File: fake_capture.cpp

package info (click to toggle)
bmusb 0.7.8-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 260 kB
  • sloc: cpp: 2,060; makefile: 52; xml: 21; ansic: 11
file content (365 lines) | stat: -rw-r--r-- 9,936 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
// A fake capture device that sends single-color frames at a given rate.
// Mostly useful for testing themes without actually hooking up capture devices.

#include "bmusb/fake_capture.h"

#include <assert.h>
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <unistd.h>
#if __SSE2__
#include <immintrin.h>
#endif
#include <chrono>
#include <cstddef>

#include "bmusb/bmusb.h"

#define FRAME_SIZE (8 << 20)  // 8 MB.

// Pure-color inputs: Red, green, blue, white, two shades of gray.
#define NUM_COLORS 6
constexpr uint8_t ys[NUM_COLORS] = { 63, 173, 32, 235, 180, 128 };
constexpr uint8_t cbs[NUM_COLORS] = { 102, 42, 240, 128, 128, 128 };
constexpr uint8_t crs[NUM_COLORS] = { 240, 26, 118, 128, 128, 128 };

using namespace std;
using namespace std::chrono;

namespace bmusb {
namespace {

// We don't bother with multiversioning for this, because SSE2
// is on by default for all 64-bit compiles, which is really
// the target user segment here.

void memset2(uint8_t *s, const uint8_t c[2], size_t n)
{
	size_t i = 0;
#if __SSE2__
	const uint8_t c_expanded[16] = {
		c[0], c[1], c[0], c[1], c[0], c[1], c[0], c[1],
		c[0], c[1], c[0], c[1], c[0], c[1], c[0], c[1]
	};
	__m128i cc = *(__m128i *)c_expanded;
	__m128i *out = (__m128i *)s;

	for ( ; i < (n & ~15); i += 16) {
		_mm_storeu_si128(out++, cc);
		_mm_storeu_si128(out++, cc);
	}

	s = (uint8_t *)out;
#endif
	for ( ; i < n; ++i) {
		*s++ = c[0];
		*s++ = c[1];
	}
}

void memset4(uint8_t *s, const uint8_t c[4], size_t n)
{
	size_t i = 0;
#if __SSE2__
	const uint8_t c_expanded[16] = {
		c[0], c[1], c[2], c[3], c[0], c[1], c[2], c[3],
		c[0], c[1], c[2], c[3], c[0], c[1], c[2], c[3]
	};
	__m128i cc = *(__m128i *)c_expanded;
	__m128i *out = (__m128i *)s;

	for ( ; i < (n & ~7); i += 8) {
		_mm_storeu_si128(out++, cc);
		_mm_storeu_si128(out++, cc);
	}

	s = (uint8_t *)out;
#endif
	for ( ; i < n; ++i) {
		*s++ = c[0];
		*s++ = c[1];
		*s++ = c[2];
		*s++ = c[3];
	}
}

void memset16(uint8_t *s, const uint32_t c[4], size_t n)
{
	size_t i = 0;
#if __SSE2__
	__m128i cc = *(__m128i *)c;
	__m128i *out = (__m128i *)s;

	for ( ; i < (n & ~1); i += 2) {
		_mm_storeu_si128(out++, cc);
		_mm_storeu_si128(out++, cc);
	}

	s = (uint8_t *)out;
#endif
	for ( ; i < n; ++i) {
		memcpy(s, c, 16);
		s += 16;
	}
}

}  // namespace

FakeCapture::FakeCapture(unsigned width, unsigned height, unsigned fps, unsigned audio_sample_frequency, int card_index, bool has_audio)
	: width(width), height(height), fps(fps), audio_sample_frequency(audio_sample_frequency), card_index(card_index)
{
	char buf[256];
	snprintf(buf, sizeof(buf), "Fake card %d", card_index + 1);
	description = buf;

	y = ys[card_index % NUM_COLORS];
	cb = cbs[card_index % NUM_COLORS];
	cr = crs[card_index % NUM_COLORS];

	if (has_audio) {
		audio_ref_level = pow(10.0f, -23.0f / 20.0f) * (1u << 31);  // -23 dBFS (EBU R128 level).

		float freq = 440.0 * pow(2.0, card_index / 12.0);
		sincosf(2 * M_PI * freq / audio_sample_frequency, &audio_sin, &audio_cos);
		audio_real = audio_ref_level;
		audio_imag = 0.0f;
	}
}

FakeCapture::~FakeCapture()
{
	if (has_dequeue_callbacks) {
		dequeue_cleanup_callback();
	}
}

void FakeCapture::configure_card()
{
	if (video_frame_allocator == nullptr) {
		owned_video_frame_allocator.reset(new MallocFrameAllocator(FRAME_SIZE, NUM_QUEUED_VIDEO_FRAMES));
		set_video_frame_allocator(owned_video_frame_allocator.get());
	}
	if (audio_frame_allocator == nullptr) {
		owned_audio_frame_allocator.reset(new MallocFrameAllocator(65536, NUM_QUEUED_AUDIO_FRAMES));
		set_audio_frame_allocator(owned_audio_frame_allocator.get());
	}
}

void FakeCapture::start_bm_capture()
{
	producer_thread_should_quit = false;
	producer_thread = thread(&FakeCapture::producer_thread_func, this);
}

void FakeCapture::stop_dequeue_thread()
{
	producer_thread_should_quit = true;
	producer_thread.join();
}
	
std::map<uint32_t, VideoMode> FakeCapture::get_available_video_modes() const
{
	VideoMode mode;

	char buf[256];
	snprintf(buf, sizeof(buf), "%ux%u", width, height);
	mode.name = buf;
	
	mode.autodetect = false;
	mode.width = width;
	mode.height = height;
	mode.frame_rate_num = fps;
	mode.frame_rate_den = 1;
	mode.interlaced = false;

	return {{ 0, mode }};
}

std::map<uint32_t, std::string> FakeCapture::get_available_video_inputs() const
{
	return {{ 0, "Fake video input (single color)" }};
}

std::map<uint32_t, std::string> FakeCapture::get_available_audio_inputs() const
{
	return {{ 0, "Fake audio input (silence)" }};
}

void FakeCapture::set_video_mode(uint32_t video_mode_id)
{
	assert(video_mode_id == 0);
}

void FakeCapture::set_video_input(uint32_t video_input_id)
{
	assert(video_input_id == 0);
}

void FakeCapture::set_audio_input(uint32_t audio_input_id)
{
	assert(audio_input_id == 0);
}

namespace {

void add_time(double t, timespec *ts)
{
	ts->tv_nsec += lrint(t * 1e9);
	ts->tv_sec += ts->tv_nsec / 1000000000;
	ts->tv_nsec %= 1000000000;
}

bool timespec_less_than(const timespec &a, const timespec &b)
{
	return make_pair(a.tv_sec, a.tv_nsec) < make_pair(b.tv_sec, b.tv_nsec);
}

void fill_color_noninterleaved(uint8_t *dst, uint8_t y, uint8_t cb, uint8_t cr, const VideoFormat &video_format, bool ten_bit)
{
	if (ten_bit) {
		// Just use the 8-bit-values shifted left by 2.
		// It's not 100% correct, but it's close enough.
		uint32_t pix[4];
		pix[0] = (cb << 2) | (y  << 12) | (cr << 22);
		pix[1] = (y  << 2) | (cb << 12) | ( y << 22);
		pix[2] = (cr << 2) | (y  << 12) | (cb << 22);
		pix[3] = (y  << 2) | (cr << 12) | ( y << 22);
		memset16(dst, pix, video_format.stride * video_format.height / sizeof(pix));
	} else {
		uint8_t ycbcr[] = { cb, y, cr, y };
		memset4(dst, ycbcr, video_format.width * video_format.height / 2);
	}
}

}  // namespace

void FakeCapture::producer_thread_func()
{
	char thread_name[16];
	snprintf(thread_name, sizeof(thread_name), "FakeCapture_%d", card_index);
	pthread_setname_np(pthread_self(), thread_name);

	uint16_t timecode = 0;

	if (has_dequeue_callbacks) {
		dequeue_init_callback();
	}

	timespec next_frame;
	clock_gettime(CLOCK_MONOTONIC, &next_frame);
	add_time(1.0 / fps, &next_frame);

	while (!producer_thread_should_quit) {
		timespec now;
		clock_gettime(CLOCK_MONOTONIC, &now);

		if (timespec_less_than(now, next_frame)) {
			// Wait until the next frame.
			if (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
                                            &next_frame, nullptr) == -1) {
				if (errno == EINTR) continue;  // Re-check the flag and then sleep again.
				perror("clock_nanosleep");
				exit(1);
			}
		} else {
			// We've seemingly missed a frame. If we're more than one second behind,
			// reset the timer; otherwise, just keep going.
			timespec limit = next_frame;
			++limit.tv_sec;
			if (!timespec_less_than(now, limit)) {
				fprintf(stderr, "More than one second of missed fake frames; resetting clock.\n");
				next_frame = now;
			}
		}
		steady_clock::time_point timestamp = steady_clock::now();

		// Figure out when the next frame is to be, then compute the current one.
		add_time(1.0 / fps, &next_frame);

		VideoFormat video_format;
		video_format.width = width;
		video_format.height = height;
		if (current_pixel_format == PixelFormat_10BitYCbCr) {
			video_format.stride = (width + 5) / 6 * 4 * sizeof(uint32_t);
		} else {
			video_format.stride = width * 2;
		}
		video_format.frame_rate_nom = fps;
		video_format.frame_rate_den = 1;
		video_format.has_signal = true;
		video_format.is_connected = false;

		FrameAllocator::Frame video_frame = video_frame_allocator->alloc_frame();
		if (video_frame.data != nullptr) {
			assert(video_frame.size >= width * height * 2);
			if (video_frame.interleaved) {
				assert(current_pixel_format == PixelFormat_8BitYCbCr);
				uint8_t cbcr[] = { cb, cr };
				memset2(video_frame.data, cbcr, width * height / 2);
				memset(video_frame.data2, y, width * height);
			} else {
				fill_color_noninterleaved(video_frame.data, y, cb, cr, video_format, current_pixel_format == PixelFormat_10BitYCbCr);
			}
			if (video_frame.data_copy != nullptr) {
				fill_color_noninterleaved(video_frame.data_copy, y, cb, cr, video_format, current_pixel_format == PixelFormat_10BitYCbCr);
			}
			video_frame.len = video_format.stride * height;
			video_frame.received_timestamp = timestamp;
		}

		AudioFormat audio_format;
		audio_format.bits_per_sample = 32;
		audio_format.num_channels = 8;

		FrameAllocator::Frame audio_frame = audio_frame_allocator->alloc_frame();
		if (audio_frame.data != nullptr) {
			const unsigned num_stereo_samples = audio_sample_frequency / fps;
			assert(audio_frame.size >= audio_format.num_channels * sizeof(int32_t) * num_stereo_samples);
			audio_frame.len = audio_format.num_channels * sizeof(int32_t) * num_stereo_samples;
			audio_frame.received_timestamp = timestamp;

			if (audio_sin == 0.0f) {
				// Silence.
				memset(audio_frame.data, 0, audio_frame.len);
			} else {
				make_tone((int32_t *)audio_frame.data, num_stereo_samples, audio_format.num_channels);
			}
		}

		frame_callback(timecode++,
			       video_frame, 0, video_format,
			       audio_frame, 0, audio_format);
	}
	if (has_dequeue_callbacks) {
		dequeue_cleanup_callback();
	}
}

void FakeCapture::make_tone(int32_t *out, unsigned num_stereo_samples, unsigned num_channels)
{
	int32_t *ptr = out;
	float r = audio_real, i = audio_imag;
	for (unsigned sample_num = 0; sample_num < num_stereo_samples; ++sample_num) {
		int32_t s = lrintf(r);
		for (unsigned i = 0; i < num_channels; ++i) {
			*ptr++ = s;
		}

		// Rotate the phaser by one sample.
		float new_r = r * audio_cos - i * audio_sin;
		float new_i = r * audio_sin + i * audio_cos;
		r = new_r;
		i = new_i;
	}

	// Periodically renormalize to counteract precision issues.
	double corr = audio_ref_level / hypot(r, i);
	audio_real = r * corr;
	audio_imag = i * corr;
}

}  // namespace bmusb