File: germtest.c

package info (click to toggle)
bnlib 1.1-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 776 kB
  • ctags: 874
  • sloc: ansic: 6,526; asm: 1,380; makefile: 196; sh: 154
file content (339 lines) | stat: -rw-r--r-- 8,537 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/*
 * germtest.c - Random Sophie Germain prime generator.
 *
 * Copyright (c) 1995  Colin Plumb.  All rights reserved.
 * For licensing and other legal details, see the file legal.c.
 *
 * This generates random Sophie Germain primes using the command line
 * as a seed value.  It uses George Marsaglia's "mother of all random
 * number generators" to (using the command line as a seed) to pick the
 * starting search value and then searches sequentially for the next
 * Sophie Germain prime p (a prime such that 2*p+1 is also prime).
 *
 * This is a really good way to burn a lot of CPU cycles.
 */
#if HAVE_CONFIG_H
#include "config.h"
#endif

#include <stdio.h>
#if !NO_STRING_H
#include <string.h>
#elif HAVE_STRINGS_H
#include <strings.h>
#endif
#if NEED_MEMORY_H
#include <memory.h>
#endif

#include <stdlib.h>	/* For malloc() */

#include "bn.h"
#include "germain.h"
#include "sieve.h"

#include "cputime.h"

#define BNDEBUG 1

#include "bnprint.h"
#define bnPut(prompt, bn) bnPrint(stdout, prompt, bn, "\n")

/*
 * Generate random numbers according to George Marsaglia's
 * Mother Of All Random Number Generators.  This has a
 * period of 0x17768215025F82EA0378038A03A203CA7FFF,
 * or decimal 2043908804452974490458343567652678881935359.
 */
static unsigned mstate[8];
static unsigned mcarry;
static unsigned mindex;

static unsigned
mRandom_16(void)
{
	unsigned long t;

	t = mcarry +
	    mstate[ mindex     ] * 1941ul +
	    mstate[(mindex+1)&7] * 1860ul +
	    mstate[(mindex+2)&7] * 1812ul +
	    mstate[(mindex+3)&7] * 1776ul +
	    mstate[(mindex+4)&7] * 1492ul +
	    mstate[(mindex+5)&7] * 1215ul +
	    mstate[(mindex+6)&7] * 1066ul +
	    mstate[(mindex+7)&7] * 12013ul;
	mcarry = (unsigned)(t >> 16);	/* 0 <= mcarry <= 0x5a87 */
	mindex = (mindex-1) & 7;
	return mstate[mindex] = (unsigned)(t & 0xffff);
}

/*
 * Initialize the RNG based on the given seed.
 * A zero-length seed will produce pretty lousy numbers,
 * but it will work.
 */
static void
mSeed(unsigned char const *seed, unsigned len)
{
	unsigned i;

	for (i = 0; i < 8; i++)
		mstate[i] = 0;
	mcarry = 1;
	while (len--) {
		mcarry += *seed++;
		(void)mRandom_16();
	}
}


/*
 * Generate a bignum of a specified length, with the given
 * high and low 8 bits. "High" is merged into the high 8 bits of the
 * number.  For example, set it to 0x80 to ensure that the number is
 * exactly "bits" bits long (i.e. 2^(bits-1) <= bn < 2^bits).
 * "Low" is merged into the low 8 bits.  For example, set it to
 * 1 to ensure that you generate an odd number.  "High" is merged
 * into the high bits; set it to 0x80 to ensure that the high bit
 * is set in the returned value.
 */
static int
genRandBn(struct BigNum *bn, unsigned bits, unsigned char high,
unsigned char low, unsigned char const *seed, unsigned len)
{
	unsigned char buf[64];
	unsigned bytes;
	unsigned l = 0;	/* Current position */
	unsigned t, i;

	bnSetQ(bn, 0);
	if (bnPrealloc(bn, bits) < 0)
		return -1;
	mSeed(seed, len);

	bytes = (bits+7) / 8;	/* Number of bytes to use */

	for (i = 0; i < sizeof(buf); i += 2) {
		t = mRandom_16();
		buf[i] = (unsigned char)(t >> 8);
		buf[i+1] = (unsigned char)t;
	}
	buf[sizeof(buf)-1] |= low;

	while (bytes > sizeof(buf)) {
		bytes -= sizeof(buf);
		/* Merge in low half of high bits, if necessary */
		if (bytes == 1 && (bits & 7))
			buf[0] |= high << (bits & 7);
		if (bnInsertBigBytes(bn, buf, l, sizeof(buf)) < 0)
			return -1;
		l += sizeof(buf);
		for (i = 0; i < sizeof(buf); i += 2) {
			t = mRandom_16();
			buf[i] = (unsigned char)t;
			buf[i+1] = (unsigned char)(t >> 8);
		}
	}

	/* Do the final "bytes"-long section, using the tail bytes in buf */
	/* Mask off excess high bits */
	buf[sizeof(buf)-bytes] &= 255 >> (-bits & 7);
	/* Merge in specified high bits */
	buf[sizeof(buf)-bytes] |= high >> (-bits & 7);
	if (bytes > 1 && (bits & 7))
		buf[sizeof(buf)-bytes+1] |= high << (bits & 7);
	/* Merge in the appropriate bytes of the buffer */
	if (bnInsertBigBytes(bn, buf+sizeof(buf)-bytes, l, bytes) < 0)
		return -1;
	return 0;
}

struct Progress {
	FILE *f;
	unsigned column;
	unsigned wrap;
};

/* Print a progress indicator, with line-wrap */
static int
genProgress(void *arg, int c)
{
	struct Progress *p = arg;
	if (++p->column > p->wrap) {
		putc('\n', p->f);
		p->column = 1;
	}
	putc(c, p->f);
	fflush(p->f);
	return 0;
}

static int
genSophieGermain(struct BigNum *bn, unsigned bits, unsigned order,
	unsigned char const *seed, unsigned len, FILE *f)
{
#if CLOCK_AVAIL
	timetype start, stop;
	unsigned long s;
#endif
	int i;
#if BNDEBUG
	unsigned char s1[1024], s2[1024];
#endif
	char buf[40];
	unsigned p1, p2;
	struct BigNum step;
	struct Progress progress;

	if (f)
		fprintf(f, "Generating a %u-bit order-%u Sophie Germain prime with \"%.*s\"\n",
			bits, order, (int)len, (char *)seed);
	progress.f = f;
	progress.column = 0;
	progress.wrap = 78;

	/* Find p - choose a starting place */
	if (genRandBn(bn, bits, 0xC0, 3, seed, len) < 0)
		return -1;
#if BNDEBUG /* DEBUG - check that sieve works properly */
	bnBegin(&step);
	bnSetQ(&step, 2);
	sieveBuild(s1, 1024, bn, 2, order);
	sieveBuildBig(s2, 1024, bn, &step, order);
	p1 = p2 = 0;
	if (s1[0] != s2[0])
		printf("Difference: s1[0] = %x s2[0] = %x\n", s1[0], s2[0]);
	do {
		p1 = sieveSearch(s1, 1024, p1);
		p2 = sieveSearch(s2, 1024, p2);

		if (p1 != p2)
			printf("Difference: p1 = %u p2 = %u\n", p1, p2);
	} while (p1 && p2);

	bnEnd(&step);
#endif
	/* And search for a prime */
#if CLOCK_AVAIL
	gettime(&start);
#endif
	i = germainPrimeGen(bn, order, f ? genProgress : 0, (void *)&progress);
	if (i < 0)
		return -1;
#if CLOCK_AVAIL
	gettime(&stop);
#endif
	if (f) {
		putc('\n', f);
		fprintf(f, "%d modular exponentiations performed.\n", i);
	}
#if CLOCK_AVAIL
	subtime(stop, start);
	s = sec(stop);
	printf("%u-bit time = %lu.%03u sec.", bits, s, msec(stop));
	if (s > 60) {
		putchar(' ');
		putchar('(');
		if (s > 3600)
			printf("%u:%02u", (unsigned)(s/3600),
			       (unsigned)(s/60%60));
		else
			printf("%u", (unsigned)(s/60));
		printf(":%02u)", (unsigned)(s%60));
	}
	putchar('\n');
#endif

	bnPut("  p   = ", bn);
	for (p1 = 0; p1 < order; p1++) {
		if (bnLShift(bn, 1) <0)
			return -1;
		(void)bnAddQ(bn, 1);
		sprintf(buf, "%u*p+%u = ", 2u<<p1, (2u<<p1) - 1);
		bnPut(buf, bn);
	}
	return 0;
}

/* Copy the command line to the buffer. */
static unsigned char *
copy(int argc, char **argv, size_t *lenp)
{
	size_t len;
	int i;
	unsigned char *buf, *p;
	
	len = argc > 2 ? (size_t)(argc-2) : 0;
	for (i = 1; i < argc; i++)
		len += strlen(argv[i]);
	*lenp = len;
	buf = malloc(len+!len);	/* Can't malloc 0 bytes... */
	if (buf) {
		p = buf;
		for (i = 1; i < argc; i++) {
			if (i > 1)
				*p++ = ' ';
			len = strlen(argv[i]);
			memcpy(p, argv[i], len);
			p += len;
		}
	}
	return buf;
}

int
main(int argc, char **argv)
{
	unsigned len;
	struct BigNum bn;
	unsigned char *buf;

	if (argc < 2) {
		fprintf(stderr, "Usage: %s <seed>\n", argv[0]);
		fputs("\
<seed> should be a a string of bytes to be hashed to seed the prime\n\
generator.  Note that unquoted whitespace between words will be counted\n\
as a single space.  To include multiple spaces, quote them.\n", stderr);
		return 1;
	}

	buf = copy(argc, argv, &len);
	if (!buf) {
		fprintf(stderr, "Out of memory!\n");
		return 1;
	}

	bnBegin(&bn);
	
	genSophieGermain(&bn, 0x100, 0, buf, len, stdout);
	genSophieGermain(&bn, 0x100, 1, buf, len, stdout);
	genSophieGermain(&bn, 0x100, 2, buf, len, stdout);
	genSophieGermain(&bn, 0x100, 3, buf, len, stdout);
	genSophieGermain(&bn, 0x200, 0, buf, len, stdout);
	genSophieGermain(&bn, 0x200, 1, buf, len, stdout);
	genSophieGermain(&bn, 0x200, 2, buf, len, stdout);
	genSophieGermain(&bn, 0x300, 0, buf, len, stdout);
	genSophieGermain(&bn, 0x300, 1, buf, len, stdout);
	genSophieGermain(&bn, 0x400, 0, buf, len, stdout);
	genSophieGermain(&bn, 0x400, 1, buf, len, stdout);
	genSophieGermain(&bn, 0x500, 0, buf, len, stdout);
	genSophieGermain(&bn, 0x500, 1, buf, len, stdout);
	genSophieGermain(&bn, 0x600, 0, buf, len, stdout);
	genSophieGermain(&bn, 0x600, 1, buf, len, stdout);
#if 0
	/* These get *really* slow */
	genSophieGermain(&bn, 0x800, 0, buf, len, stdout);
	genSophieGermain(&bn, 0x800, 1, buf, len, stdout);
	genSophieGermain(&bn, 0xc00, 0, buf, len, stdout);
	genSophieGermain(&bn, 0xc00, 1, buf, len, stdout);
	/* Like, plan on a *week* or more for this one. */
	genSophieGermain(&bn, 0x1000, 0, buf, len, stdout);
	genSophieGermain(&bn, 0x1000, 1, buf, len, stdout);
#endif

	bnEnd(&bn);
	free(buf);

	return 0;
}