)
#define HAS_MULTIVERSIONING 1
#endif
#include <assert.h>
#include <errno.h>
#include <libusb.h>
#include <unistd.h>
#include <netinet/in.h>
#include <pthread.h>
#include <sched.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if HAS_MULTIVERSIONING
#include <immintrin.h>
#endif
#include "bmusb/bmusb.h"
#include <algorithm>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <functional>
#include <memory>
#include <mutex>
#include <stack>
#include <string>
#include <thread>
using namespace std;
using namespace std::chrono;
using namespace std::placeholders;
#define USB_VENDOR_BLACKMAGIC 0x1edb
#define MIN_WIDTH 640
#define HEADER_SIZE 44
//#define HEADER_SIZE 0
#define AUDIO_HEADER_SIZE 4
#define FRAME_SIZE (8 << 20) // 8 MB.
#define USB_VIDEO_TRANSFER_SIZE (128 << 10) // 128 kB.
namespace bmusb {
card_connected_callback_t BMUSBCapture::card_connected_callback = nullptr;
bool BMUSBCapture::hotplug_existing_devices = false;
namespace {
FILE *audiofp;
thread usb_thread;
atomic<bool> should_quit;
int v210_stride(int width)
{
return (width + 5) / 6 * 4 * sizeof(uint32_t);
}
int find_xfer_size_for_width(PixelFormat pixel_format, int width)
{
// Video seems to require isochronous packets scaled with the width;
// seemingly six lines is about right, rounded up to the required 1kB
// multiple.
// Note that for 10-bit input, you'll need to increase size accordingly.
int stride;
if (pixel_format == PixelFormat_10BitYCbCr) {
stride = v210_stride(width);
} else {
stride = width * sizeof(uint16_t);
}
int size = stride * 6;
if (size % 1024 != 0) {
size &= ~1023;
size += 1024;
}
return size;
}
void change_xfer_size_for_width(PixelFormat pixel_format, int width, libusb_transfer *xfr)
{
assert(width >= MIN_WIDTH);
size_t size = find_xfer_size_for_width(pixel_format, width);
int num_iso_pack = xfr->length / size;
if (num_iso_pack != xfr->num_iso_packets ||
size != xfr->iso_packet_desc[0].length) {
xfr->num_iso_packets = num_iso_pack;
libusb_set_iso_packet_lengths(xfr, size);
}
}
struct VideoFormatEntry {
uint16_t normalized_video_format;
unsigned width, height, second_field_start;
unsigned extra_lines_top, extra_lines_bottom;
unsigned frame_rate_nom, frame_rate_den;
bool interlaced;
};
// Get details for the given video format; returns false if detection was incomplete.
bool decode_video_format(uint16_t video_format, VideoFormat *decoded_video_format)
{
decoded_video_format->id = video_format;
decoded_video_format->interlaced = false;
// TODO: Add these for all formats as we find them.
decoded_video_format->extra_lines_top = decoded_video_format->extra_lines_bottom = decoded_video_format->second_field_start = 0;
if (video_format == 0x0800) {
// No video signal. These green pseudo-frames seem to come at about 30.13 Hz.
// It's a strange thing, but what can you do.
decoded_video_format->width = 720;
decoded_video_format->height = 525;
decoded_video_format->stride = 720 * 2;
decoded_video_format->extra_lines_top = 0;
decoded_video_format->extra_lines_bottom = 0;
decoded_video_format->frame_rate_nom = 3013;
decoded_video_format->frame_rate_den = 100;
decoded_video_format->has_signal = false;
return true;
}
if ((video_format & 0xe000) != 0xe000) {
printf("Video format 0x%04x does not appear to be a video format. Assuming 60 Hz.\n",
video_format);
decoded_video_format->width = 0;
decoded_video_format->height = 0;
decoded_video_format->stride = 0;
decoded_video_format->extra_lines_top = 0;
decoded_video_format->extra_lines_bottom = 0;
decoded_video_format->frame_rate_nom = 60;
decoded_video_format->frame_rate_den = 1;
decoded_video_format->has_signal = false;
return false;
}
decoded_video_format->has_signal = true;
// NTSC (480i59.94, I suppose). A special case, see below.
if ((video_format & ~0x0800) == 0xe101 ||
(video_format & ~0x0800) == 0xe1c1 ||
(video_format & ~0x0800) == 0xe001) {
decoded_video_format->width = 720;
decoded_video_format->height = 480;
if (video_format & 0x0800) {
decoded_video_format->stride = 720 * 2;
} else {
decoded_video_format->stride = v210_stride(720);
}
decoded_video_format->extra_lines_top = 17;
decoded_video_format->extra_lines_bottom = 28;
decoded_video_format->frame_rate_nom = 30000;
decoded_video_format->frame_rate_den = 1001;
decoded_video_format->second_field_start = 280;
decoded_video_format->interlaced = true;
return true;
}
// PAL (576i50, I suppose). A special case, see below.
if ((video_format & ~0x0800) == 0xe109 ||
(video_format & ~0x0800) == 0xe1c9 ||
(video_format & ~0x0800) == 0xe009 ||
(video_format & ~0x0800) == 0xe3e9 ||
(video_format & ~0x0800) == 0xe3e1) {
decoded_video_format->width = 720;
decoded_video_format->height = 576;
if (video_format & 0x0800) {
decoded_video_format->stride = 720 * 2;
} else {
decoded_video_format->stride = v210_stride(720);
}
decoded_video_format->extra_lines_top = 22;
decoded_video_format->extra_lines_bottom = 27;
decoded_video_format->frame_rate_nom = 25;
decoded_video_format->frame_rate_den = 1;
decoded_video_format->second_field_start = 335;
decoded_video_format->interlaced = true;
return true;
}
// 0x8 seems to be a flag about availability of deep color on the input,
// except when it's not (e.g. it's the only difference between NTSC
// and PAL). Rather confusing. But we clear it here nevertheless, because
// usually it doesn't mean anything. 0x0800 appears to be 8-bit input
// (as opposed to 10-bit).
//
// 0x4 is a flag I've only seen from the D4. I don't know what it is.
uint16_t normalized_video_format = video_format & ~0xe80c;
constexpr VideoFormatEntry entries[] = {
{ 0x01f1, 720, 480, 0, 40, 5, 60000, 1001, false }, // 480p59.94 (believed).
{ 0x0131, 720, 576, 0, 44, 5, 50, 1, false }, // 576p50.
{ 0x0151, 720, 576, 0, 44, 5, 50, 1, false }, // 576p50.
{ 0x0011, 720, 576, 0, 44, 5, 50, 1, false }, // 576p50 (5:4).
{ 0x0143, 1280, 720, 0, 25, 5, 50, 1, false }, // 720p50.
{ 0x0161, 1280, 720, 0, 25, 5, 50, 1, false }, // 720p50.
{ 0x0103, 1280, 720, 0, 25, 5, 60, 1, false }, // 720p60.
{ 0x0125, 1280, 720, 0, 25, 5, 60, 1, false }, // 720p60.
{ 0x0121, 1280, 720, 0, 25, 5, 60000, 1001, false }, // 720p59.94.
{ 0x01c3, 1920, 1080, 0, 41, 4, 30, 1, false }, // 1080p30.
{ 0x0003, 1920, 1080, 583, 20, 25, 30, 1, true }, // 1080i60.
{ 0x01e1, 1920, 1080, 0, 41, 4, 30000, 1001, false }, // 1080p29.97.
{ 0x0021, 1920, 1080, 583, 20, 25, 30000, 1001, true }, // 1080i59.94.
{ 0x0063, 1920, 1080, 0, 41, 4, 25, 1, false }, // 1080p25.
{ 0x0043, 1920, 1080, 583, 20, 25, 25, 1, true }, // 1080i50.
{ 0x0083, 1920, 1080, 0, 41, 4, 24, 1, false }, // 1080p24.
{ 0x00a1, 1920, 1080, 0, 41, 4, 24000, 1001, false }, // 1080p23.98.
};
for (const VideoFormatEntry &entry : entries) {
if (normalized_video_format == entry.normalized_video_format) {
decoded_video_format->width = entry.width;
decoded_video_format->height = entry.height;
if (video_format & 0x0800) {
decoded_video_format->stride = entry.width * 2;
} else {
decoded_video_format->stride = v210_stride(entry.width);
}
decoded_video_format->second_field_start = entry.second_field_start;
decoded_video_format->extra_lines_top = entry.extra_lines_top;
decoded_video_format->extra_lines_bottom = entry.extra_lines_bottom;
decoded_video_format->frame_rate_nom = entry.frame_rate_nom;
decoded_video_format->frame_rate_den = entry.frame_rate_den;
decoded_video_format->interlaced = entry.interlaced;
return true;
}
}
printf("Unknown video format 0x%04x (normalized 0x%04x). Assuming 720p60.\n", video_format, normalized_video_format);
decoded_video_format->width = 1280;
decoded_video_format->height = 720;
decoded_video_format->stride = 1280 * 2;
decoded_video_format->frame_rate_nom = 60;
decoded_video_format->frame_rate_den = 1;
return false;
}
// There are seemingly no direct indicators of sample rate; you just get
// one frame's worth and have to guess from that.
int guess_sample_rate(const VideoFormat &video_format, size_t len, int default_rate)
{
size_t num_samples = len / 3 / 8;
size_t num_samples_per_second = num_samples * video_format.frame_rate_nom / video_format.frame_rate_den;
// See if we match or are very close to any of the mandatory HDMI sample rates.
const int candidate_sample_rates[] = { 32000, 44100, 48000 };
for (int rate : candidate_sample_rates) {
if (abs(int(num_samples_per_second) - rate) <= 100) {
return rate;
}
}
fprintf(stderr, "%ld samples at %d/%d fps (%ld Hz) matches no known sample rate, keeping capture at %d Hz\n",
num_samples, video_format.frame_rate_nom, video_format.frame_rate_den, num_samples_per_second, default_rate);
return default_rate;
}
} // namespace
FrameAllocator::~FrameAllocator() {}
MallocFrameAllocator::MallocFrameAllocator(size_t frame_size, size_t num_queued_frames)
: frame_size(frame_size)
{
for (size_t i = 0; i < num_queued_frames; ++i) {
freelist.push(unique_ptr<uint8_t[]>(new uint8_t[frame_size]));
}
}
FrameAllocator::Frame MallocFrameAllocator::alloc_frame()
{
Frame vf;
vf.owner = this;
unique_lock<mutex> lock(freelist_mutex); // Meh.
if (freelist.empty()) {
printf("Frame overrun (no more spare frames of size %ld), dropping frame!\n",
frame_size);
} else {
vf.data = freelist.top().release();
vf.size = frame_size;
freelist.pop(); // Meh.
}
return vf;
}
void MallocFrameAllocator::release_frame(Frame frame)
{
if (frame.overflow > 0) {
printf("%d bytes overflow after last (malloc) frame\n", int(frame.overflow));
}
unique_lock<mutex> lock(freelist_mutex);
freelist.push(unique_ptr<uint8_t[]>(frame.data));
}
bool uint16_less_than_with_wraparound(uint16_t a, uint16_t b)
{
if (a == b) {
return false;
} else if (a < b) {
return (b - a < 0x8000);
} else {
int wrap_b = 0x10000 + int(b);
return (wrap_b - a < 0x8000);
}
}
void BMUSBCapture::queue_frame(uint16_t format, uint16_t timecode, FrameAllocator::Frame frame, deque<QueuedFrame> *q)
{
unique_lock<mutex> lock(queue_lock);
if (!q->empty() && !uint16_less_than_with_wraparound(q->back().timecode, timecode)) {
printf("Blocks going backwards: prev=0x%04x, cur=0x%04x (dropped)\n",
q->back().timecode, timecode);
frame.owner->release_frame(frame);
return;
}
QueuedFrame qf;
qf.format = format;
qf.timecode = timecode;
qf.frame = frame;
q->push_back(move(qf));
queues_not_empty.notify_one(); // might be spurious
}
void dump_frame(const char *filename, uint8_t *frame_start, size_t frame_len)
{
FILE *fp = fopen(filename, "wb");
if (fwrite(frame_start + HEADER_SIZE, frame_len - HEADER_SIZE, 1, fp) != 1) {
printf("short write!\n");
}
fclose(fp);
}
void dump_audio_block(uint8_t *audio_start, size_t audio_len)
{
if (audiofp != nullptr) {
fwrite(audio_start + AUDIO_HEADER_SIZE, 1, audio_len - AUDIO_HEADER_SIZE, audiofp);
}
}
void BMUSBCapture::dequeue_thread_func()
{
char thread_name[16];
snprintf(thread_name, sizeof(thread_name), "bmusb_dequeue_%d", card_index);
pthread_setname_np(pthread_self(), thread_name);
if (has_dequeue_callbacks) {
dequeue_init_callback();
}
size_t last_sample_rate = 48000;
while (!dequeue_thread_should_quit) {
unique_lock<mutex> lock(queue_lock);
queues_not_empty.wait(lock, [this]{ return dequeue_thread_should_quit || (!pending_video_frames.empty() && !pending_audio_frames.empty()); });
if (dequeue_thread_should_quit) break;
uint16_t video_timecode = pending_video_frames.front().timecode;
uint16_t audio_timecode = pending_audio_frames.front().timecode;
AudioFormat audio_format;
audio_format.bits_per_sample = 24;
audio_format.num_channels = 8;
audio_format.sample_rate = last_sample_rate;
if (uint16_less_than_with_wraparound(video_timecode, audio_timecode)) {
printf("Video block 0x%04x without corresponding audio block, dropping.\n",
video_timecode);
QueuedFrame video_frame = pending_video_frames.front();
pending_video_frames.pop_front();
lock.unlock();
video_frame_allocator->release_frame(video_frame.frame);
} else if (uint16_less_than_with_wraparound(audio_timecode, video_timecode)) {
printf("Audio block 0x%04x without corresponding video block, sending blank frame.\n",
audio_timecode);
QueuedFrame audio_frame = pending_audio_frames.front();
pending_audio_frames.pop_front();
lock.unlock();
audio_format.id = audio_frame.format;
// Use the video format of the pending frame.
QueuedFrame video_frame = pending_video_frames.front();
VideoFormat video_format;
decode_video_format(video_frame.format, &video_format);
frame_callback(audio_timecode,
FrameAllocator::Frame(), 0, video_format,
audio_frame.frame, AUDIO_HEADER_SIZE, audio_format);
} else {
QueuedFrame video_frame = pending_video_frames.front();
QueuedFrame audio_frame = pending_audio_frames.front();
pending_audio_frames.pop_front();
pending_video_frames.pop_front();
lock.unlock();
#if 0
char filename[255];
snprintf(filename, sizeof(filename), "%04x%04x.uyvy", video_frame.format, video_timecode);
dump_frame(filename, video_frame.frame.data, video_frame.data_len);
dump_audio_block(audio_frame.frame.data, audio_frame.data_len);
#endif
VideoFormat video_format;
audio_format.id = audio_frame.format;
if (decode_video_format(video_frame.format, &video_format)) {
if (audio_frame.frame.len != 0) {
audio_format.sample_rate = guess_sample_rate(video_format, audio_frame.frame.len, last_sample_rate);
last_sample_rate = audio_format.sample_rate;
}
frame_callback(video_timecode,
video_frame.frame, HEADER_SIZE, video_format,
audio_frame.frame, AUDIO_HEADER_SIZE, audio_format);
} else {
video_frame_allocator->release_frame(video_frame.frame);
audio_format.sample_rate = last_sample_rate;
frame_callback(video_timecode,
FrameAllocator::Frame(), 0, video_format,
audio_frame.frame, AUDIO_HEADER_SIZE, audio_format);
}
}
}
if (has_dequeue_callbacks) {
dequeue_cleanup_callback();
}
}
void BMUSBCapture::start_new_frame(const uint8_t *start)
{
uint16_t format = (start[3] << 8) | start[2];
uint16_t timecode = (start[1] << 8) | start[0];
if (current_video_frame.len > 0) {
current_video_frame.received_timestamp = steady_clock::now();
// If format is 0x0800 (no signal), add a fake (empty) audio
// frame to get it out of the queue.
// TODO: Figure out if there are other formats that come with
// no audio, and treat them the same.
if (format == 0x0800) {
FrameAllocator::Frame fake_audio_frame = audio_frame_allocator->alloc_frame();
if (fake_audio_frame.data == nullptr) {
// Oh well, it's just a no-signal frame anyway.
printf("Couldn't allocate fake audio frame, also dropping no-signal video frame.\n");
current_video_frame.owner->release_frame(current_video_frame);
current_video_frame = video_frame_allocator->alloc_frame();
return;
}
queue_frame(format, timecode, fake_audio_frame, &pending_audio_frames);
}
//dump_frame();
queue_frame(format, timecode, current_video_frame, &pending_video_frames);
// Update the assumed frame width. We might be one frame too late on format changes,
// but it's much better than asking the user to choose manually.
VideoFormat video_format;
if (decode_video_format(format, &video_format)) {
assumed_frame_width = video_format.width;
}
}
//printf("Found frame start, format 0x%04x timecode 0x%04x, previous frame length was %d/%d\n",
// format, timecode,
// //start[7], start[6], start[5], start[4],
// read_current_frame, FRAME_SIZE);
current_video_frame = video_frame_allocator->alloc_frame();
//if (current_video_frame.data == nullptr) {
// read_current_frame = -1;
//} else {
// read_current_frame = 0;
//}
}
void BMUSBCapture::start_new_audio_block(const uint8_t *start)
{
uint16_t format = (start[3] << 8) | start[2];
uint16_t timecode = (start[1] << 8) | start[0];
if (current_audio_frame.len > 0) {
current_audio_frame.received_timestamp = steady_clock::now();
//dump_audio_block();
queue_frame(format, timecode, current_audio_frame, &pending_audio_frames);
}
//printf("Found audio block start, format 0x%04x timecode 0x%04x\n",
// format, timecode);
current_audio_frame = audio_frame_allocator->alloc_frame();
}
#if 0
static void dump_pack(const libusb_transfer *xfr, int offset, const libusb_iso_packet_descriptor *pack)
{
// printf("ISO pack%u length:%u, actual_length:%u, offset:%u\n", i, pack->length, pack->actual_length, offset);
for (unsigned j = 0; j < pack->actual_length; j++) {
//for (int j = 0; j < min(pack->actual_length, 16u); j++) {
printf("%02x", xfr->buffer[j + offset]);
if ((j % 16) == 15)
printf("\n");
else if ((j % 8) == 7)
printf(" ");
else
printf(" ");
}
}
#endif
void memcpy_interleaved(uint8_t *dest1, uint8_t *dest2, const uint8_t *src, size_t n)
{
assert(n % 2 == 0);
uint8_t *dptr1 = dest1;
uint8_t *dptr2 = dest2;
for (size_t i = 0; i < n; i += 2) {
*dptr1++ = *src++;
*dptr2++ = *src++;
}
}
void add_to_frame(FrameAllocator::Frame *current_frame, const char *frame_type_name, const uint8_t *start, const uint8_t *end)
{
if (current_frame->data == nullptr ||
current_frame->len > current_frame->size ||
start == end) {
return;
}
int bytes = end - start;
if (current_frame->len + bytes > current_frame->size) {
current_frame->overflow = current_frame->len + bytes - current_frame->size;
current_frame->len = current_frame->size;
if (current_frame->overflow > 1048576) {
printf("%d bytes overflow after last %s frame\n",
int(current_frame->overflow), frame_type_name);
current_frame->overflow = 0;
}
//dump_frame();
} else {
if (current_frame->data_copy != nullptr) {
memcpy(current_frame->data_copy + current_frame->len, start, bytes);
}
if (current_frame->interleaved) {
uint8_t *data = current_frame->data + current_frame->len / 2;
uint8_t *data2 = current_frame->data2 + current_frame->len / 2;
if (current_frame->len % 2 == 1) {
++data;
swap(data, data2);
}
if (bytes % 2 == 1) {
*data++ = *start++;
swap(data, data2);
++current_frame->len;
--bytes;
}
memcpy_interleaved(data, data2, start, bytes);
current_frame->len += bytes;
} else {
memcpy(current_frame->data + current_frame->len, start, bytes);
current_frame->len += bytes;
}
}
}
#if 0
void avx2_dump(const char *name, __m256i n)
{
printf("%-10s:", name);
printf(" %02x", _mm256_extract_epi8(n, 0));
printf(" %02x", _mm256_extract_epi8(n, 1));
printf(" %02x", _mm256_extract_epi8(n, 2));
printf(" %02x", _mm256_extract_epi8(n, 3));
printf(" %02x", _mm256_extract_epi8(n, 4));
printf(" %02x", _mm256_extract_epi8(n, 5));
printf(" %02x", _mm256_extract_epi8(n, 6));
printf(" %02x", _mm256_extract_epi8(n, 7));
printf(" ");
printf(" %02x", _mm256_extract_epi8(n, 8));
printf(" %02x", _mm256_extract_epi8(n, 9));
printf(" %02x", _mm256_extract_epi8(n, 10));
printf(" %02x", _mm256_extract_epi8(n, 11));
printf(" %02x", _mm256_extract_epi8(n, 12));
printf(" %02x", _mm256_extract_epi8(n, 13));
printf(" %02x", _mm256_extract_epi8(n, 14));
printf(" %02x", _mm256_extract_epi8(n, 15));
printf(" ");
printf(" %02x", _mm256_extract_epi8(n, 16));
printf(" %02x", _mm256_extract_epi8(n, 17));
printf(" %02x", _mm256_extract_epi8(n, 18));
printf(" %02x", _mm256_extract_epi8(n, 19));
printf(" %02x", _mm256_extract_epi8(n, 20));
printf(" %02x", _mm256_extract_epi8(n, 21));
printf(" %02x", _mm256_extract_epi8(n, 22));
printf(" %02x", _mm256_extract_epi8(n, 23));
printf(" ");
printf(" %02x", _mm256_extract_epi8(n, 24));
printf(" %02x", _mm256_extract_epi8(n, 25));
printf(" %02x", _mm256_extract_epi8(n, 26));
printf(" %02x", _mm256_extract_epi8(n, 27));
printf(" %02x", _mm256_extract_epi8(n, 28));
printf(" %02x", _mm256_extract_epi8(n, 29));
printf(" %02x", _mm256_extract_epi8(n, 30));
printf(" %02x", _mm256_extract_epi8(n, 31));
printf("\n");
}
#endif
#ifndef HAS_MULTIVERSIONING
const uint8_t *add_to_frame_fastpath(FrameAllocator::Frame *current_frame, const uint8_t *start, const uint8_t *limit, const char sync_char)
{
// No fast path possible unless we have multiversioning.
return start;
}
#else // defined(HAS_MULTIVERSIONING)
__attribute__((target("sse4.1")))
const uint8_t *add_to_frame_fastpath_core(FrameAllocator::Frame *current_frame, const uint8_t *aligned_start, const uint8_t *limit, const char sync_char);
__attribute__((target("avx2")))
const uint8_t *add_to_frame_fastpath_core(FrameAllocator::Frame *current_frame, const uint8_t *aligned_start, const uint8_t *limit, const char sync_char);
// Does a memcpy and memchr in one to reduce processing time.
// Note that the benefit is somewhat limited if your L3 cache is small,
// as you'll (unfortunately) spend most of the time loading the data
// from main memory.
//
// Complicated cases are left to the slow path; it basically stops copying
// up until the first instance of "sync_char" (usually a bit before, actually).
// This is fine, since 0x00 bytes shouldn't really show up in normal picture
// data, and what we really need this for is the 00 00 ff ff marker in video data.
__attribute__((target("default")))
const uint8_t *add_to_frame_fastpath(FrameAllocator::Frame *current_frame, const uint8_t *start, const uint8_t *limit, const char sync_char)
{
// No fast path possible unless we have SSE 4.1 or higher.
return start;
}
__attribute__((target("sse4.1", "avx2")))
const uint8_t *add_to_frame_fastpath(FrameAllocator::Frame *current_frame, const uint8_t *start, const uint8_t *limit, const char sync_char)
{
if (current_frame->data == nullptr ||
current_frame->len > current_frame->size ||
start == limit) {
return start;
}
size_t orig_bytes = limit - start;
if (orig_bytes < 128) {
// Don't bother.
return start;
}
// Don't read more bytes than we can write.
limit = min(limit, start + (current_frame->size - current_frame->len));
// Align end to 32 bytes.
limit = (const uint8_t *)(intptr_t(limit) & ~31);
if (start >= limit) {
return start;
}
// Process [0,31] bytes, such that start gets aligned to 32 bytes.
const uint8_t *aligned_start = (const uint8_t *)(intptr_t(start + 31) & ~31);
if (aligned_start != start) {
const uint8_t *sync_start = (const uint8_t *)memchr(start, sync_char, aligned_start - start);
if (sync_start == nullptr) {
add_to_frame(current_frame, "", start, aligned_start);
} else {
add_to_frame(current_frame, "", start, sync_start);
return sync_start;
}
}
// Make the length a multiple of 64.
if (current_frame->interleaved) {
if (((limit - aligned_start) % 64) != 0) {
limit -= 32;
}
assert(((limit - aligned_start) % 64) == 0);
}
return add_to_frame_fastpath_core(current_frame, aligned_start, limit, sync_char);
}
__attribute__((target("avx2")))
const uint8_t *add_to_frame_fastpath_core(FrameAllocator::Frame *current_frame, const uint8_t *aligned_start, const uint8_t *limit, const char sync_char)
{
const __m256i needle = _mm256_set1_epi8(sync_char);
size_t bytes_copied;
const __restrict __m256i *in = (const __m256i *)aligned_start;
if (current_frame->interleaved) {
__restrict __m256i *out1 = (__m256i *)(current_frame->data + (current_frame->len + 1) / 2);
__restrict __m256i *out2 = (__m256i *)(current_frame->data2 + current_frame->len / 2);
if (current_frame->len % 2 == 1) {
swap(out1, out2);
}
__m256i shuffle_cw = _mm256_set_epi8(
15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0,
15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0);
while (in < (const __m256i *)limit) {
// Note: For brevity, comments show lanes as if they were 2x64-bit (they're actually 2x128).
__m256i data1 = _mm256_stream_load_si256(in); // AaBbCcDd EeFfGgHh
__m256i data2 = _mm256_stream_load_si256(in + 1); // IiJjKkLl MmNnOoPp
__m256i found1 = _mm256_cmpeq_epi8(data1, needle);
__m256i found2 = _mm256_cmpeq_epi8(data2, needle);
__m256i found = _mm256_or_si256(found1, found2);
data1 = _mm256_shuffle_epi8(data1, shuffle_cw); // ABCDabcd EFGHefgh
data2 = _mm256_shuffle_epi8(data2, shuffle_cw); // IJKLijkl MNOPmnop
data1 = _mm256_permute4x64_epi64(data1, 0b11011000); // ABCDEFGH abcdefgh
data2 = _mm256_permute4x64_epi64(data2, 0b11011000); // IJKLMNOP ijklmnop
__m256i lo = _mm256_permute2x128_si256(data1, data2, 0b00100000);
__m256i hi = _mm256_permute2x128_si256(data1, data2, 0b00110001);
_mm256_storeu_si256(out1, lo); // Store as early as possible, even if the data isn't used.
_mm256_storeu_si256(out2, hi);
if (!_mm256_testz_si256(found, found)) {
break;
}
in += 2;
++out1;
++out2;
}
bytes_copied = (uint8_t *)in - aligned_start;
} else {
uint8_t *old_end = current_frame->data + current_frame->len;
__m256i *out = (__m256i *)old_end;
while (in < (const __m256i *)limit) {
__m256i data = _mm256_load_si256(in);
_mm256_storeu_si256(out, data); // Store as early as possible, even if the data isn't used.
__m256i found = _mm256_cmpeq_epi8(data, needle);
if (!_mm256_testz_si256(found, found)) {
break;
}
++in;
++out;
}
bytes_copied = (uint8_t *)out - old_end;
}
if (current_frame->data_copy != nullptr) {
// TODO: It would be somewhat more cache-efficient to write this in the
// same loop as above. However, it might not be worth the extra complexity.
memcpy(current_frame->data_copy + current_frame->len, aligned_start, bytes_copied);
}
current_frame->len += bytes_copied;
//printf("managed to fastpath %ld/%ld bytes\n", (const uint8_t *)in - (const uint8_t *)aligned_start, orig_bytes);
return (const uint8_t *)in;
}
__attribute__((target("sse4.1")))
const uint8_t *add_to_frame_fastpath_core(FrameAllocator::Frame *current_frame, const uint8_t *aligned_start, const uint8_t *limit, const char sync_char)
{
const __m128i needle = _mm_set1_epi8(sync_char);
const __m128i *in = (const __m128i *)aligned_start;
size_t bytes_copied;
if (current_frame->interleaved) {
__m128i *out1 = (__m128i *)(current_frame->data + (current_frame->len + 1) / 2);
__m128i *out2 = (__m128i *)(current_frame->data2 + current_frame->len / 2);
if (current_frame->len % 2 == 1) {
swap(out1, out2);
}
__m128i mask_lower_byte = _mm_set1_epi16(0x00ff);
while (in < (const __m128i *)limit) {
__m128i data1 = _mm_load_si128(in);
__m128i data2 = _mm_load_si128(in + 1);
__m128i data1_lo = _mm_and_si128(data1, mask_lower_byte);
__m128i data2_lo = _mm_and_si128(data2, mask_lower_byte);
__m128i data1_hi = _mm_srli_epi16(data1, 8);
__m128i data2_hi = _mm_srli_epi16(data2, 8);
__m128i lo = _mm_packus_epi16(data1_lo, data2_lo);
_mm_storeu_si128(out1, lo); // Store as early as possible, even if the data isn't used.
__m128i hi = _mm_packus_epi16(data1_hi, data2_hi);
_mm_storeu_si128(out2, hi);
__m128i found1 = _mm_cmpeq_epi8(data1, needle);
__m128i found2 = _mm_cmpeq_epi8(data2, needle);
if (!_mm_testz_si128(found1, found1) ||
!_mm_testz_si128(found2, found2)) {
break;
}
in += 2;
++out1;
++out2;
}
bytes_copied = (uint8_t *)in - aligned_start;
} else {
uint8_t *old_end = current_frame->data + current_frame->len;
__m128i *out = (__m128i *)old_end;
while (in < (const __m128i *)limit) {
__m128i data = _mm_load_si128(in);
_mm_storeu_si128(out, data); // Store as early as possible, even if the data isn't used.
__m128i found = _mm_cmpeq_epi8(data, needle);
if (!_mm_testz_si128(found, found)) {
break;
}
++in;
++out;
}
bytes_copied = (uint8_t *)out - old_end;
}
if (current_frame->data_copy != nullptr) {
// TODO: It would be somewhat more cache-efficient to write this in the
// same loop as above. However, it might not be worth the extra complexity.
memcpy(current_frame->data_copy + current_frame->len, aligned_start, bytes_copied);
}
current_frame->len += bytes_copied;
//printf("managed to fastpath %ld/%ld bytes\n", (const uint8_t *)in - (const uint8_t *)aligned_start, orig_bytes);
return (const uint8_t *)in;
}
#endif // defined(HAS_MULTIVERSIONING)
void decode_packs(const libusb_transfer *xfr,
const char *sync_pattern,
int sync_length,
FrameAllocator::Frame *current_frame,
const char *frame_type_name,
function<void(const uint8_t *start)> start_callback)
{
int offset = 0;
for (int i = 0; i < xfr->num_iso_packets; i++) {
const libusb_iso_packet_descriptor *pack = &xfr->iso_packet_desc[i];
if (pack->status != LIBUSB_TRANSFER_COMPLETED) {
fprintf(stderr, "Error: pack %u/%u status %d\n", i, xfr->num_iso_packets, pack->status);
continue;
//exit(5);
}
const uint8_t *start = xfr->buffer + offset;
const uint8_t *limit = start + pack->actual_length;
while (start < limit) { // Usually runs only one iteration.
start = add_to_frame_fastpath(current_frame, start, limit, sync_pattern[0]);
if (start == limit) break;
assert(start < limit);
const unsigned char* start_next_frame = (const unsigned char *)memmem(start, limit - start, sync_pattern, sync_length);
if (start_next_frame == nullptr) {
// add the rest of the buffer
add_to_frame(current_frame, frame_type_name, start, limit);
break;
} else {
add_to_frame(current_frame, frame_type_name, start, start_next_frame);
start = start_next_frame + sync_length; // skip sync
start_callback(start);
}
}
#if 0
dump_pack(xfr, offset, pack);
#endif
offset += pack->length;
}
}
void BMUSBCapture::cb_xfr(struct libusb_transfer *xfr)
{
if (xfr->status != LIBUSB_TRANSFER_COMPLETED &&
xfr->status != LIBUSB_TRANSFER_NO_DEVICE) {
fprintf(stderr, "error: transfer status %d\n", xfr->status);
libusb_free_transfer(xfr);
exit(3);
}
assert(xfr->user_data != nullptr);
BMUSBCapture *usb = static_cast<BMUSBCapture *>(xfr->user_data);
if (xfr->status == LIBUSB_TRANSFER_NO_DEVICE) {
if (!usb->disconnected) {
fprintf(stderr, "Device went away, stopping transfers.\n");
usb->disconnected = true;
if (usb->card_disconnected_callback) {
usb->card_disconnected_callback();
}
}
// Don't reschedule the transfer; the loop will stop by itself.
return;
}
if (xfr->type == LIBUSB_TRANSFER_TYPE_ISOCHRONOUS) {
if (xfr->endpoint == 0x84) {
decode_packs(xfr, "DeckLinkAudioResyncT", 20, &usb->current_audio_frame, "audio", bind(&BMUSBCapture::start_new_audio_block, usb, _1));
} else {
decode_packs(xfr, "\x00\x00\xff\xff", 4, &usb->current_video_frame, "video", bind(&BMUSBCapture::start_new_frame, usb, _1));
// Update the transfer with the new assumed width, if we're in the process of changing formats.
change_xfer_size_for_width(usb->current_pixel_format, usb->assumed_frame_width, xfr);
}
}
if (xfr->type == LIBUSB_TRANSFER_TYPE_CONTROL) {
//const libusb_control_setup *setup = libusb_control_transfer_get_setup(xfr);
uint8_t *buf = libusb_control_transfer_get_data(xfr);
#if 0
if (setup->wIndex == 44) {
printf("read timer register: 0x%02x%02x%02x%02x\n", buf[0], buf[1], buf[2], buf[3]);
} else {
printf("read register %2d: 0x%02x%02x%02x%02x\n",
setup->wIndex, buf[0], buf[1], buf[2], buf[3]);
}
#else
memcpy(usb->register_file + usb->current_register, buf, 4);
usb->current_register = (usb->current_register + 4) % NUM_BMUSB_REGISTERS;
if (usb->current_register == 0) {
// read through all of them
printf("register dump:");
for (int i = 0; i < NUM_BMUSB_REGISTERS; i += 4) {
printf(" 0x%02x%02x%02x%02x", usb->register_file[i], usb->register_file[i + 1], usb->register_file[i + 2], usb->register_file[i + 3]);
}
printf("\n");
}
libusb_fill_control_setup(xfr->buffer,
LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, /*request=*/214, /*value=*/0,
/*index=*/usb->current_register, /*length=*/4);
#endif
}
#if 0
printf("length:%u, actual_length:%u\n", xfr->length, xfr->actual_length);
for (i = 0; i < xfr->actual_length; i++) {
printf("%02x", xfr->buffer[i]);
if (i % 16)
printf("\n");
else if (i % 8)
printf(" ");
else
printf(" ");
}
#endif
int rc = libusb_submit_transfer(xfr);
if (rc < 0) {
fprintf(stderr, "error re-submitting URB: %s\n", libusb_error_name(rc));
exit(1);
}
}
int BMUSBCapture::cb_hotplug(libusb_context *ctx, libusb_device *dev, libusb_hotplug_event event, void *user_data)
{
if (card_connected_callback != nullptr) {
libusb_device_descriptor desc;
if (libusb_get_device_descriptor(dev, &desc) < 0) {
fprintf(stderr, "Error getting device descriptor for hotplugged device %p, killing hotplug\n", dev);
libusb_unref_device(dev);
return 1;
}
if ((desc.idVendor == USB_VENDOR_BLACKMAGIC && desc.idProduct == 0xbd3b) ||
(desc.idVendor == USB_VENDOR_BLACKMAGIC && desc.idProduct == 0xbd4f)) {
card_connected_callback(dev); // Callback takes ownership.
return 0;
}
}
libusb_unref_device(dev);
return 0;
}
void BMUSBCapture::usb_thread_func()
{
sched_param param;
memset(¶m, 0, sizeof(param));
param.sched_priority = 1;
if (sched_setscheduler(0, SCHED_RR, ¶m) == -1) {
printf("couldn't set realtime priority for USB thread: %s\n", strerror(errno));
}
pthread_setname_np(pthread_self(), "bmusb_usb_drv");
while (!should_quit) {
timeval sec { 1, 0 };
int rc = libusb_handle_events_timeout(nullptr, &sec);
if (rc != LIBUSB_SUCCESS)
break;
}
}
namespace {
struct USBCardDevice {
uint16_t product;
uint8_t bus, port;
libusb_device *device;
};
const char *get_product_name(uint16_t product)
{
if (product == 0xbd3b) {
return "Intensity Shuttle";
} else if (product == 0xbd4f) {
return "UltraStudio SDI";
} else {
assert(false);
return nullptr;
}
}
string get_card_description(int id, uint8_t bus, uint8_t port, uint16_t product)
{
const char *product_name = get_product_name(product);
char buf[256];
snprintf(buf, sizeof(buf), "USB card %d: Bus %03u Device %03u %s",
id, bus, port, product_name);
return buf;
}
vector<USBCardDevice> find_all_cards()
{
libusb_device **devices;
ssize_t num_devices = libusb_get_device_list(nullptr, &devices);
if (num_devices == -1) {
fprintf(stderr, "Error finding USB devices\n");
exit(1);
}
vector<USBCardDevice> found_cards;
for (ssize_t i = 0; i < num_devices; ++i) {
libusb_device_descriptor desc;
if (libusb_get_device_descriptor(devices[i], &desc) < 0) {
fprintf(stderr, "Error getting device descriptor for device %d\n", int(i));
exit(1);
}
uint8_t bus = libusb_get_bus_number(devices[i]);
uint8_t port = libusb_get_port_number(devices[i]);
if (!(desc.idVendor == USB_VENDOR_BLACKMAGIC && desc.idProduct == 0xbd3b) &&
!(desc.idVendor == USB_VENDOR_BLACKMAGIC && desc.idProduct == 0xbd4f)) {
libusb_unref_device(devices[i]);
continue;
}
found_cards.push_back({ desc.idProduct, bus, port, devices[i] });
}
libusb_free_device_list(devices, 0);
// Sort the devices to get a consistent ordering.
sort(found_cards.begin(), found_cards.end(), [](const USBCardDevice &a, const USBCardDevice &b) {
if (a.product != b.product)
return a.product < b.product;
if (a.bus != b.bus)
return a.bus < b.bus;
return a.port < b.port;
});
return found_cards;
}
libusb_device_handle *open_card(int card_index, string *description)
{
vector<USBCardDevice> found_cards = find_all_cards();
for (size_t i = 0; i < found_cards.size(); ++i) {
string tmp_description = get_card_description(i, found_cards[i].bus, found_cards[i].port, found_cards[i].product);
fprintf(stderr, "%s\n", tmp_description.c_str());
if (i == size_t(card_index)) {
*description = tmp_description;
}
}
if (size_t(card_index) >= found_cards.size()) {
fprintf(stderr, "Could not open card %d (only %d found)\n", card_index, int(found_cards.size()));
exit(1);
}
libusb_device_handle *devh;
int rc = libusb_open(found_cards[card_index].device, &devh);
if (rc < 0) {
fprintf(stderr, "Error opening card %d: %s\n", card_index, libusb_error_name(rc));
exit(1);
}
for (size_t i = 0; i < found_cards.size(); ++i) {
libusb_unref_device(found_cards[i].device);
}
return devh;
}
libusb_device_handle *open_card(unsigned card_index, libusb_device *dev, string *description)
{
uint8_t bus = libusb_get_bus_number(dev);
uint8_t port = libusb_get_port_number(dev);
libusb_device_descriptor desc;
if (libusb_get_device_descriptor(dev, &desc) < 0) {
fprintf(stderr, "Error getting device descriptor for device %p\n", dev);
exit(1);
}
*description = get_card_description(card_index, bus, port, desc.idProduct);
libusb_device_handle *devh;
int rc = libusb_open(dev, &devh);
if (rc < 0) {
fprintf(stderr, "Error opening card %p: %s\n", dev, libusb_error_name(rc));
exit(1);
}
return devh;
}
} // namespace
unsigned BMUSBCapture::num_cards()
{
int rc = libusb_init(nullptr);
if (rc < 0) {
fprintf(stderr, "Error initializing libusb: %s\n", libusb_error_name(rc));
exit(1);
}
vector<USBCardDevice> found_cards = find_all_cards();
unsigned ret = found_cards.size();
for (size_t i = 0; i < found_cards.size(); ++i) {
libusb_unref_device(found_cards[i].device);
}
return ret;
}
void BMUSBCapture::set_pixel_format(PixelFormat pixel_format)
{
current_pixel_format = pixel_format;
update_capture_mode();
}
void BMUSBCapture::configure_card()
{
if (video_frame_allocator == nullptr) {
owned_video_frame_allocator.reset(new MallocFrameAllocator(FRAME_SIZE, NUM_QUEUED_VIDEO_FRAMES));
set_video_frame_allocator(owned_video_frame_allocator.get());
}
if (audio_frame_allocator == nullptr) {
owned_audio_frame_allocator.reset(new MallocFrameAllocator(65536, NUM_QUEUED_AUDIO_FRAMES));
set_audio_frame_allocator(owned_audio_frame_allocator.get());
}
dequeue_thread_should_quit = false;
dequeue_thread = thread(&BMUSBCapture::dequeue_thread_func, this);
int rc;
struct libusb_transfer *xfr;
rc = libusb_init(nullptr);
if (rc < 0) {
fprintf(stderr, "Error initializing libusb: %s\n", libusb_error_name(rc));
exit(1);
}
if (dev == nullptr) {
devh = open_card(card_index, &description);
} else {
devh = open_card(card_index, dev, &description);
libusb_unref_device(dev);
}
if (!devh) {
fprintf(stderr, "Error finding USB device\n");
exit(1);
}
libusb_config_descriptor *config;
rc = libusb_get_config_descriptor(libusb_get_device(devh), /*config_index=*/0, &config);
if (rc < 0) {
fprintf(stderr, "Error getting configuration: %s\n", libusb_error_name(rc));
exit(1);
}
#if 0
printf("%d interface\n", config->bNumInterfaces);
for (int interface_number = 0; interface_number < config->bNumInterfaces; ++interface_number) {
printf(" interface %d\n", interface_number);
const libusb_interface *interface = &config->interface[interface_number];
for (int altsetting = 0; altsetting < interface->num_altsetting; ++altsetting) {
const libusb_interface_descriptor *interface_desc = &interface->altsetting[altsetting];
printf(" alternate setting %d\n", interface_desc->bAlternateSetting);
for (int endpoint_number = 0; endpoint_number < interface_desc->bNumEndpoints; ++endpoint_number) {
const libusb_endpoint_descriptor *endpoint = &interface_desc->endpoint[endpoint_number];
printf(" endpoint address 0x%02x\n", endpoint->bEndpointAddress);
}
}
}
#endif
rc = libusb_set_configuration(devh, /*configuration=*/1);
if (rc < 0) {
fprintf(stderr, "Error setting configuration 1: %s\n", libusb_error_name(rc));
exit(1);
}
rc = libusb_claim_interface(devh, 0);
if (rc < 0) {
fprintf(stderr, "Error claiming interface 0: %s\n", libusb_error_name(rc));
exit(1);
}
// Alternate setting 1 is output, alternate setting 2 is input.
// Card is reset when switching alternates, so the driver uses
// this “double switch” when it wants to reset.
//
// There's also alternate settings 3 and 4, which seem to be
// like 1 and 2 except they advertise less bandwidth needed.
rc = libusb_set_interface_alt_setting(devh, /*interface=*/0, /*alternate_setting=*/1);
if (rc < 0) {
fprintf(stderr, "Error setting alternate 1: %s\n", libusb_error_name(rc));
if (rc == LIBUSB_ERROR_NOT_FOUND) {
fprintf(stderr, "This is usually because the card came up in USB2 mode.\n");
fprintf(stderr, "In particular, this tends to happen if you boot up with the\n");
fprintf(stderr, "card plugged in; just unplug and replug it, and it usually works.\n");
}
exit(1);
}
rc = libusb_set_interface_alt_setting(devh, /*interface=*/0, /*alternate_setting=*/2);
if (rc < 0) {
fprintf(stderr, "Error setting alternate 2: %s\n", libusb_error_name(rc));
exit(1);
}
#if 0
rc = libusb_set_interface_alt_setting(devh, /*interface=*/0, /*alternate_setting=*/1);
if (rc < 0) {
fprintf(stderr, "Error setting alternate 1: %s\n", libusb_error_name(rc));
exit(1);
}
#endif
#if 0
rc = libusb_claim_interface(devh, 3);
if (rc < 0) {
fprintf(stderr, "Error claiming interface 3: %s\n", libusb_error_name(rc));
exit(1);
}
#endif
// theories:
// 44 is some kind of timer register (first 16 bits count upwards)
// 24 is some sort of watchdog?
// you can seemingly set it to 0x73c60001 and that bit will eventually disappear
// (or will go to 0x73c60010?), also seen 0x73c60100
// 12 also changes all the time, unclear why
// 16 seems to be autodetected mode somehow
// -- this is e00115e0 after reset?
// ed0115e0 after mode change [to output?]
// 2d0015e0 after more mode change [to input]
// ed0115e0 after more mode change
// 2d0015e0 after more mode change
//
// 390115e0 seems to indicate we have signal
// changes to 200115e0 when resolution changes/we lose signal, driver resets after a while
//
// 200015e0 on startup
// changes to 250115e0 when we sync to the signal
//
// so only first 16 bits count, and 0x0100 is a mask for ok/stable signal?
//
// Bottom 16 bits of this register seem to be firmware version number (possibly not all all of them).
//
// 28 and 32 seems to be analog audio input levels (one byte for each of the eight channels).
// however, if setting 32 with HDMI embedded audio, it is immediately overwritten back (to 0xe137002a).
//
// 4, 8, 20 are unclear. seem to be some sort of bitmask, but we can set them to 0 with no apparent effect.
// perhaps some of them are related to analog output?
//
// 36 can be set to 0 with no apparent effect (all of this tested on both video and audio),
// but the driver sets it to 0x8036802a at some point.
//
// all of this is on request 214/215. other requests (192, 219,
// 222, 223, 224) are used for firmware upgrade. Probably best to
// stay out of it unless you know what you're doing.
//
//
// register 16:
// first byte is 0x39 for a stable 576p60 signal, 0x2d for a stable 720p60 signal, 0x20 for no signal
//
// theories:
// 0x01 - stable signal
// 0x04 - deep color
// 0x08 - unknown (audio??)
// 0x20 - 720p??
// 0x30 - 576p??
update_capture_mode();
struct ctrl {
int endpoint;
int request;
int index;
uint32_t data;
};
static const ctrl ctrls[] = {
{ LIBUSB_ENDPOINT_IN, 214, 16, 0 },
{ LIBUSB_ENDPOINT_IN, 214, 0, 0 },
//{ LIBUSB_ENDPOINT_OUT, 215, 0, 0x80000100 },
//{ LIBUSB_ENDPOINT_OUT, 215, 0, 0x09000000 },
{ LIBUSB_ENDPOINT_OUT, 215, 24, 0x73c60001 }, // latch for frame start?
{ LIBUSB_ENDPOINT_IN, 214, 24, 0 }, //
};
for (unsigned req = 0; req < sizeof(ctrls) / sizeof(ctrls[0]); ++req) {
uint32_t flipped = htonl(ctrls[req].data);
static uint8_t value[4];
memcpy(value, &flipped, sizeof(flipped));
int size = sizeof(value);
//if (ctrls[req].request == 215) size = 0;
rc = libusb_control_transfer(devh, LIBUSB_REQUEST_TYPE_VENDOR | ctrls[req].endpoint,
/*request=*/ctrls[req].request, /*value=*/0, /*index=*/ctrls[req].index, value, size, /*timeout=*/0);
if (rc < 0) {
fprintf(stderr, "Error on control %d: %s\n", ctrls[req].index, libusb_error_name(rc));
exit(1);
}
if (ctrls[req].index == 16 && rc == 4) {
printf("Card firmware version: 0x%02x%02x\n", value[2], value[3]);
}
#if 0
printf("rc=%d: ep=%d@%d %d -> 0x", rc, ctrls[req].endpoint, ctrls[req].request, ctrls[req].index);
for (int i = 0; i < rc; ++i) {
printf("%02x", value[i]);
}
printf("\n");
#endif
}
#if 0
// DEBUG
for ( ;; ) {
static int my_index = 0;
static uint8_t value[4];
int size = sizeof(value);
rc = libusb_control_transfer(devh, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
/*request=*/214, /*value=*/0, /*index=*/my_index, value, size, /*timeout=*/0);
if (rc < 0) {
fprintf(stderr, "Error on control\n");
exit(1);
}
printf("rc=%d index=%d: 0x", rc, my_index);
for (int i = 0; i < rc; ++i) {
printf("%02x", value[i]);
}
printf("\n");
}
#endif
#if 0
// set up an asynchronous transfer of the timer register
static uint8_t cmdbuf[LIBUSB_CONTROL_SETUP_SIZE + 4];
static int completed = 0;
xfr = libusb_alloc_transfer(0);
libusb_fill_control_setup(cmdbuf,
LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, /*request=*/214, /*value=*/0,
/*index=*/44, /*length=*/4);
libusb_fill_control_transfer(xfr, devh, cmdbuf, cb_xfr, &completed, 0);
xfr->user_data = this;
libusb_submit_transfer(xfr);
// set up an asynchronous transfer of register 24
static uint8_t cmdbuf2[LIBUSB_CONTROL_SETUP_SIZE + 4];
static int completed2 = 0;
xfr = libusb_alloc_transfer(0);
libusb_fill_control_setup(cmdbuf2,
LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, /*request=*/214, /*value=*/0,
/*index=*/24, /*length=*/4);
libusb_fill_control_transfer(xfr, devh, cmdbuf2, cb_xfr, &completed2, 0);
xfr->user_data = this;
libusb_submit_transfer(xfr);
#endif
// set up an asynchronous transfer of the register dump
static uint8_t cmdbuf3[LIBUSB_CONTROL_SETUP_SIZE + 4];
static int completed3 = 0;
xfr = libusb_alloc_transfer(0);
libusb_fill_control_setup(cmdbuf3,
LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, /*request=*/214, /*value=*/0,
/*index=*/current_register, /*length=*/4);
libusb_fill_control_transfer(xfr, devh, cmdbuf3, cb_xfr, &completed3, 0);
xfr->user_data = this;
//libusb_submit_transfer(xfr);
//audiofp = fopen("audio.raw", "wb");
// set up isochronous transfers for audio and video
for (int e = 3; e <= 4; ++e) {
int num_transfers = 6;
for (int i = 0; i < num_transfers; ++i) {
size_t buf_size;
int num_iso_pack, size;
if (e == 3) {
// Allocate for minimum width (because that will give us the most
// number of packets, so we don't need to reallocate, but we'll
// default to 720p for the first frame.
size = find_xfer_size_for_width(PixelFormat_8BitYCbCr, MIN_WIDTH);
num_iso_pack = USB_VIDEO_TRANSFER_SIZE / size;
buf_size = USB_VIDEO_TRANSFER_SIZE;
} else {
size = 0xc0;
num_iso_pack = 80;
buf_size = num_iso_pack * size;
}
int num_bytes = num_iso_pack * size;
assert(size_t(num_bytes) <= buf_size);
#if LIBUSB_API_VERSION >= 0x01000105
uint8_t *buf = libusb_dev_mem_alloc(devh, num_bytes);
#else
uint8_t *buf = nullptr;
#endif
if (buf == nullptr) {
fprintf(stderr, "Failed to allocate persistent DMA memory ");
#if LIBUSB_API_VERSION >= 0x01000105
fprintf(stderr, "(probably too old kernel; use 4.6.0 or newer).\n");
#else
fprintf(stderr, "(compiled against too old libusb-1.0).\n");
#endif
fprintf(stderr, "Will go slower, and likely fail due to memory fragmentation after a few hours.\n");
buf = new uint8_t[num_bytes];
}
xfr = libusb_alloc_transfer(num_iso_pack);
if (!xfr) {
fprintf(stderr, "oom\n");
exit(1);
}
int ep = LIBUSB_ENDPOINT_IN | e;
libusb_fill_iso_transfer(xfr, devh, ep, buf, buf_size,
num_iso_pack, cb_xfr, nullptr, 0);
libusb_set_iso_packet_lengths(xfr, size);
xfr->user_data = this;
if (e == 3) {
change_xfer_size_for_width(current_pixel_format, assumed_frame_width, xfr);
}
iso_xfrs.push_back(xfr);
}
}
}
void BMUSBCapture::start_bm_capture()
{
int i = 0;
for (libusb_transfer *xfr : iso_xfrs) {
int rc = libusb_submit_transfer(xfr);
++i;
if (rc < 0) {
//printf("num_bytes=%d\n", num_bytes);
fprintf(stderr, "Error submitting iso to endpoint 0x%02x, number %d: %s\n",
xfr->endpoint, i, libusb_error_name(rc));
exit(1);
}
}
#if 0
libusb_release_interface(devh, 0);
out:
if (devh)
libusb_close(devh);
libusb_exit(nullptr);
return rc;
#endif
}
void BMUSBCapture::stop_dequeue_thread()
{
dequeue_thread_should_quit = true;
queues_not_empty.notify_all();
dequeue_thread.join();
}
void BMUSBCapture::start_bm_thread()
{
// Devices leaving are discovered by seeing the isochronous packets
// coming back with errors, so only care about devices joining.
if (card_connected_callback != nullptr) {
if (libusb_hotplug_register_callback(
nullptr, LIBUSB_HOTPLUG_EVENT_DEVICE_ARRIVED, hotplug_existing_devices ? LIBUSB_HOTPLUG_ENUMERATE : LIBUSB_HOTPLUG_NO_FLAGS,
USB_VENDOR_BLACKMAGIC, LIBUSB_HOTPLUG_MATCH_ANY, LIBUSB_HOTPLUG_MATCH_ANY,
&BMUSBCapture::cb_hotplug, nullptr, nullptr) < 0) {
fprintf(stderr, "libusb_hotplug_register_callback() failed\n");
exit(1);
}
}
should_quit = false;
usb_thread = thread(&BMUSBCapture::usb_thread_func);
}
void BMUSBCapture::stop_bm_thread()
{
should_quit = true;
libusb_interrupt_event_handler(nullptr);
usb_thread.join();
}
map<uint32_t, VideoMode> BMUSBCapture::get_available_video_modes() const
{
// The USB3 cards autodetect, and seem to have no provision for forcing modes.
VideoMode auto_mode;
auto_mode.name = "Autodetect";
auto_mode.autodetect = true;
return {{ 0, auto_mode }};
}
uint32_t BMUSBCapture::get_current_video_mode() const
{
return 0; // Matches get_available_video_modes().
}
void BMUSBCapture::set_video_mode(uint32_t video_mode_id)
{
assert(video_mode_id == 0); // Matches get_available_video_modes().
}
std::map<uint32_t, std::string> BMUSBCapture::get_available_video_inputs() const
{
return {
{ 0x00000000, "HDMI/SDI" },
{ 0x02000000, "Component" },
{ 0x04000000, "Composite" },
{ 0x06000000, "S-video" }
};
}
void BMUSBCapture::set_video_input(uint32_t video_input_id)
{
assert((video_input_id & ~0x06000000) == 0);
current_video_input = video_input_id;
update_capture_mode();
}
std::map<uint32_t, std::string> BMUSBCapture::get_available_audio_inputs() const
{
return {
{ 0x00000000, "Embedded" },
{ 0x10000000, "Analog" }
};
}
void BMUSBCapture::set_audio_input(uint32_t audio_input_id)
{
assert((audio_input_id & ~0x10000000) == 0);
current_audio_input = audio_input_id;
update_capture_mode();
}
void BMUSBCapture::update_capture_mode()
{
if (devh == nullptr) {
return;
}
// Clearing the 0x08000000 bit seems to change the capture format (other source?).
uint32_t mode = htonl(0x09000000 | current_video_input | current_audio_input);
if (current_pixel_format == PixelFormat_8BitYCbCr) {
mode |= htonl(0x20000000);
} else {
assert(current_pixel_format == PixelFormat_10BitYCbCr);
}
int rc = libusb_control_transfer(devh, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
/*request=*/215, /*value=*/0, /*index=*/0, (unsigned char *)&mode, sizeof(mode), /*timeout=*/0);
if (rc < 0) {
fprintf(stderr, "Error on setting mode: %s\n", libusb_error_name(rc));
exit(1);
}
}
} // namespace bmusb
|