File: cpu.cc

package info (click to toggle)
bochs 1.4pre2-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 7,656 kB
  • ctags: 10,322
  • sloc: cpp: 66,880; ansic: 19,674; sh: 2,951; makefile: 2,183; asm: 2,110; yacc: 723; lex: 171; csh: 147; perl: 35
file content (880 lines) | stat: -rw-r--r-- 28,669 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
/////////////////////////////////////////////////////////////////////////
// $Id: cpu.cc,v 1.23 2002/02/15 22:58:06 yakovlev Exp $
/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2001  MandrakeSoft S.A.
//
//    MandrakeSoft S.A.
//    43, rue d'Aboukir
//    75002 Paris - France
//    http://www.linux-mandrake.com/
//    http://www.mandrakesoft.com/
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA

#define BX_INSTR_SPY 0


#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR

#if BX_USE_CPU_SMF
#define this (BX_CPU(0))
#endif

//unsigned counter[2] = { 0, 0 };



#if BX_SIM_ID == 0   // only need to define once
// This array defines a look-up table for the even parity-ness
// of an 8bit quantity, for optimal assignment of the parity bit
// in the EFLAGS register
const Boolean bx_parity_lookup[256] = {
  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
  };
#endif


#if BX_SMP_PROCESSORS==1
// single processor simulation, so there's one of everything
BX_CPU_C    bx_cpu;
BX_MEM_C    bx_mem;
#else
// multiprocessor simulation, we need an array of cpus and memories
BX_CPU_C    *bx_cpu_array[BX_SMP_PROCESSORS];
BX_MEM_C    *bx_mem_array[BX_ADDRESS_SPACES];
#endif



// notes:
//
// check limit of CS?

#ifdef REGISTER_IADDR
extern void REGISTER_IADDR(Bit32u addr);
#endif

// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
// instructions and then return so that the other processors have a chance to
// run.  This is used only when simulating multiple processors.
// 
// If maximum instructions have been executed, return.  A count less
// than zero means run forever.
#define CHECK_MAX_INSTRUCTIONS(count) \
  if (count >= 0) {                   \
    count--; if (count == 0) return;  \
  }

#if BX_SMP_PROCESSORS==1
#  define BX_TICK1_IF_SINGLE_PROCESSOR() BX_TICK1()
#else
#  define BX_TICK1_IF_SINGLE_PROCESSOR()
#endif


#if BX_DYNAMIC_TRANSLATION == 0
  void
BX_CPU_C::cpu_loop(Bit32s max_instr_count)
{
  unsigned ret;
  BxInstruction_t i;
  unsigned maxisize;
  Bit8u *fetch_ptr;
  Boolean is_32;

#if BX_DEBUGGER
  BX_CPU_THIS_PTR break_point = 0;
#ifdef MAGIC_BREAKPOINT
  BX_CPU_THIS_PTR magic_break = 0;
#endif
  BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
#endif

  (void) setjmp( BX_CPU_THIS_PTR jmp_buf_env );

  // not sure if these two are used during the async handling... --bbd
  BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP
  BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP

main_cpu_loop:

  // ???
  BX_CPU_THIS_PTR EXT = 0;
  BX_CPU_THIS_PTR errorno = 0;

  // First check on events which occurred for previous instructions
  // (traps) and ones which are asynchronous to the CPU
  // (hardware interrupts).
  if (BX_CPU_THIS_PTR async_event)
    goto handle_async_event;

async_events_processed:
  // added so that all debugging/tracing code uses the correct EIP even in the
  // instruction just after a trap/interrupt.  If you use the prev_eip that was
  // set before handle_async_event, traces and breakpoints fail to show the
  // first instruction of int/trap handlers.
  BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP
  BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP
  
  // Now we can handle things which are synchronous to instruction
  // execution.
  if (BX_CPU_THIS_PTR eflags.rf) {
    BX_CPU_THIS_PTR eflags.rf = 0;
    }
#if BX_X86_DEBUGGER
  else {
    // only bother comparing if any breakpoints enabled
    if ( BX_CPU_THIS_PTR dr7 & 0x000000ff ) {
      Bit32u iaddr =
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base +
        BX_CPU_THIS_PTR prev_eip;
      Bit32u dr6_bits;
      if ( (dr6_bits = hwdebug_compare(iaddr, 1, BX_HWDebugInstruction,
                                       BX_HWDebugInstruction)) ) {
        // Add to the list of debug events thus far.
        BX_CPU_THIS_PTR debug_trap |= dr6_bits;
        BX_CPU_THIS_PTR async_event = 1;
        // If debug events are not inhibited on this boundary,
        // fire off a debug fault.  Otherwise handle it on the next
        // boundary. (becomes a trap)
        if ( !(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) ) {
          // Commit debug events to DR6
          BX_CPU_THIS_PTR dr6 = BX_CPU_THIS_PTR debug_trap;
          exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
          }
        }
      }
    }
#endif

  // We have ignored processing of external interrupts and
  // debug events on this boundary.  Reset the mask so they
  // will be processed on the next boundary.
  BX_CPU_THIS_PTR inhibit_mask = 0;


#if BX_DEBUGGER
  {
  Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip;
  if ( dbg_is_begin_instr_bpoint(
         BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
         debug_eip,
         BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + debug_eip,
         BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) {
    return;
    }
  }
#endif  // #if BX_DEBUGGER
  
#if BX_INSTR_SPY
  {
    int n=0;
    if ((n & 0xffffff) == 0) {
      Bit32u cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
      Bit32u eip = BX_CPU_THIS_PTR prev_eip;
      fprintf (stdout, "instr %d, time %lld, pc %04x:%08x, fetch_ptr=%p\n", n, bx_pc_system.time_ticks (), cs, eip, fetch_ptr);
    }
    n++;
  }
#endif

  is_32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b;

  if (BX_CPU_THIS_PTR bytesleft == 0) {
    prefetch();
    }
  fetch_ptr = BX_CPU_THIS_PTR fetch_ptr;

  maxisize = 16;
  if (BX_CPU_THIS_PTR bytesleft < 16)
    maxisize = BX_CPU_THIS_PTR bytesleft;
  ret = FetchDecode(fetch_ptr, &i, maxisize, is_32);

  if (ret) {
    if (i.ResolveModrm) {
      // call method on BX_CPU_C object
      BX_CPU_CALL_METHOD(i.ResolveModrm, (&i));
      }
    BX_CPU_THIS_PTR fetch_ptr += i.ilen;
    BX_CPU_THIS_PTR bytesleft -= i.ilen;
fetch_decode_OK:

#if BX_DEBUGGER
    if (BX_CPU_THIS_PTR trace) {
      // print the instruction that is about to be executed.
//      fprintf(stderr, "begin about to execute:\n");
      bx_dbg_disassemble_current (-1, 1);  // all cpus, print time stamp
//      fprintf(stderr, "  end about to execute:\n");
    }
#endif

    if (i.rep_used && (i.attr & BxRepeatable)) {
repeat_loop:
      if (i.attr & BxRepeatableZF) {
        if (i.as_32) {
          if (ECX != 0) {
            BX_CPU_CALL_METHOD(i.execute, (&i));
            ECX -= 1;
            }
          if ((i.rep_used==0xf3) && (get_ZF()==0)) goto repeat_done;
          if ((i.rep_used==0xf2) && (get_ZF()!=0)) goto repeat_done;
          if (ECX == 0) goto repeat_done;
          goto repeat_not_done;
          }
        else {
          if (CX != 0) {
            BX_CPU_CALL_METHOD(i.execute, (&i));
            CX -= 1;
            }
          if ((i.rep_used==0xf3) && (get_ZF()==0)) goto repeat_done;
          if ((i.rep_used==0xf2) && (get_ZF()!=0)) goto repeat_done;
          if (CX == 0) goto repeat_done;
          goto repeat_not_done;
          }
        }
      else { // normal repeat, no concern for ZF
        if (i.as_32) {
          if (ECX != 0) {
            BX_CPU_CALL_METHOD(i.execute, (&i));
            ECX -= 1;
            }
          if (ECX == 0) goto repeat_done;
          goto repeat_not_done;
          }
        else { // 16bit addrsize
          if (CX != 0) {
            BX_CPU_CALL_METHOD(i.execute, (&i));
            CX -= 1;
            }
          if (CX == 0) goto repeat_done;
          goto repeat_not_done;
          }
        }
      // shouldn't get here from above
repeat_not_done:
#ifdef REGISTER_IADDR
      REGISTER_IADDR(BX_CPU_THIS_PTR eip + BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base);
#endif

#if BX_DEBUGGER
//    if (BX_CPU_THIS_PTR trace) {
      // print the instruction that was just executed.
//      bx_dbg_disassemble_current (-1, 1);  // all cpus, print time stamp
//    }
#endif
      BX_TICK1_IF_SINGLE_PROCESSOR();

#if BX_DEBUGGER == 0
      if (BX_CPU_THIS_PTR async_event) {
        invalidate_prefetch_q();
        goto debugger_check;
      }
      goto repeat_loop;
#else  /* if BX_DEBUGGER == 1 */
      invalidate_prefetch_q();
      goto debugger_check;
#endif


repeat_done:
      BX_CPU_THIS_PTR eip += i.ilen;
      }
    else {
      // non repeating instruction
      BX_CPU_THIS_PTR eip += i.ilen;
      BX_CPU_CALL_METHOD(i.execute, (&i));
      }

    BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP
    BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP
#ifdef REGISTER_IADDR
    REGISTER_IADDR(BX_CPU_THIS_PTR eip + BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base);
#endif

#if BX_DEBUGGER
//    if (BX_CPU_THIS_PTR trace) {
      // print the instruction that was just executed.
//      bx_dbg_disassemble_current (-1, 1);  // all cpus, print time stamp
//    }
#endif
    BX_TICK1_IF_SINGLE_PROCESSOR();

debugger_check:

#if (BX_SMP_PROCESSORS>1 && BX_DEBUGGER==0)
    // The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
    // instructions and then return so that the other processors have a chance
    // to run.  This is used only when simulating multiple processors.  If only
    // one processor, don't waste any cycles on it!  Also, it is not needed
    // with the debugger because its guard mechanism provides the same
    // functionality.
    CHECK_MAX_INSTRUCTIONS(max_instr_count);
#endif

#if BX_DEBUGGER

    // BW vm mode switch support is in dbg_is_begin_instr_bpoint
    // note instr generating exceptions never reach this point.

    // (mch) Read/write, time break point support
    if (BX_CPU_THIS_PTR break_point) {
	  switch (BX_CPU_THIS_PTR break_point) {
		case BREAK_POINT_TIME:
		      BX_INFO(("[%lld] Caught time breakpoint", bx_pc_system.time_ticks()));
		      BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT;
		      return;
		case BREAK_POINT_READ:
		      BX_INFO(("[%lld] Caught read watch point", bx_pc_system.time_ticks()));
		      BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT;
		      return;
		case BREAK_POINT_WRITE:
		      BX_INFO(("[%lld] Caught write watch point", bx_pc_system.time_ticks()));
		      BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT;
		      return;
		default:
		      BX_PANIC(("Weird break point condition"));
	  }
    }
#ifdef MAGIC_BREAKPOINT
    // (mch) Magic break point support
    if (BX_CPU_THIS_PTR magic_break) {
	  if (bx_dbg.magic_break_enabled) {
		BX_DEBUG(("Stopped on MAGIC BREAKPOINT"));
		BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT;
		return;
	  } else {
		BX_CPU_THIS_PTR magic_break = 0;
		BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
		BX_DEBUG(("Ignoring MAGIC BREAKPOINT"));
	  }
    }
#endif

    {
      // check for icount or control-C.  If found, set guard reg and return.
    Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip;
    if ( dbg_is_end_instr_bpoint(
           BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
           debug_eip,
           BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + debug_eip,
           BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) {
      return;
      }
    }

#endif  // #if BX_DEBUGGER
    goto main_cpu_loop;
    }
  else {
    unsigned remain, j;
static Bit8u FetchBuffer[16];
    Bit8u *temp_ptr;

    // read all leftover bytes in current page
    for (j=0; j<BX_CPU_THIS_PTR bytesleft; j++) {
      FetchBuffer[j] = *fetch_ptr++;
      }

    // get remaining bytes for prefetch in next page
    // prefetch() needs eip current
    BX_CPU_THIS_PTR eip += BX_CPU_THIS_PTR bytesleft;
    remain = BX_CPU_THIS_PTR bytesleft;
    prefetch();

    if (BX_CPU_THIS_PTR bytesleft < 16) {
      // make sure (bytesleft - remain) below doesn't go negative
      BX_PANIC(("fetch_decode: bytesleft==0 after prefetch"));
      }
    temp_ptr = fetch_ptr = BX_CPU_THIS_PTR fetch_ptr;

    // read leftover bytes in next page
    for (; j<16; j++) {
      FetchBuffer[j] = *temp_ptr++;
      }
    ret = FetchDecode(FetchBuffer, &i, 16, is_32);
    if (ret==0)
      BX_PANIC(("fetchdecode: cross boundary: ret==0"));
    if (i.ResolveModrm) {
      BX_CPU_CALL_METHOD(i.ResolveModrm, (&i));
      }
    remain = i.ilen - remain;

    // note: eip has already been advanced to beginning of page
    BX_CPU_THIS_PTR fetch_ptr = fetch_ptr + remain;
    BX_CPU_THIS_PTR bytesleft -= remain;
    //BX_CPU_THIS_PTR eip += remain;
    BX_CPU_THIS_PTR eip = BX_CPU_THIS_PTR prev_eip;
    goto fetch_decode_OK;
    }



  //
  // This area is where we process special conditions and events.
  //

handle_async_event:

  if (BX_CPU_THIS_PTR debug_trap & 0x80000000) {
    // I made up the bitmask above to mean HALT state.
#if BX_SMP_PROCESSORS==1
    BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
    BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
    // for one processor, pass the time as quickly as possible until
    // an interrupt wakes up the CPU.
    while (1) {
      if (BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_) {
        break;
        }
      BX_TICK1();
    }
#else      /* BX_SMP_PROCESSORS != 1 */
    // for multiprocessor simulation, even if this CPU is halted we still
    // must give the others a chance to simulate.  If an interrupt has 
    // arrived, then clear the HALT condition; otherwise just return from
    // the CPU loop with stop_reason STOP_CPU_HALTED.
    if (BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_) {
      // interrupt ends the HALT condition
      BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
      BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
      //bx_printf ("halt condition has been cleared in %s", name);
    } else {
      // HALT condition remains, return so other CPUs have a chance
#if BX_DEBUGGER
      BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED;
#endif
      return;
    }
#endif
  }


  // Priority 1: Hardware Reset and Machine Checks
  //   RESET
  //   Machine Check
  // (bochs doesn't support these)

  // Priority 2: Trap on Task Switch
  //   T flag in TSS is set
  if (BX_CPU_THIS_PTR debug_trap & 0x00008000) {
    BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
    exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
    }

  // Priority 3: External Hardware Interventions
  //   FLUSH
  //   STOPCLK
  //   SMI
  //   INIT
  // (bochs doesn't support these)

  // Priority 4: Traps on Previous Instruction
  //   Breakpoints
  //   Debug Trap Exceptions (TF flag set or data/IO breakpoint)
  if ( BX_CPU_THIS_PTR debug_trap &&
       !(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) ) {
    // A trap may be inhibited on this boundary due to an instruction
    // which loaded SS.  If so we clear the inhibit_mask below
    // and don't execute this code until the next boundary.
    // Commit debug events to DR6
    BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
    exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
    }

  // Priority 5: External Interrupts
  //   NMI Interrupts
  //   Maskable Hardware Interrupts
  if (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_INTERRUPTS) {
    // Processing external interrupts is inhibited on this
    // boundary because of certain instructions like STI.
    // inhibit_mask is cleared below, in which case we will have
    // an opportunity to check interrupts on the next instruction
    // boundary.
    }
  else if (BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_ && BX_DBG_ASYNC_INTR) {
    Bit8u vector;

    // NOTE: similar code in ::take_irq()
#if BX_SUPPORT_APIC
    if (BX_CPU_THIS_PTR int_from_local_apic)
      vector = BX_CPU_THIS_PTR local_apic.acknowledge_int ();
    else
      vector = BX_IAC(); // may set INTR with next interrupt
#else
    // if no local APIC, always acknowledge the PIC.
    vector = BX_IAC(); // may set INTR with next interrupt
#endif
    //BX_DEBUG(("decode: interrupt %u",
    //                                   (unsigned) vector));
    BX_CPU_THIS_PTR errorno = 0;
    BX_CPU_THIS_PTR EXT   = 1; /* external event */
    interrupt(vector, 0, 0, 0);
    BX_INSTR_HWINTERRUPT(vector, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR eip);
    }
  else if (BX_HRQ && BX_DBG_ASYNC_DMA) {
    // NOTE: similar code in ::take_dma()
    // assert Hold Acknowledge (HLDA) and go into a bus hold state
    BX_RAISE_HLDA();
    }

  // Priority 6: Faults from fetching next instruction
  //   Code breakpoint fault
  //   Code segment limit violation (priority 7 on 486/Pentium)
  //   Code page fault (priority 7 on 486/Pentium)
  // (handled in main decode loop)

  // Priority 7: Faults from decoding next instruction
  //   Instruction length > 15 bytes
  //   Illegal opcode
  //   Coprocessor not available
  // (handled in main decode loop etc)

  // Priority 8: Faults on executing an instruction
  //   Floating point execution
  //   Overflow
  //   Bound error
  //   Invalid TSS
  //   Segment not present
  //   Stack fault
  //   General protection
  //   Data page fault
  //   Alignment check
  // (handled by rest of the code)


  if (BX_CPU_THIS_PTR eflags.tf) {
    // TF is set before execution of next instruction.  Schedule
    // a debug trap (#DB) after execution.  After completion of
    // next instruction, the code above will invoke the trap.
    BX_CPU_THIS_PTR debug_trap |= 0x00004000; // BS flag in DR6
    }

  if ( !(BX_CPU_THIS_PTR INTR ||
         BX_CPU_THIS_PTR debug_trap ||
         BX_HRQ ||
         BX_CPU_THIS_PTR eflags.tf) )
    BX_CPU_THIS_PTR async_event = 0;
  goto async_events_processed;
}
#endif  // #if BX_DYNAMIC_TRANSLATION == 0




// boundaries of consideration:
//
//  * physical memory boundary: 1024k (1Megabyte) (increments of...)
//  * A20 boundary:             1024k (1Megabyte)
//  * page boundary:            4k
//  * ROM boundary:             2k (dont care since we are only reading)
//  * segment boundary:         any



  void
BX_CPU_C::prefetch(void)
{
  // cs:eIP
  // prefetch QSIZE byte quantity aligned on corresponding boundary
  Bit32u new_linear_addr;
  Bit32u new_phy_addr;
  Bit32u temp_eip, temp_limit;

  temp_eip   = BX_CPU_THIS_PTR eip;
  temp_limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled;

  new_linear_addr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + temp_eip;
  BX_CPU_THIS_PTR prev_linear_page = new_linear_addr & 0xfffff000;
  if (temp_eip > temp_limit) {
    BX_PANIC(("prefetch: EIP > CS.limit"));
    }

#if BX_SUPPORT_PAGING
  if (BX_CPU_THIS_PTR cr0.pg) {
    // aligned block guaranteed to be all in one page, same A20 address
    new_phy_addr = itranslate_linear(new_linear_addr, CPL==3);
    new_phy_addr = A20ADDR(new_phy_addr);
    }
  else
#endif // BX_SUPPORT_PAGING
    {
    new_phy_addr = A20ADDR(new_linear_addr);
    }

  if ( new_phy_addr >= BX_CPU_THIS_PTR mem->len ) {
    // don't take this out if dynamic translation enabled,
    // otherwise you must make a check to see if bytesleft is 0 after
    // a call to prefetch() in the dynamic code.
    BX_ERROR(("prefetch: running in bogus memory"));
    }

  // max physical address as confined by page boundary
  BX_CPU_THIS_PTR prev_phy_page = new_phy_addr & 0xfffff000;
  BX_CPU_THIS_PTR max_phy_addr = BX_CPU_THIS_PTR prev_phy_page | 0x00000fff;

  // check if segment boundary comes into play
  //if ((temp_limit - temp_eip) < 4096) {
  //  }

#if BX_PCI_SUPPORT
  if ((new_phy_addr >= 0x000C0000) && (new_phy_addr <= 0x000FFFFF)) {
    BX_CPU_THIS_PTR bytesleft = 0x4000 - (new_phy_addr & 0x3FFF);
    BX_CPU_THIS_PTR fetch_ptr = bx_devices.pci->i440fx_fetch_ptr(new_phy_addr);
  } else {
    BX_CPU_THIS_PTR bytesleft = (BX_CPU_THIS_PTR max_phy_addr - new_phy_addr) + 1;
    BX_CPU_THIS_PTR fetch_ptr = &BX_CPU_THIS_PTR mem->vector[new_phy_addr];
  }
#else
  BX_CPU_THIS_PTR bytesleft = (BX_CPU_THIS_PTR max_phy_addr - new_phy_addr) + 1;
  BX_CPU_THIS_PTR fetch_ptr = &BX_CPU_THIS_PTR mem->vector[new_phy_addr];
#endif
}


  // If control has transfered locally, it is possible the prefetch Q is
  // still valid.  This would happen for repeat instructions, and small
  // branches.
  void
BX_CPU_C::revalidate_prefetch_q(void)
{
  Bit32u new_linear_addr, new_linear_page, new_linear_offset;
  Bit32u new_phy_addr;

  new_linear_addr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + BX_CPU_THIS_PTR eip;

  new_linear_page = new_linear_addr & 0xfffff000;
  if (new_linear_page == BX_CPU_THIS_PTR prev_linear_page) {
    // same linear address, old linear->physical translation valid
    new_linear_offset = new_linear_addr & 0x00000fff;
    new_phy_addr = BX_CPU_THIS_PTR prev_phy_page | new_linear_offset;
#if BX_PCI_SUPPORT
    if ((new_phy_addr >= 0x000C0000) && (new_phy_addr <= 0x000FFFFF)) {
      BX_CPU_THIS_PTR bytesleft = 0x4000 - (new_phy_addr & 0x3FFF);
      BX_CPU_THIS_PTR fetch_ptr = bx_devices.pci->i440fx_fetch_ptr(new_phy_addr);
      }
    else {
      BX_CPU_THIS_PTR bytesleft = (BX_CPU_THIS_PTR max_phy_addr - new_phy_addr) + 1;
      BX_CPU_THIS_PTR fetch_ptr = &BX_CPU_THIS_PTR mem->vector[new_phy_addr];
      }
#else
    BX_CPU_THIS_PTR bytesleft = (BX_CPU_THIS_PTR max_phy_addr - new_phy_addr) + 1;
    BX_CPU_THIS_PTR fetch_ptr = &BX_CPU_THIS_PTR mem->vector[new_phy_addr];
#endif
    }
  else {
    BX_CPU_THIS_PTR bytesleft = 0; // invalidate prefetch Q
    }
}

  void
BX_CPU_C::invalidate_prefetch_q(void)
{
  BX_CPU_THIS_PTR bytesleft = 0;
}




#if BX_DEBUGGER
extern unsigned int dbg_show_mask;

  Boolean
BX_CPU_C::dbg_is_begin_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
                                    Bit32u is_32)
{
  //fprintf (stderr, "begin_instr_bp: checking cs:eip %04x:%08x\n", cs, eip);
  BX_CPU_THIS_PTR guard_found.cs  = cs;
  BX_CPU_THIS_PTR guard_found.eip = eip;
  BX_CPU_THIS_PTR guard_found.laddr = laddr;
  BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32;

  // BW mode switch breakpoint
  // instruction which generate exceptions never reach the end of the
  // loop due to a long jump. Thats why we check at start of instr.
  // Downside is that we show the instruction about to be executed
  // (not the one generating the mode switch).
  if (BX_CPU_THIS_PTR mode_break && 
      (BX_CPU_THIS_PTR debug_vm != BX_CPU_THIS_PTR eflags.vm)) {
    BX_INFO(("Caught vm mode switch breakpoint"));
    BX_CPU_THIS_PTR debug_vm = BX_CPU_THIS_PTR eflags.vm;
    BX_CPU_THIS_PTR stop_reason = STOP_MODE_BREAK_POINT;
    return 1;
  }

  if( (BX_CPU_THIS_PTR show_flag) & (dbg_show_mask)) {
    int rv;
    if((rv = bx_dbg_symbolic_output()))
      return rv;
  }

  // see if debugger is looking for iaddr breakpoint of any type
  if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) {
#if BX_DBG_SUPPORT_VIR_BPOINT
    if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) {
      if (BX_CPU_THIS_PTR guard_found.icount!=0) {
        for (unsigned i=0; i<bx_guard.iaddr.num_virtual; i++) {
          if ( (bx_guard.iaddr.vir[i].cs  == cs) &&
               (bx_guard.iaddr.vir[i].eip == eip) ) {
            BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_VIR;
            BX_CPU_THIS_PTR guard_found.iaddr_index = i;
            return(1); // on a breakpoint
            }
          }
        }
      }
#endif
#if BX_DBG_SUPPORT_LIN_BPOINT
    if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) {
      if (BX_CPU_THIS_PTR guard_found.icount!=0) {
        for (unsigned i=0; i<bx_guard.iaddr.num_linear; i++) {
          if ( bx_guard.iaddr.lin[i].addr == BX_CPU_THIS_PTR guard_found.laddr ) {
            BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_LIN;
            BX_CPU_THIS_PTR guard_found.iaddr_index = i;
            return(1); // on a breakpoint
            }
          }
        }
      }
#endif
#if BX_DBG_SUPPORT_PHY_BPOINT
    if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) {
      Bit32u phy;
      Boolean valid;
      dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.laddr,
                              &phy, &valid);
      // The "guard_found.icount!=0" condition allows you to step or
      // continue beyond a breakpoint.  Bryce tried removing it once,
      // and once you get to a breakpoint you are stuck there forever.
      // Not pretty.
      if (valid && (BX_CPU_THIS_PTR guard_found.icount!=0)) {
        for (unsigned i=0; i<bx_guard.iaddr.num_physical; i++) {
          if ( bx_guard.iaddr.phy[i].addr == phy ) {
            BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_PHY;
            BX_CPU_THIS_PTR guard_found.iaddr_index = i;
            return(1); // on a breakpoint
            }
          }
        }
      }
#endif
    }
  return(0); // not on a breakpoint
}


  Boolean
BX_CPU_C::dbg_is_end_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
                                  Bit32u is_32)
{
  //fprintf (stderr, "end_instr_bp: checking for icount or ^C\n");
  BX_CPU_THIS_PTR guard_found.icount++;

  // convenient point to see if user typed Ctrl-C
  if (bx_guard.interrupt_requested &&
      (bx_guard.guard_for & BX_DBG_GUARD_CTRL_C)) {
    BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_CTRL_C;
    return(1);
    }

  // see if debugger requesting icount guard
  if (bx_guard.guard_for & BX_DBG_GUARD_ICOUNT) {
    if (BX_CPU_THIS_PTR guard_found.icount >= bx_guard.icount) {
      BX_CPU_THIS_PTR guard_found.cs  = cs;
      BX_CPU_THIS_PTR guard_found.eip = eip;
      BX_CPU_THIS_PTR guard_found.laddr = laddr;
      BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32;
      BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_ICOUNT;
      return(1);
      }
    }

#if (BX_NUM_SIMULATORS >= 2)
  // if async event pending, acknowlege them
  if (bx_guard.async_changes_pending.which) {
    if (bx_guard.async_changes_pending.which & BX_DBG_ASYNC_PENDING_A20)
      bx_dbg_async_pin_ack(BX_DBG_ASYNC_PENDING_A20,
                           bx_guard.async_changes_pending.a20);
    if (bx_guard.async_changes_pending.which) {
      BX_PANIC(("decode: async pending unrecognized."));
      }
    }
#endif
  return(0); // no breakpoint
}


  void
BX_CPU_C::dbg_take_irq(void)
{
  unsigned vector;

  // NOTE: similar code in ::cpu_loop()

  if ( BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_ ) {
    if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) {
      // normal return from setjmp setup
      vector = BX_IAC(); // may set INTR with next interrupt
      BX_CPU_THIS_PTR errorno = 0;
      BX_CPU_THIS_PTR EXT   = 1; // external event
      BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
      interrupt(vector, 0, 0, 0);
      }
    }
}

  void
BX_CPU_C::dbg_force_interrupt(unsigned vector)
{
  // Used to force slave simulator to take an interrupt, without
  // regard to IF

  if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) {
    // normal return from setjmp setup
    BX_CPU_THIS_PTR errorno = 0;
    BX_CPU_THIS_PTR EXT   = 1; // external event
    BX_CPU_THIS_PTR async_event = 1; // probably don't need this
    interrupt(vector, 0, 0, 0);
    }
}

  void
BX_CPU_C::dbg_take_dma(void)
{
  // NOTE: similar code in ::cpu_loop()
  if ( BX_HRQ ) {
    BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
    BX_RAISE_HLDA();
    }
}
#endif  // #if BX_DEBUGGER