File: cpu.h

package info (click to toggle)
bochs 1.4pre2-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 7,656 kB
  • ctags: 10,322
  • sloc: cpp: 66,880; ansic: 19,674; sh: 2,951; makefile: 2,183; asm: 2,110; yacc: 723; lex: 171; csh: 147; perl: 35
file content (1799 lines) | stat: -rw-r--r-- 62,991 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
/////////////////////////////////////////////////////////////////////////
// $Id: cpu.h,v 1.15 2001/10/03 19:53:48 instinc Exp $
/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2001  MandrakeSoft S.A.
//
//    MandrakeSoft S.A.
//    43, rue d'Aboukir
//    75002 Paris - France
//    http://www.linux-mandrake.com/
//    http://www.mandrakesoft.com/
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA


#ifndef BX_CPU_H
#  define BX_CPU_H 1

#include <setjmp.h>

#include "cpu/lazy_flags.h"


#define BX_SREG_ES    0
#define BX_SREG_CS    1
#define BX_SREG_SS    2
#define BX_SREG_DS    3
#define BX_SREG_FS    4
#define BX_SREG_GS    5

// segment register encoding
#define BX_SEG_REG_ES    0
#define BX_SEG_REG_CS    1
#define BX_SEG_REG_SS    2
#define BX_SEG_REG_DS    3
#define BX_SEG_REG_FS    4
#define BX_SEG_REG_GS    5
#define BX_SEG_REG_NULL  8
#define BX_NULL_SEG_REG(seg) ((seg) & BX_SEG_REG_NULL)


#ifdef BX_LITTLE_ENDIAN
#define BX_REG8L_OFFSET 0
#define BX_REG8H_OFFSET 1
#define BX_REG16_OFFSET 0
#else // BX_BIG_ENDIAN
#define BX_REG8L_OFFSET 3
#define BX_REG8H_OFFSET 2
#define BX_REG16_OFFSET 2
#endif // ifdef BX_LITTLE_ENDIAN

#define BX_8BIT_REG_AL  0
#define BX_8BIT_REG_CL  1
#define BX_8BIT_REG_DL  2
#define BX_8BIT_REG_BL  3
#define BX_8BIT_REG_AH  4
#define BX_8BIT_REG_CH  5
#define BX_8BIT_REG_DH  6
#define BX_8BIT_REG_BH  7

#define BX_16BIT_REG_AX 0
#define BX_16BIT_REG_CX 1
#define BX_16BIT_REG_DX 2
#define BX_16BIT_REG_BX 3
#define BX_16BIT_REG_SP 4
#define BX_16BIT_REG_BP 5
#define BX_16BIT_REG_SI 6
#define BX_16BIT_REG_DI 7

#define BX_32BIT_REG_EAX 0
#define BX_32BIT_REG_ECX 1
#define BX_32BIT_REG_EDX 2
#define BX_32BIT_REG_EBX 3
#define BX_32BIT_REG_ESP 4
#define BX_32BIT_REG_EBP 5
#define BX_32BIT_REG_ESI 6
#define BX_32BIT_REG_EDI 7


#if defined(NEED_CPU_REG_SHORTCUTS)

/* WARNING: 
   Only BX_CPU_C member functions can use these shortcuts safely!
   Functions that use the shortcuts outside of BX_CPU_C might work 
   when BX_USE_CPU_SMF=1 but will fail when BX_USE_CPU_SMF=0
   (for example in SMP mode).
*/

// access to 8 bit general registers
#define AL (BX_CPU_THIS_PTR gen_reg[0].word.byte.rl)
#define CL (BX_CPU_THIS_PTR gen_reg[1].word.byte.rl)
#define DL (BX_CPU_THIS_PTR gen_reg[2].word.byte.rl)
#define BL (BX_CPU_THIS_PTR gen_reg[3].word.byte.rl)
#define AH (BX_CPU_THIS_PTR gen_reg[0].word.byte.rh)
#define CH (BX_CPU_THIS_PTR gen_reg[1].word.byte.rh)
#define DH (BX_CPU_THIS_PTR gen_reg[2].word.byte.rh)
#define BH (BX_CPU_THIS_PTR gen_reg[3].word.byte.rh)


// access to 16 bit general registers
#define AX (BX_CPU_THIS_PTR gen_reg[0].word.rx)
#define CX (BX_CPU_THIS_PTR gen_reg[1].word.rx)
#define DX (BX_CPU_THIS_PTR gen_reg[2].word.rx)
#define BX (BX_CPU_THIS_PTR gen_reg[3].word.rx)
#define SP (BX_CPU_THIS_PTR gen_reg[4].word.rx)
#define BP (BX_CPU_THIS_PTR gen_reg[5].word.rx)
#define SI (BX_CPU_THIS_PTR gen_reg[6].word.rx)
#define DI (BX_CPU_THIS_PTR gen_reg[7].word.rx)

// access to 16 bit instruction pointer
#define IP (* (Bit16u *) (((Bit8u *) &BX_CPU_THIS_PTR eip) + BX_REG16_OFFSET))


// accesss to 32 bit general registers
#define EAX BX_CPU_THIS_PTR gen_reg[0].erx
#define ECX BX_CPU_THIS_PTR gen_reg[1].erx
#define EDX BX_CPU_THIS_PTR gen_reg[2].erx
#define EBX BX_CPU_THIS_PTR gen_reg[3].erx
#define ESP BX_CPU_THIS_PTR gen_reg[4].erx
#define EBP BX_CPU_THIS_PTR gen_reg[5].erx
#define ESI BX_CPU_THIS_PTR gen_reg[6].erx
#define EDI BX_CPU_THIS_PTR gen_reg[7].erx

// access to 32 bit instruction pointer
#define EIP BX_CPU_THIS_PTR eip


#define BX_READ_8BIT_REG(index)  (((index) < 4) ? \
  (BX_CPU_THIS_PTR gen_reg[index].word.byte.rl) : \
  (BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh))
#define BX_READ_16BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].word.rx)
#define BX_READ_32BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].erx)

#define BX_READ_16BIT_BASE_REG(var, index) {\
  var = *BX_CPU_THIS_PTR _16bit_base_reg[index];\
  }

#define BX_READ_16BIT_INDEX_REG(var, index) {\
  var = *BX_CPU_THIS_PTR _16bit_index_reg[index];\
  }

#define BX_WRITE_8BIT_REG(index, val) {\
  if ((index) < 4) \
    BX_CPU_THIS_PTR gen_reg[index].word.byte.rl = val; \
  else \
    BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh = val; \
  }
#define BX_WRITE_16BIT_REG(index, val) {\
  BX_CPU_THIS_PTR gen_reg[index].word.rx = val; \
  }
#define BX_WRITE_32BIT_REG(index, val) {\
  BX_CPU_THIS_PTR gen_reg[index].erx = val; \
  }




#define TF BX_CPU_THIS_PTR eflags.tf
#define IF BX_CPU_THIS_PTR eflags.if_
#define DF BX_CPU_THIS_PTR eflags.df

#define IOPL BX_CPU_THIS_PTR eflags.iopl
#ifndef CPL
#define CPL  (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl)
#endif


#endif  // defined(NEED_CPU_REG_SHORTCUTS)

#define BX_DE_EXCEPTION   0 // Divide Error (fault)
#define BX_DB_EXCEPTION   1 // Debug (fault/trap)
#define BX_BP_EXCEPTION   3 // Breakpoint (trap)
#define BX_OF_EXCEPTION   4 // Overflow (trap)
#define BX_BR_EXCEPTION   5 // BOUND (fault)
#define BX_UD_EXCEPTION   6
#define BX_NM_EXCEPTION   7
#define BX_DF_EXCEPTION   8
#define BX_TS_EXCEPTION  10
#define BX_NP_EXCEPTION  11
#define BX_SS_EXCEPTION  12
#define BX_GP_EXCEPTION  13
#define BX_PF_EXCEPTION  14
#define BX_MF_EXCEPTION  16
#define BX_AC_EXCEPTION  17





typedef struct {
  /* 31|30|29|28|27|26|25|24|23|22|21|20|19|18|17|16
   * ==|==|=====|==|==|==|==|==|==|==|==|==|==|==|==
   *  0| 0| 0| 0| 0| 0| 0| 0| 0| 0|ID|VP|VF|AC|VM|RF
   *
   * 15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0
   * ==|==|=====|==|==|==|==|==|==|==|==|==|==|==|==
   *  0|NT| IOPL|OF|DF|IF|TF|SF|ZF| 0|AF| 0|PF| 1|CF
   */

  // In order to get access to these fields from the Dynamic Translation
  // code, using only 8bit offsets, I needed to move these fields
  // together.
  Bit32u  cf;
  Bit32u  af;
  Bit32u  zf;
  Bit32u  sf;
  Bit32u  of;

  Boolean bit1;
  Bit8u   pf_byte;  /* PF derived from last result byte when needed */
  Boolean bit3;
  Boolean bit5;
  Boolean tf;
  Boolean if_;
  Boolean df;
#if BX_CPU_LEVEL >= 2
  Bit8u   iopl;
  Boolean nt;
#endif
  Boolean bit15;
#if BX_CPU_LEVEL >= 3
  Boolean rf;
  Boolean vm;
#endif
#if BX_CPU_LEVEL >= 4
  Boolean ac;  // alignment check
  // Boolean vif; // Virtual Interrupt Flag
  // Boolean vip; // Virtual Interrupt Pending
  Boolean id;  // late model 486 and beyond had CPUID
#endif
  } bx_flags_reg_t;


#if BX_CPU_LEVEL >= 2
typedef struct {
  Bit32u  val32; // 32bit value of register

  // bitfields broken out for efficient access
#if BX_CPU_LEVEL >= 3
  Boolean pg; // paging
#endif

// CR0 notes:
//   Each x86 level has its own quirks regarding how it handles
//   reserved bits.  I used DOS DEBUG.EXE in real mode on the
//   following processors, tried to clear bits 1..30, then tried
//   to set bits 1..30, to see how these bits are handled.
//   I found the following:
//
//   Processor    try to clear bits 1..30    try to set bits 1..30
//   386          7FFFFFF0                   7FFFFFFE
//   486DX2       00000010                   6005003E
//   Pentium      00000010                   7FFFFFFE
//   Pentium-II   00000010                   6005003E
//
// My assumptions:
//   All processors: bit 4 is hardwired to 1 (not true on all clones)
//   386: bits 5..30 of CR0 are also hardwired to 1
//   Pentium: reserved bits retain value set using mov cr0, reg32
//   486DX2/Pentium-II: reserved bits are hardwired to 0

#if BX_CPU_LEVEL >= 4
  Boolean cd; // cache disable
  Boolean nw; // no write-through
  Boolean am; // alignment mask
  Boolean wp; // write-protect
  Boolean ne; // numerics exception
#endif

  Boolean ts; // task switched
  Boolean em; // emulate math coprocessor
  Boolean mp; // monitor coprocessor
  Boolean pe; // protected mode enable
  } bx_cr0_t;
#endif


typedef struct { /* bx_selector_t */
  Bit16u value;   /* the 16bit value of the selector */
#if BX_CPU_LEVEL >= 2
    /* the following fields are extracted from the value field in protected
       mode only.  They're used for sake of efficiency */
  Bit16u index;   /* 13bit index extracted from value in protected mode */
  Bit8u  ti;      /* table indicator bit extracted from value */
  Bit8u  rpl;     /* RPL extracted from value */
#endif
  } bx_selector_t;



typedef struct {
  Boolean valid;         /* 0 = invalid, 1 = valid */
  Boolean p;             /* present */
  Bit8u   dpl;           /* descriptor privilege level 0..3 */
  Boolean segment;       /* 0 = system/gate, 1 = data/code segment */
  Bit8u   type;          /* For system & gate descriptors, only
                          *  0 = invalid descriptor (reserved)
                          *  1 = 286 available Task State Segment (TSS)
                          *  2 = LDT descriptor
                          *  3 = 286 busy Task State Segment (TSS)
                          *  4 = 286 call gate
                          *  5 = task gate
                          *  6 = 286 interrupt gate
                          *  7 = 286 trap gate
                          *  8 = (reserved)
                          *  9 = 386 available TSS
                          * 10 = (reserved)
                          * 11 = 386 busy TSS
                          * 12 = 386 call gate
                          * 13 = (reserved)
                          * 14 = 386 interrupt gate
                          * 15 = 386 trap gate */
  union {
  struct {
    Boolean executable;    /* 1=code, 0=data or stack segment */
    Boolean c_ed;          /* for code: 1=conforming,
                              for data/stack: 1=expand down */
    Boolean r_w;           /* for code: readable?, for data/stack: writeable? */
    Boolean a;             /* accessed? */
    Bit32u  base;          /* base address: 286=24bits, 386=32bits */
    Bit32u  limit;         /* limit: 286=16bits, 386=20bits */
    Bit32u  limit_scaled;  /* for efficiency, this contrived field is set to
                            * limit for byte granular, and
                            * (limit << 12) | 0xfff for page granular seg's
                            */
#if BX_CPU_LEVEL >= 3
    Boolean g;             /* granularity: 0=byte, 1=4K (page) */
    Boolean d_b;           /* default size: 0=16bit, 1=32bit */
    Boolean avl;           /* available for use by system */
#endif
    } segment;
  struct {
    Bit8u   word_count;    /* 5bits (0..31) #words to copy from caller's stack
                            * to called procedure's stack.  (call gates only)*/
    Bit16u  dest_selector;
    Bit16u  dest_offset;
    } gate286;
  struct {                 // type 5: Task Gate Descriptor
    Bit16u  tss_selector;  // TSS segment selector
    } taskgate;
#if BX_CPU_LEVEL >= 3
  struct {
    Bit8u   dword_count;   /* 5bits (0..31) #dwords to copy from caller's stack
                            * to called procedure's stack.  (call gates only)*/
    Bit16u  dest_selector;
    Bit32u  dest_offset;
    } gate386;
#endif
  struct {
    Bit32u  base;          /* 24 bit 286 TSS base  */
    Bit16u  limit;         /* 16 bit 286 TSS limit */
    } tss286;
#if BX_CPU_LEVEL >= 3
  struct {
    Bit32u  base;          /* 32 bit 386 TSS base  */
    Bit32u  limit;         /* 20 bit 386 TSS limit */
    Bit32u  limit_scaled;  // Same notes as for 'segment' field
    Boolean g;             /* granularity: 0=byte, 1=4K (page) */
    Boolean avl;           /* available for use by system */
    } tss386;
#endif
  struct {
    Bit32u  base;  /* 286=24 386+ =32 bit LDT base */
    Bit16u  limit; /* 286+ =16 bit LDT limit */
    } ldt;
    } u;

  } bx_descriptor_t;

typedef struct {
  bx_selector_t          selector;
  bx_descriptor_t  cache;
  } bx_segment_reg_t;

typedef void * (*BxVoidFPtr_t)(void);
class BX_CPU_C;

typedef struct BxInstruction_tag {
  // prefix stuff here...
  unsigned attr; // attribute from fetchdecode
  unsigned b1; // opcode1 byte
  unsigned rep_used;
  unsigned modrm; // mod-nnn-r/m byte
    unsigned mod;
    unsigned nnn;
    unsigned rm;
  Bit16u displ16u; // for 16-bit modrm forms
  Bit32u displ32u; // for 32-bit modrm forms
  unsigned seg;
  unsigned sib; // scale-index-base (2nd modrm byte)
    unsigned scale;
    unsigned index;
    unsigned base;
  Bit32u   addr_displacement; // address displacement
  Bit32u   rm_addr;
  Bit32u   Id;
  Bit16u   Iw;
  Bit8u    Ib;
  Bit8u    Ib2; // for ENTER_IwIb
  Bit16u   Iw2; // for JMP_Ap
  unsigned ilen; // instruction length
  unsigned os_32, as_32; // OperandSize/AddressSize is 32bit
  unsigned flags_in, flags_out; // flags needed, flags modified

#if BX_USE_CPU_SMF
  void (*ResolveModrm)(BxInstruction_tag *);
  void (*execute)(BxInstruction_tag *);
#else
  void (BX_CPU_C::*ResolveModrm)(BxInstruction_tag *);
  void (BX_CPU_C::*execute)(BxInstruction_tag *);
#endif

#if BX_DYNAMIC_TRANSLATION
  BxVoidFPtr_t DTResolveModrm;
#endif
#if BX_DYNAMIC_TRANSLATION
  unsigned DTAttr;
  Bit8u *   (*DTFPtr)(Bit8u *, BxInstruction_tag *);
  unsigned DTMemRegsUsed;
#endif
  } BxInstruction_t;

#if BX_USE_CPU_SMF
typedef void (*BxExecutePtr_t)(BxInstruction_t *);
#else
typedef void (BX_CPU_C::*BxExecutePtr_t)(BxInstruction_t *);
#endif


#if BX_DYNAMIC_TRANSLATION
typedef Bit8u * (*BxDTASResolveModrm_t)(Bit8u *, BxInstruction_t *,
  unsigned, unsigned);
#endif


#if BX_DYNAMIC_TRANSLATION
// Arrays of function pointers which handle a specific
// mod-rm address format
extern BxDTASResolveModrm_t  BxDTResolve32Mod0[];
extern BxDTASResolveModrm_t  BxDTResolve32Mod1or2[];
extern BxDTASResolveModrm_t  BxDTResolve32Mod0Base[];
extern BxDTASResolveModrm_t  BxDTResolve32Mod1or2Base[];
extern BxDTASResolveModrm_t  BxDTResolve16Mod1or2[];
extern BxDTASResolveModrm_t  BxDTResolve16Mod0[];
#endif


#if BX_CPU_LEVEL < 2
  /* no GDTR or IDTR register in an 8086 */
#else
typedef struct {
  Bit32u                 base;      /* base address: 24bits=286,32bits=386 */
  Bit16u                 limit;     /* limit, 16bits */
  } bx_global_segment_reg_t;
#endif




#if BX_USE_TLB
  typedef struct {
    Bit32u lpf; // linear page frame
    Bit32u ppf; // physical page frame
    Bit32u pte_addr; // Page Table Address for updating A & D bits
    Bit32u combined_access;
    } bx_TLB_entry;
#endif  // #if BX_USE_TLB



#ifdef BX_BIG_ENDIAN
typedef struct {
  union {
    Bit32u erx;
    struct {
      Bit16u word_filler;
      union {
        Bit16u rx;
        struct {
          Bit8u rh;
          Bit8u rl;
          } byte;
        };
      } word;
    };
  } bx_gen_reg_t;
#else
typedef struct {
  union {
    Bit32u erx;
    struct {
      union {
        Bit16u rx;
        struct {
          Bit8u rl;
          Bit8u rh;
          } byte;
        };
      Bit16u word_filler;
      } word;
    };
  } bx_gen_reg_t;
#endif


typedef enum {
  APIC_TYPE_NONE,
  APIC_TYPE_IOAPIC,
  APIC_TYPE_LOCAL_APIC
} bx_apic_type_t;

#if BX_SUPPORT_APIC
class bx_generic_apic_c : public logfunctions {
protected:
  Bit32u base_addr;
  Bit8u id;
#define APIC_UNKNOWN_ID 0xff
#define APIC_VERSION_ID 0x00170011  // same version as 82093 IOAPIC
public:
  bx_generic_apic_c ();
  virtual ~bx_generic_apic_c ();
  virtual void init ();
  virtual void hwreset () { }
  Bit32u get_base (void) { return base_addr; }
  void set_base (Bit32u newbase);
  void set_id (Bit8u newid);
  Bit8u get_id () { return id; }
  virtual char *get_name();
  Boolean is_selected (Bit32u addr, Bit32u len);
  void read (Bit32u addr, void *data, unsigned len);
  virtual void read_aligned(Bit32u address, Bit32u *data, unsigned len);
  virtual void write(Bit32u address, Bit32u *value, unsigned len);
  virtual void startup_msg (Bit32u vector);
  // on local APIC, trigger means deliver to the CPU.
  // on I/O APIC, trigger means direct to another APIC according to table.
  virtual void trigger_irq (unsigned num, unsigned from);
  virtual void untrigger_irq (unsigned num, unsigned from);
  virtual Bit32u get_delivery_bitmask (Bit8u dest, Bit8u dest_mode);
  Boolean deliver (Bit8u destination, Bit8u dest_mode, Bit8u delivery_mode, Bit8u vector, Bit8u polarity, Bit8u trig_mode);
  virtual Boolean match_logical_addr (Bit8u address);
  virtual bx_apic_type_t get_type ();
};

class bx_local_apic_c : public bx_generic_apic_c {
#define BX_LOCAL_APIC_MAX_INTS 256
  // TMR=trigger mode register.  Cleared for edge-triggered interrupts
  // and set for level-triggered interrupts.  If set, local APIC must send
  // EOI message to all other APICs.  EOI's are not implemented.
  Bit8u tmr[BX_LOCAL_APIC_MAX_INTS];
  // IRR=interrupt request register.  When an interrupt is triggered by
  // the I/O APIC or another processor, it sets a bit in irr.  The bit is
  // cleared when the interrupt is acknowledged by the processor.
  Bit8u irr[BX_LOCAL_APIC_MAX_INTS];
  // ISR=in-service register.  When an IRR bit is cleared, the corresponding
  // bit in ISR is set.  The ISR bit is cleared when 
  Bit8u isr[BX_LOCAL_APIC_MAX_INTS];
  Bit32u arb_id, arb_priority, task_priority, log_dest, dest_format, spurious_vec;
  Bit32u lvt[6];
#define APIC_LVT_TIMER   0
#define APIC_LVT_THERMAL 1
#define APIC_LVT_PERFORM 2
#define APIC_LVT_LINT0   3
#define APIC_LVT_LINT1   4
#define APIC_LVT_ERROR   5
  Bit32u timer_initial, timer_current, timer_divconf;
  Boolean timer_active;  // internal state, not accessible from bus
  Bit32u timer_divide_counter, timer_divide_factor;
  Bit32u apic_base_msr;
  Bit32u icr_high, icr_low;
  Bit32u err_status;
#define APIC_ERR_ILLEGAL_ADDR    0x80
#define APIC_ERR_RX_ILLEGAL_VEC  0x40
#define APIC_ERR_TX_ILLEGAL_VEC  0x20
#define APIC_ERR_RX_ACCEPT_ERR   0x08
#define APIC_ERR_TX_ACCEPT_ERR   0x04
#define APIC_ERR_RX_CHECKSUM     0x02
#define APIC_ERR_TX_CHECKSUM     0x01
public:
  bx_local_apic_c(BX_CPU_C *mycpu);
  virtual ~bx_local_apic_c(void);
  BX_CPU_C *cpu;
  virtual void hwreset ();
  virtual void init ();
  BX_CPU_C *get_cpu (Bit8u id);
  void set_id (Bit8u newid);   // redefine to set cpu->name
  virtual char *get_name();
  virtual void write (Bit32u addr, Bit32u *data, unsigned len);
  virtual void read_aligned(Bit32u address, Bit32u *data, unsigned len);
  virtual void startup_msg (Bit32u vector);
  // on local APIC, trigger means raise the CPU's INTR line.  For now
  // I also have to raise pc_system.INTR but that should be replaced
  // with the cpu-specific INTR signals.
  virtual void trigger_irq (unsigned num, unsigned from);
  virtual void untrigger_irq (unsigned num, unsigned from);
  Bit8u acknowledge_int ();  // only the local CPU should call this
  int highest_priority_int (Bit8u *array);
  void service_local_apic ();
  void print_status ();
  virtual Boolean match_logical_addr (Bit8u address);
  virtual Boolean is_local_apic () { return true; }
  virtual bx_apic_type_t get_type () { return APIC_TYPE_LOCAL_APIC; }
  virtual Bit32u get_delivery_bitmask (Bit8u dest, Bit8u dest_mode);
  Bit8u get_ppr ();
  Bit8u get_apr ();
  void periodic (Bit32u usec_delta);
  void set_divide_configuration (Bit32u value);
  };

#define APIC_MAX_ID 16
extern bx_generic_apic_c *apic_index[APIC_MAX_ID];
#endif // if BX_SUPPORT_APIC


#if BX_USE_CPU_SMF == 0
// normal member functions.  This can ONLY be used within BX_CPU_C classes.
// Anyone on the outside should use the BX_CPU macro (defined in bochs.h) 
// instead.
#  define BX_CPU_THIS_PTR  this->
#  define BX_SMF
#  define BX_CPU_C_PREFIX  BX_CPU_C::
// with normal member functions, calling a member fn pointer looks like
// object->*(fnptr)(arg, ...);
// Since this is different from when SMF=1, encapsulate it in a macro.
#  define BX_CPU_CALL_METHOD(func, args) \
    do { \
      BX_INSTR_OPCODE_BEGIN (BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base + BX_CPU_THIS_PTR prev_eip); \
      (this->*((BxExecutePtr_t) (func))) args \
      BX_INSTR_OPCODE_END (BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base + BX_CPU_THIS_PTR prev_eip); \
    } while (0)
#else
// static member functions.  With SMF, there is only one CPU by definition.
#  define BX_CPU_THIS_PTR  BX_CPU(0)->
#  define BX_SMF           static
#  define BX_CPU_C_PREFIX
#  define BX_CPU_CALL_METHOD(func, args)   \
    do { \
      BX_INSTR_OPCODE_BEGIN (BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base + BX_CPU_THIS_PTR prev_eip); \
    ((BxExecutePtr_t) (func)) args; \
      BX_INSTR_OPCODE_END (BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base + BX_CPU_THIS_PTR prev_eip); \
    } while (0)
#endif

typedef void (*BxDTShim_t)(void);

class BX_MEM_C;

class BX_CPU_C : public logfunctions {

public: // for now...

  char name[64];

  // General register set
  // eax: accumulator
  // ebx: base
  // ecx: count
  // edx: data
  // ebp: base pointer
  // esi: source index
  // edi: destination index
  // esp: stack pointer
  bx_gen_reg_t  gen_reg[8];

  Bit32u eip;    // instruction pointer
#if BX_CPU_LEVEL > 0
  // so that we can back up when handling faults, exceptions, etc.
  // we need to store the value of the instruction pointer, before
  // each fetch/execute cycle.
  Bit32u prev_eip;
#endif
  // A few pointer to functions for use by the dynamic translation
  // code.  Keep them close to the gen_reg declaration, so I can
  // use an 8bit offset to access them.

#if BX_DYNAMIC_TRANSLATION
  BxDTShim_t DTWrite8vShim;
  BxDTShim_t DTWrite16vShim;
  BxDTShim_t DTWrite32vShim;
  BxDTShim_t DTRead8vShim;
  BxDTShim_t DTRead16vShim;
  BxDTShim_t DTRead32vShim;
  BxDTShim_t DTReadRMW8vShim;
  BxDTShim_t DTReadRMW16vShim;
  BxDTShim_t DTReadRMW32vShim;
  BxDTShim_t DTWriteRMW8vShim;
  BxDTShim_t DTWriteRMW16vShim;
  BxDTShim_t DTWriteRMW32vShim;
  BxDTShim_t DTSetFlagsOSZAPCPtr;
  BxDTShim_t DTIndBrHandler;
  BxDTShim_t DTDirBrHandler;
#endif

  // status and control flags register set
  Bit32u   lf_flags_status;
  Boolean  lf_pf;
  bx_flags_reg_t eflags;

  bx_lf_flags_entry oszapc;
  bx_lf_flags_entry oszap;

  Bit32u prev_esp;

#define BX_INHIBIT_INTERRUPTS 0x01
#define BX_INHIBIT_DEBUG      0x02
  // What events to inhibit at any given time.  Certain instructions
  // inhibit interrupts, some debug exceptions and single-step traps.
  unsigned inhibit_mask;

  /* user segment register set */
  bx_segment_reg_t  sregs[6];

  /* system segment registers */
#if BX_CPU_LEVEL >= 2
  bx_global_segment_reg_t gdtr; /* global descriptor table register */
  bx_global_segment_reg_t idtr; /* interrupt descriptor table register */
#endif
  bx_segment_reg_t        ldtr; /* interrupt descriptor table register */
  bx_segment_reg_t        tr;   /* task register */


  /* debug registers 0-7 (unimplemented) */
#if BX_CPU_LEVEL >= 3
  Bit32u dr0;
  Bit32u dr1;
  Bit32u dr2;
  Bit32u dr3;
  Bit32u dr6;
  Bit32u dr7;
#endif

  /* TR3 - TR7 (Test Register 3-7), unimplemented */

  /* Control registers */
#if BX_CPU_LEVEL >= 2
  bx_cr0_t  cr0;
  Bit32u    cr1;
  Bit32u    cr2;
  Bit32u    cr3;
#endif
#if BX_CPU_LEVEL >= 4
  Bit32u    cr4;
#endif

  // pointer to the address space that this processor uses.
  BX_MEM_C *mem;

  Boolean EXT; /* 1 if processing external interrupt or exception
                * or if not related to current instruction,
                * 0 if current CS:IP caused exception */
  unsigned errorno;   /* signal exception during instruction emulation */

  Bit32u   debug_trap; // holds DR6 value to be set as well
  volatile Boolean async_event;
  volatile Boolean INTR;

  // for accessing registers by index number
  Bit16u *_16bit_base_reg[8];
  Bit16u *_16bit_index_reg[8];
  Bit32u empty_register;

  // for decoding instructions; accessing seg reg's by index
  unsigned sreg_mod00_rm16[8];
  unsigned sreg_mod01_rm16[8];
  unsigned sreg_mod10_rm16[8];
  unsigned sreg_mod01_rm32[8];
  unsigned sreg_mod10_rm32[8];
  unsigned sreg_mod0_base32[8];
  unsigned sreg_mod1or2_base32[8];

  // for exceptions
  jmp_buf jmp_buf_env;
  Bit8u curr_exception[2];

  static const Boolean is_exception_OK[3][3];

  bx_segment_reg_t save_cs;
  bx_segment_reg_t save_ss;
  Bit32u           save_eip;
  Bit32u           save_esp;

  // For prefetch'ing instructions
  Bit32u bytesleft;
  Bit8u *fetch_ptr;
  Bit32u prev_linear_page;
  Bit32u prev_phy_page;
  Bit32u max_phy_addr;

#if BX_DEBUGGER
  Bit8u break_point;
#ifdef MAGIC_BREAKPOINT
  Bit8u magic_break;
#endif
  Bit8u stop_reason;
  Bit8u trace;
  Bit8u trace_reg;
  Bit8u mode_break;		/* BW */
  Boolean debug_vm;		/* BW contains current mode*/
  Bit8u show_eip;		/* BW record eip at special instr f.ex eip */
  Bit8u show_flag;		/* BW shows instr class executed */
  bx_guard_found_t guard_found;
#endif

  // for paging
#if BX_USE_TLB
  struct {
    bx_TLB_entry entry[BX_TLB_SIZE];
    } TLB;
#endif

  struct {
    Bit32u  paddress1;  // physical address after translation of 1st len1 bytes of data
    Bit32u  paddress2;  // physical address after translation of 2nd len2 bytes of data
    Bit32u  len1;       // number of bytes in page 1
    Bit32u  len2;       // number of bytes in page 2
    unsigned pages;     // number of pages access spans (1 or 2)
    } address_xlation;

  // for lazy flags processing
  BX_SMF Boolean get_OF(void);
  BX_SMF Boolean get_SF(void);
  BX_SMF Boolean get_ZF(void);
  BX_SMF Boolean get_AF(void);
  BX_SMF Boolean get_PF(void);
  BX_SMF Boolean get_CF(void);

  // constructors & destructors...
  BX_CPU_C();
  ~BX_CPU_C(void);
  void init (BX_MEM_C *addrspace);

  // prototypes for CPU instructions...
  BX_SMF void ADD_EbGb(BxInstruction_t *);
  BX_SMF void ADD_EdGd(BxInstruction_t *);
  BX_SMF void ADD_GbEb(BxInstruction_t *);
  BX_SMF void ADD_GdEd(BxInstruction_t *);
  BX_SMF void ADD_ALIb(BxInstruction_t *);
  BX_SMF void ADD_EAXId(BxInstruction_t *);
  BX_SMF void OR_EbGb(BxInstruction_t *);
  BX_SMF void OR_EdGd(BxInstruction_t *);
  BX_SMF void OR_EwGw(BxInstruction_t *);
  BX_SMF void OR_GbEb(BxInstruction_t *);
  BX_SMF void OR_GdEd(BxInstruction_t *);
  BX_SMF void OR_GwEw(BxInstruction_t *);
  BX_SMF void OR_ALIb(BxInstruction_t *);
  BX_SMF void OR_EAXId(BxInstruction_t *);
  BX_SMF void OR_AXIw(BxInstruction_t *);

  BX_SMF void PUSH_CS(BxInstruction_t *);
  BX_SMF void PUSH_DS(BxInstruction_t *);
  BX_SMF void POP_DS(BxInstruction_t *);
  BX_SMF void PUSH_ES(BxInstruction_t *);
  BX_SMF void POP_ES(BxInstruction_t *);
  BX_SMF void PUSH_FS(BxInstruction_t *);
  BX_SMF void POP_FS(BxInstruction_t *);
  BX_SMF void PUSH_GS(BxInstruction_t *);
  BX_SMF void POP_GS(BxInstruction_t *);
  BX_SMF void PUSH_SS(BxInstruction_t *);
  BX_SMF void POP_SS(BxInstruction_t *);

  BX_SMF void ADC_EbGb(BxInstruction_t *);
  BX_SMF void ADC_EdGd(BxInstruction_t *);
  BX_SMF void ADC_GbEb(BxInstruction_t *);
  BX_SMF void ADC_GdEd(BxInstruction_t *);
  BX_SMF void ADC_ALIb(BxInstruction_t *);
  BX_SMF void ADC_EAXId(BxInstruction_t *);
  BX_SMF void SBB_EbGb(BxInstruction_t *);
  BX_SMF void SBB_EdGd(BxInstruction_t *);
  BX_SMF void SBB_GbEb(BxInstruction_t *);
  BX_SMF void SBB_GdEd(BxInstruction_t *);
  BX_SMF void SBB_ALIb(BxInstruction_t *);
  BX_SMF void SBB_EAXId(BxInstruction_t *);

  BX_SMF void AND_EbGb(BxInstruction_t *);
  BX_SMF void AND_EdGd(BxInstruction_t *);
  BX_SMF void AND_EwGw(BxInstruction_t *);
  BX_SMF void AND_GbEb(BxInstruction_t *);
  BX_SMF void AND_GdEd(BxInstruction_t *);
  BX_SMF void AND_GwEw(BxInstruction_t *);
  BX_SMF void AND_ALIb(BxInstruction_t *);
  BX_SMF void AND_EAXId(BxInstruction_t *);
  BX_SMF void AND_AXIw(BxInstruction_t *);
  BX_SMF void DAA(BxInstruction_t *);
  BX_SMF void SUB_EbGb(BxInstruction_t *);
  BX_SMF void SUB_EdGd(BxInstruction_t *);
  BX_SMF void SUB_GbEb(BxInstruction_t *);
  BX_SMF void SUB_GdEd(BxInstruction_t *);
  BX_SMF void SUB_ALIb(BxInstruction_t *);
  BX_SMF void SUB_EAXId(BxInstruction_t *);
  BX_SMF void DAS(BxInstruction_t *);

  BX_SMF void XOR_EbGb(BxInstruction_t *);
  BX_SMF void XOR_EdGd(BxInstruction_t *);
  BX_SMF void XOR_EwGw(BxInstruction_t *);
  BX_SMF void XOR_GbEb(BxInstruction_t *);
  BX_SMF void XOR_GdEd(BxInstruction_t *);
  BX_SMF void XOR_GwEw(BxInstruction_t *);
  BX_SMF void XOR_ALIb(BxInstruction_t *);
  BX_SMF void XOR_EAXId(BxInstruction_t *);
  BX_SMF void XOR_AXIw(BxInstruction_t *);
  BX_SMF void AAA(BxInstruction_t *);
  BX_SMF void CMP_EbGb(BxInstruction_t *);
  BX_SMF void CMP_EdGd(BxInstruction_t *);
  BX_SMF void CMP_GbEb(BxInstruction_t *);
  BX_SMF void CMP_GdEd(BxInstruction_t *);
  BX_SMF void CMP_ALIb(BxInstruction_t *);
  BX_SMF void CMP_EAXId(BxInstruction_t *);
  BX_SMF void AAS(BxInstruction_t *);

  BX_SMF void PUSHAD32(BxInstruction_t *);
  BX_SMF void PUSHAD16(BxInstruction_t *);
  BX_SMF void POPAD32(BxInstruction_t *);
  BX_SMF void POPAD16(BxInstruction_t *);
  BX_SMF void BOUND_GvMa(BxInstruction_t *);
  BX_SMF void ARPL_EwGw(BxInstruction_t *);
  BX_SMF void PUSH_Id(BxInstruction_t *);
  BX_SMF void PUSH_Iw(BxInstruction_t *);
  BX_SMF void IMUL_GdEdId(BxInstruction_t *);
  BX_SMF void INSB_YbDX(BxInstruction_t *);
  BX_SMF void INSW_YvDX(BxInstruction_t *);
  BX_SMF void OUTSB_DXXb(BxInstruction_t *);
  BX_SMF void OUTSW_DXXv(BxInstruction_t *);

  BX_SMF void TEST_EbGb(BxInstruction_t *);
  BX_SMF void TEST_EdGd(BxInstruction_t *);
  BX_SMF void TEST_EwGw(BxInstruction_t *);
  BX_SMF void XCHG_EbGb(BxInstruction_t *);
  BX_SMF void XCHG_EdGd(BxInstruction_t *);
  BX_SMF void XCHG_EwGw(BxInstruction_t *);
  BX_SMF void MOV_EbGb(BxInstruction_t *);
  BX_SMF void MOV_EdGd(BxInstruction_t *);
  BX_SMF void MOV_EwGw(BxInstruction_t *);
  BX_SMF void MOV_GbEb(BxInstruction_t *);
  BX_SMF void MOV_GdEd(BxInstruction_t *);
  BX_SMF void MOV_GwEw(BxInstruction_t *);
  BX_SMF void MOV_EwSw(BxInstruction_t *);
  BX_SMF void LEA_GdM(BxInstruction_t *);
  BX_SMF void LEA_GwM(BxInstruction_t *);
  BX_SMF void MOV_SwEw(BxInstruction_t *);
  BX_SMF void POP_Ev(BxInstruction_t *);

  BX_SMF void CBW(BxInstruction_t *);
  BX_SMF void CWD(BxInstruction_t *);
  BX_SMF void CALL32_Ap(BxInstruction_t *);
  BX_SMF void CALL16_Ap(BxInstruction_t *);
  BX_SMF void FWAIT(BxInstruction_t *);
  BX_SMF void PUSHF_Fv(BxInstruction_t *);
  BX_SMF void POPF_Fv(BxInstruction_t *);
  BX_SMF void SAHF(BxInstruction_t *);
  BX_SMF void LAHF(BxInstruction_t *);

  BX_SMF void MOV_ALOb(BxInstruction_t *);
  BX_SMF void MOV_EAXOd(BxInstruction_t *);
  BX_SMF void MOV_AXOw(BxInstruction_t *);
  BX_SMF void MOV_ObAL(BxInstruction_t *);
  BX_SMF void MOV_OdEAX(BxInstruction_t *);
  BX_SMF void MOV_OwAX(BxInstruction_t *);
  BX_SMF void MOVSB_XbYb(BxInstruction_t *);
  BX_SMF void MOVSW_XvYv(BxInstruction_t *);
  BX_SMF void CMPSB_XbYb(BxInstruction_t *);
  BX_SMF void CMPSW_XvYv(BxInstruction_t *);
  BX_SMF void TEST_ALIb(BxInstruction_t *);
  BX_SMF void TEST_EAXId(BxInstruction_t *);
  BX_SMF void TEST_AXIw(BxInstruction_t *);
  BX_SMF void STOSB_YbAL(BxInstruction_t *);
  BX_SMF void STOSW_YveAX(BxInstruction_t *);
  BX_SMF void LODSB_ALXb(BxInstruction_t *);
  BX_SMF void LODSW_eAXXv(BxInstruction_t *);
  BX_SMF void SCASB_ALXb(BxInstruction_t *);
  BX_SMF void SCASW_eAXXv(BxInstruction_t *);

  BX_SMF void RETnear32(BxInstruction_t *);
  BX_SMF void RETnear16(BxInstruction_t *);
  BX_SMF void LES_GvMp(BxInstruction_t *);
  BX_SMF void LDS_GvMp(BxInstruction_t *);
  BX_SMF void MOV_EbIb(BxInstruction_t *);
  BX_SMF void MOV_EdId(BxInstruction_t *);
  BX_SMF void MOV_EwIw(BxInstruction_t *);
  BX_SMF void ENTER_IwIb(BxInstruction_t *);
  BX_SMF void LEAVE(BxInstruction_t *);
  BX_SMF void RETfar32(BxInstruction_t *);
  BX_SMF void RETfar16(BxInstruction_t *);

  BX_SMF void INT1(BxInstruction_t *);
  BX_SMF void INT3(BxInstruction_t *);
  BX_SMF void INT_Ib(BxInstruction_t *);
  BX_SMF void INTO(BxInstruction_t *);
  BX_SMF void IRET32(BxInstruction_t *);
  BX_SMF void IRET16(BxInstruction_t *);

  BX_SMF void AAM(BxInstruction_t *);
  BX_SMF void AAD(BxInstruction_t *);
  BX_SMF void SALC(BxInstruction_t *);
  BX_SMF void XLAT(BxInstruction_t *);

  BX_SMF void LOOPNE_Jb(BxInstruction_t *);
  BX_SMF void LOOPE_Jb(BxInstruction_t *);
  BX_SMF void LOOP_Jb(BxInstruction_t *);
  BX_SMF void JCXZ_Jb(BxInstruction_t *);
  BX_SMF void IN_ALIb(BxInstruction_t *);
  BX_SMF void IN_eAXIb(BxInstruction_t *);
  BX_SMF void OUT_IbAL(BxInstruction_t *);
  BX_SMF void OUT_IbeAX(BxInstruction_t *);
  BX_SMF void CALL_Aw(BxInstruction_t *);
  BX_SMF void CALL_Ad(BxInstruction_t *);
  BX_SMF void JMP_Jd(BxInstruction_t *);
  BX_SMF void JMP_Jw(BxInstruction_t *);
  BX_SMF void JMP_Ap(BxInstruction_t *);
  BX_SMF void IN_ALDX(BxInstruction_t *);
  BX_SMF void IN_eAXDX(BxInstruction_t *);
  BX_SMF void OUT_DXAL(BxInstruction_t *);
  BX_SMF void OUT_DXeAX(BxInstruction_t *);

  BX_SMF void HLT(BxInstruction_t *);
  BX_SMF void CMC(BxInstruction_t *);
  BX_SMF void CLC(BxInstruction_t *);
  BX_SMF void STC(BxInstruction_t *);
  BX_SMF void CLI(BxInstruction_t *);
  BX_SMF void STI(BxInstruction_t *);
  BX_SMF void CLD(BxInstruction_t *);
  BX_SMF void STD(BxInstruction_t *);


  BX_SMF void LAR_GvEw(BxInstruction_t *);
  BX_SMF void LSL_GvEw(BxInstruction_t *);
  BX_SMF void CLTS(BxInstruction_t *);
  BX_SMF void INVD(BxInstruction_t *);
  BX_SMF void WBINVD(BxInstruction_t *);

  BX_SMF void MOV_CdRd(BxInstruction_t *);
  BX_SMF void MOV_DdRd(BxInstruction_t *);
  BX_SMF void MOV_RdCd(BxInstruction_t *);
  BX_SMF void MOV_RdDd(BxInstruction_t *);
  BX_SMF void MOV_TdRd(BxInstruction_t *);
  BX_SMF void MOV_RdTd(BxInstruction_t *);

  BX_SMF void JCC_Jd(BxInstruction_t *);
  BX_SMF void JCC_Jw(BxInstruction_t *);

  BX_SMF void SETO_Eb(BxInstruction_t *);
  BX_SMF void SETNO_Eb(BxInstruction_t *);
  BX_SMF void SETB_Eb(BxInstruction_t *);
  BX_SMF void SETNB_Eb(BxInstruction_t *);
  BX_SMF void SETZ_Eb(BxInstruction_t *);
  BX_SMF void SETNZ_Eb(BxInstruction_t *);
  BX_SMF void SETBE_Eb(BxInstruction_t *);
  BX_SMF void SETNBE_Eb(BxInstruction_t *);
  BX_SMF void SETS_Eb(BxInstruction_t *);
  BX_SMF void SETNS_Eb(BxInstruction_t *);
  BX_SMF void SETP_Eb(BxInstruction_t *);
  BX_SMF void SETNP_Eb(BxInstruction_t *);
  BX_SMF void SETL_Eb(BxInstruction_t *);
  BX_SMF void SETNL_Eb(BxInstruction_t *);
  BX_SMF void SETLE_Eb(BxInstruction_t *);
  BX_SMF void SETNLE_Eb(BxInstruction_t *);

  BX_SMF void CPUID(BxInstruction_t *);
  BX_SMF void BT_EvGv(BxInstruction_t *);
  BX_SMF void SHLD_EdGd(BxInstruction_t *);
  BX_SMF void SHLD_EwGw(BxInstruction_t *);


  BX_SMF void BTS_EvGv(BxInstruction_t *);

  BX_SMF void SHRD_EwGw(BxInstruction_t *);
  BX_SMF void SHRD_EdGd(BxInstruction_t *);

  BX_SMF void IMUL_GdEd(BxInstruction_t *);

  BX_SMF void LSS_GvMp(BxInstruction_t *);
  BX_SMF void BTR_EvGv(BxInstruction_t *);
  BX_SMF void LFS_GvMp(BxInstruction_t *);
  BX_SMF void LGS_GvMp(BxInstruction_t *);
  BX_SMF void MOVZX_GdEb(BxInstruction_t *);
  BX_SMF void MOVZX_GwEb(BxInstruction_t *);
  BX_SMF void MOVZX_GdEw(BxInstruction_t *);
  BX_SMF void MOVZX_GwEw(BxInstruction_t *);
  BX_SMF void BTC_EvGv(BxInstruction_t *);
  BX_SMF void BSF_GvEv(BxInstruction_t *);
  BX_SMF void BSR_GvEv(BxInstruction_t *);
  BX_SMF void MOVSX_GdEb(BxInstruction_t *);
  BX_SMF void MOVSX_GwEb(BxInstruction_t *);
  BX_SMF void MOVSX_GdEw(BxInstruction_t *);
  BX_SMF void MOVSX_GwEw(BxInstruction_t *);

  BX_SMF void BSWAP_EAX(BxInstruction_t *);
  BX_SMF void BSWAP_ECX(BxInstruction_t *);
  BX_SMF void BSWAP_EDX(BxInstruction_t *);
  BX_SMF void BSWAP_EBX(BxInstruction_t *);
  BX_SMF void BSWAP_ESP(BxInstruction_t *);
  BX_SMF void BSWAP_EBP(BxInstruction_t *);
  BX_SMF void BSWAP_ESI(BxInstruction_t *);
  BX_SMF void BSWAP_EDI(BxInstruction_t *);

  BX_SMF void ADD_EbIb(BxInstruction_t *);
  BX_SMF void ADC_EbIb(BxInstruction_t *);
  BX_SMF void SBB_EbIb(BxInstruction_t *);
  BX_SMF void SUB_EbIb(BxInstruction_t *);
  BX_SMF void CMP_EbIb(BxInstruction_t *);

  BX_SMF void XOR_EbIb(BxInstruction_t *);
  BX_SMF void OR_EbIb(BxInstruction_t *);
  BX_SMF void AND_EbIb(BxInstruction_t *);

  BX_SMF void ADD_EdId(BxInstruction_t *);
  BX_SMF void OR_EdId(BxInstruction_t *);
  BX_SMF void OR_EwIw(BxInstruction_t *);
  BX_SMF void ADC_EdId(BxInstruction_t *);
  BX_SMF void SBB_EdId(BxInstruction_t *);
  BX_SMF void AND_EdId(BxInstruction_t *);
  BX_SMF void AND_EwIw(BxInstruction_t *);
  BX_SMF void SUB_EdId(BxInstruction_t *);
  BX_SMF void XOR_EdId(BxInstruction_t *);
  BX_SMF void XOR_EwIw(BxInstruction_t *);
  BX_SMF void CMP_EdId(BxInstruction_t *);

  BX_SMF void ROL_Eb(BxInstruction_t *);
  BX_SMF void ROR_Eb(BxInstruction_t *);
  BX_SMF void RCL_Eb(BxInstruction_t *);
  BX_SMF void RCR_Eb(BxInstruction_t *);
  BX_SMF void SHL_Eb(BxInstruction_t *);
  BX_SMF void SHR_Eb(BxInstruction_t *);
  BX_SMF void SAR_Eb(BxInstruction_t *);

  BX_SMF void ROL_Ed(BxInstruction_t *);
  BX_SMF void ROL_Ew(BxInstruction_t *);
  BX_SMF void ROR_Ed(BxInstruction_t *);
  BX_SMF void ROR_Ew(BxInstruction_t *);
  BX_SMF void RCL_Ed(BxInstruction_t *);
  BX_SMF void RCL_Ew(BxInstruction_t *);
  BX_SMF void RCR_Ed(BxInstruction_t *);
  BX_SMF void RCR_Ew(BxInstruction_t *);
  BX_SMF void SHL_Ed(BxInstruction_t *);
  BX_SMF void SHL_Ew(BxInstruction_t *);
  BX_SMF void SHR_Ed(BxInstruction_t *);
  BX_SMF void SHR_Ew(BxInstruction_t *);
  BX_SMF void SAR_Ed(BxInstruction_t *);
  BX_SMF void SAR_Ew(BxInstruction_t *);

  BX_SMF void TEST_EbIb(BxInstruction_t *);
  BX_SMF void NOT_Eb(BxInstruction_t *);
  BX_SMF void NEG_Eb(BxInstruction_t *);
  BX_SMF void MUL_ALEb(BxInstruction_t *);
  BX_SMF void IMUL_ALEb(BxInstruction_t *);
  BX_SMF void DIV_ALEb(BxInstruction_t *);
  BX_SMF void IDIV_ALEb(BxInstruction_t *);

  BX_SMF void TEST_EdId(BxInstruction_t *);
  BX_SMF void TEST_EwIw(BxInstruction_t *);
  BX_SMF void NOT_Ed(BxInstruction_t *);
  BX_SMF void NOT_Ew(BxInstruction_t *);
  BX_SMF void NEG_Ed(BxInstruction_t *);
  BX_SMF void MUL_EAXEd(BxInstruction_t *);
  BX_SMF void IMUL_EAXEd(BxInstruction_t *);
  BX_SMF void DIV_EAXEd(BxInstruction_t *);
  BX_SMF void IDIV_EAXEd(BxInstruction_t *);

  BX_SMF void INC_Eb(BxInstruction_t *);
  BX_SMF void DEC_Eb(BxInstruction_t *);

  BX_SMF void INC_Ed(BxInstruction_t *);
  BX_SMF void DEC_Ed(BxInstruction_t *);
  BX_SMF void CALL_Ed(BxInstruction_t *);
  BX_SMF void CALL_Ew(BxInstruction_t *);
  BX_SMF void CALL32_Ep(BxInstruction_t *);
  BX_SMF void CALL16_Ep(BxInstruction_t *);
  BX_SMF void JMP_Ed(BxInstruction_t *);
  BX_SMF void JMP_Ew(BxInstruction_t *);
  BX_SMF void JMP32_Ep(BxInstruction_t *);
  BX_SMF void JMP16_Ep(BxInstruction_t *);
  BX_SMF void PUSH_Ed(BxInstruction_t *);
  BX_SMF void PUSH_Ew(BxInstruction_t *);

  BX_SMF void SLDT_Ew(BxInstruction_t *);
  BX_SMF void STR_Ew(BxInstruction_t *);
  BX_SMF void LLDT_Ew(BxInstruction_t *);
  BX_SMF void LTR_Ew(BxInstruction_t *);
  BX_SMF void VERR_Ew(BxInstruction_t *);
  BX_SMF void VERW_Ew(BxInstruction_t *);

  BX_SMF void SGDT_Ms(BxInstruction_t *);
  BX_SMF void SIDT_Ms(BxInstruction_t *);
  BX_SMF void LGDT_Ms(BxInstruction_t *);
  BX_SMF void LIDT_Ms(BxInstruction_t *);
  BX_SMF void SMSW_Ew(BxInstruction_t *);
  BX_SMF void LMSW_Ew(BxInstruction_t *);


  BX_SMF void BT_EvIb(BxInstruction_t *);
  BX_SMF void BTS_EvIb(BxInstruction_t *);
  BX_SMF void BTR_EvIb(BxInstruction_t *);
  BX_SMF void BTC_EvIb(BxInstruction_t *);

  BX_SMF void ESC0(BxInstruction_t *);
  BX_SMF void ESC1(BxInstruction_t *);
  BX_SMF void ESC2(BxInstruction_t *);
  BX_SMF void ESC3(BxInstruction_t *);
  BX_SMF void ESC4(BxInstruction_t *);
  BX_SMF void ESC5(BxInstruction_t *);
  BX_SMF void ESC6(BxInstruction_t *);
  BX_SMF void ESC7(BxInstruction_t *);

  BX_SMF void fpu_execute(BxInstruction_t *i);
  BX_SMF void fpu_init(void);
  BX_SMF void fpu_print_regs (void);

  BX_SMF void CMPXCHG_XBTS(BxInstruction_t *);
  BX_SMF void CMPXCHG_IBTS(BxInstruction_t *);
  BX_SMF void CMPXCHG_EbGb(BxInstruction_t *);
  BX_SMF void CMPXCHG_EdGd(BxInstruction_t *);
  BX_SMF void CMPXCHG8B(BxInstruction_t *);
  BX_SMF void XADD_EbGb(BxInstruction_t *);
  BX_SMF void XADD_EdGd(BxInstruction_t *);
  BX_SMF void RETnear32_Iw(BxInstruction_t *);
  BX_SMF void RETnear16_Iw(BxInstruction_t *);
  BX_SMF void RETfar32_Iw(BxInstruction_t *);
  BX_SMF void RETfar16_Iw(BxInstruction_t *);

  BX_SMF void LOADALL(BxInstruction_t *);
  BX_SMF void CMOV_GdEd(BxInstruction_t *);
  BX_SMF void CMOV_GwEw(BxInstruction_t *);

  BX_SMF void ADD_EwGw(BxInstruction_t *);
  BX_SMF void ADD_GwEw(BxInstruction_t *);
  BX_SMF void ADD_AXIw(BxInstruction_t *);
  BX_SMF void ADC_EwGw(BxInstruction_t *);
  BX_SMF void ADC_GwEw(BxInstruction_t *);
  BX_SMF void ADC_AXIw(BxInstruction_t *);
  BX_SMF void SBB_EwGw(BxInstruction_t *);
  BX_SMF void SBB_GwEw(BxInstruction_t *);
  BX_SMF void SBB_AXIw(BxInstruction_t *);
  BX_SMF void SBB_EwIw(BxInstruction_t *);
  BX_SMF void SUB_EwGw(BxInstruction_t *);
  BX_SMF void SUB_GwEw(BxInstruction_t *);
  BX_SMF void SUB_AXIw(BxInstruction_t *);
  BX_SMF void CMP_EwGw(BxInstruction_t *);
  BX_SMF void CMP_GwEw(BxInstruction_t *);
  BX_SMF void CMP_AXIw(BxInstruction_t *);
  BX_SMF void CWDE(BxInstruction_t *);
  BX_SMF void CDQ(BxInstruction_t *);
  BX_SMF void XADD_EwGw(BxInstruction_t *);
  BX_SMF void ADD_EwIw(BxInstruction_t *);
  BX_SMF void ADC_EwIw(BxInstruction_t *);
  BX_SMF void SUB_EwIw(BxInstruction_t *);
  BX_SMF void CMP_EwIw(BxInstruction_t *);
  BX_SMF void NEG_Ew(BxInstruction_t *);
  BX_SMF void INC_Ew(BxInstruction_t *);
  BX_SMF void DEC_Ew(BxInstruction_t *);
  BX_SMF void CMPXCHG_EwGw(BxInstruction_t *);
  BX_SMF void MUL_AXEw(BxInstruction_t *);
  BX_SMF void IMUL_AXEw(BxInstruction_t *);
  BX_SMF void DIV_AXEw(BxInstruction_t *);
  BX_SMF void IDIV_AXEw(BxInstruction_t *);
  BX_SMF void IMUL_GwEwIw(BxInstruction_t *);
  BX_SMF void IMUL_GwEw(BxInstruction_t *);
  BX_SMF void NOP(BxInstruction_t *);
  BX_SMF void MOV_RLIb(BxInstruction_t *);
  BX_SMF void MOV_RHIb(BxInstruction_t *);
  BX_SMF void MOV_RXIw(BxInstruction_t *);
  BX_SMF void MOV_ERXId(BxInstruction_t *);
  BX_SMF void INC_RX(BxInstruction_t *);
  BX_SMF void DEC_RX(BxInstruction_t *);
  BX_SMF void INC_ERX(BxInstruction_t *);
  BX_SMF void DEC_ERX(BxInstruction_t *);
  BX_SMF void PUSH_RX(BxInstruction_t *);
  BX_SMF void POP_RX(BxInstruction_t *);
  BX_SMF void PUSH_ERX(BxInstruction_t *);
  BX_SMF void POP_ERX(BxInstruction_t *);
  BX_SMF void POP_Ew(BxInstruction_t *);
  BX_SMF void POP_Ed(BxInstruction_t *);
  BX_SMF void XCHG_RXAX(BxInstruction_t *);
  BX_SMF void XCHG_ERXEAX(BxInstruction_t *);

  // mch added
  BX_SMF void INVLPG(BxInstruction_t *);
  BX_SMF void wait_for_interrupt();
  BX_SMF void RSM(BxInstruction_t *);

  BX_SMF void WRMSR(BxInstruction_t *);
  BX_SMF void RDTSC(BxInstruction_t *);
  BX_SMF void RDMSR(BxInstruction_t *);
  BX_SMF void SetCR0(Bit32u val_32);
  BX_SMF void dynamic_translate(void);
  BX_SMF void dynamic_init(void);
  BX_SMF unsigned FetchDecode(Bit8u *, BxInstruction_t *, unsigned, Boolean);
  BX_SMF void UndefinedOpcode(BxInstruction_t *);
  BX_SMF void BxError(BxInstruction_t *i);
  BX_SMF void BxResolveError(BxInstruction_t *i);

  BX_SMF void Resolve16Mod0Rm0(BxInstruction_t *);
  BX_SMF void Resolve16Mod0Rm1(BxInstruction_t *);
  BX_SMF void Resolve16Mod0Rm2(BxInstruction_t *);
  BX_SMF void Resolve16Mod0Rm3(BxInstruction_t *);
  BX_SMF void Resolve16Mod0Rm4(BxInstruction_t *);
  BX_SMF void Resolve16Mod0Rm5(BxInstruction_t *);
  BX_SMF void Resolve16Mod0Rm7(BxInstruction_t *);

  BX_SMF void Resolve16Mod1or2Rm0(BxInstruction_t *);
  BX_SMF void Resolve16Mod1or2Rm1(BxInstruction_t *);
  BX_SMF void Resolve16Mod1or2Rm2(BxInstruction_t *);
  BX_SMF void Resolve16Mod1or2Rm3(BxInstruction_t *);
  BX_SMF void Resolve16Mod1or2Rm4(BxInstruction_t *);
  BX_SMF void Resolve16Mod1or2Rm5(BxInstruction_t *);
  BX_SMF void Resolve16Mod1or2Rm6(BxInstruction_t *);
  BX_SMF void Resolve16Mod1or2Rm7(BxInstruction_t *);

  BX_SMF void Resolve32Mod0Rm0(BxInstruction_t *);
  BX_SMF void Resolve32Mod0Rm1(BxInstruction_t *);
  BX_SMF void Resolve32Mod0Rm2(BxInstruction_t *);
  BX_SMF void Resolve32Mod0Rm3(BxInstruction_t *);
  BX_SMF void Resolve32Mod0Rm6(BxInstruction_t *);
  BX_SMF void Resolve32Mod0Rm7(BxInstruction_t *);

  BX_SMF void Resolve32Mod1or2Rm0(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Rm1(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Rm2(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Rm3(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Rm5(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Rm6(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Rm7(BxInstruction_t *);

  BX_SMF void Resolve32Mod0Base0(BxInstruction_t *);
  BX_SMF void Resolve32Mod0Base1(BxInstruction_t *);
  BX_SMF void Resolve32Mod0Base2(BxInstruction_t *);
  BX_SMF void Resolve32Mod0Base3(BxInstruction_t *);
  BX_SMF void Resolve32Mod0Base4(BxInstruction_t *);
  BX_SMF void Resolve32Mod0Base5(BxInstruction_t *);
  BX_SMF void Resolve32Mod0Base6(BxInstruction_t *);
  BX_SMF void Resolve32Mod0Base7(BxInstruction_t *);

  BX_SMF void Resolve32Mod1or2Base0(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Base1(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Base2(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Base3(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Base4(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Base5(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Base6(BxInstruction_t *);
  BX_SMF void Resolve32Mod1or2Base7(BxInstruction_t *);


  BX_SMF void REP(void (*)(void));
  BX_SMF void REP_ZF(void (*)(void), unsigned rep_prefix);
#if BX_DEBUGGER
  BX_SMF void     dbg_take_irq(void);
  BX_SMF void     dbg_force_interrupt(unsigned vector);
  BX_SMF void     dbg_take_dma(void);
  BX_SMF Boolean  dbg_get_cpu(bx_dbg_cpu_t *cpu);
  BX_SMF Boolean  dbg_set_cpu(bx_dbg_cpu_t *cpu);
  BX_SMF Boolean  dbg_set_reg(unsigned reg, Bit32u val);
  BX_SMF Bit32u   dbg_get_reg(unsigned reg);
  BX_SMF Boolean  dbg_get_sreg(bx_dbg_sreg_t *sreg, unsigned sreg_no);
  BX_SMF unsigned dbg_query_pending(void);
  BX_SMF Bit32u   dbg_get_descriptor_l(bx_descriptor_t *);
  BX_SMF Bit32u   dbg_get_descriptor_h(bx_descriptor_t *);
  BX_SMF Bit32u   dbg_get_eflags(void);
  BX_SMF Boolean  dbg_is_begin_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
                                            Bit32u is_32);
  BX_SMF Boolean  dbg_is_end_instr_bpoint(Bit32u cs, Bit32u eip,
                                          Bit32u laddr, Bit32u is_32);
#endif
#if BX_DEBUGGER || BX_DISASM || BX_INSTRUMENTATION
  BX_SMF void     dbg_xlate_linear2phy(Bit32u linear, Bit32u *phy, Boolean *valid);
#endif
  BX_SMF void     atexit(void);

  // now for some ancillary functions...
  BX_SMF void cpu_loop(Bit32s max_instr_count);
  BX_SMF void decode_exgx16(unsigned need_fetch);
  BX_SMF void decode_exgx32(unsigned need_fetch);

  BX_SMF void prefetch(void);
  BX_SMF void revalidate_prefetch_q(void);
  BX_SMF void invalidate_prefetch_q(void);

  BX_SMF void write_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length);
  BX_SMF void read_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length);
  BX_SMF void write_virtual_byte(unsigned seg, Bit32u offset, Bit8u *data);
  BX_SMF void write_virtual_word(unsigned seg, Bit32u offset, Bit16u *data);
  BX_SMF void write_virtual_dword(unsigned seg, Bit32u offset, Bit32u *data);
  BX_SMF void read_virtual_byte(unsigned seg, Bit32u offset, Bit8u *data);
  BX_SMF void read_virtual_word(unsigned seg, Bit32u offset, Bit16u *data);
  BX_SMF void read_virtual_dword(unsigned seg, Bit32u offset, Bit32u *data);

  BX_SMF void read_RMW_virtual_byte(unsigned seg, Bit32u offset, Bit8u *data);
  BX_SMF void read_RMW_virtual_word(unsigned seg, Bit32u offset, Bit16u *data);
  BX_SMF void read_RMW_virtual_dword(unsigned seg, Bit32u offset, Bit32u *data);
  BX_SMF void write_RMW_virtual_byte(Bit8u val8);
  BX_SMF void write_RMW_virtual_word(Bit16u val16);
  BX_SMF void write_RMW_virtual_dword(Bit32u val32);

  BX_SMF void access_linear(Bit32u address, unsigned length, unsigned pl,
                     unsigned rw, void *data);
  BX_SMF Bit32u itranslate_linear(Bit32u laddress, unsigned pl);
  BX_SMF Bit32u dtranslate_linear(Bit32u laddress, unsigned pl, unsigned rw);
  BX_SMF void TLB_flush(void);
  BX_SMF void TLB_clear(void);
  BX_SMF void TLB_init(void);
  BX_SMF void set_INTR(Boolean value);
  BX_SMF char *strseg(bx_segment_reg_t *seg);
  BX_SMF void interrupt(Bit8u vector, Boolean is_INT, Boolean is_error_code,
                 Bit16u error_code);
#if BX_CPU_LEVEL >= 2
  BX_SMF void exception(unsigned vector, Bit16u error_code, Boolean is_INT);
#endif
  BX_SMF int  int_number(bx_segment_reg_t *seg);
  BX_SMF void shutdown_cpu(void);
  BX_SMF void enable_paging(void);
  BX_SMF void disable_paging(void);
  BX_SMF void CR3_change(Bit32u value32);
  BX_SMF void reset(unsigned source);

  BX_SMF void jump_protected(BxInstruction_t *, Bit16u cs, Bit32u disp32);
  BX_SMF void call_protected(BxInstruction_t *, Bit16u cs, Bit32u disp32);
  BX_SMF void return_protected(BxInstruction_t *, Bit16u pop_bytes);
  BX_SMF void iret_protected(BxInstruction_t *);
  BX_SMF void validate_seg_regs(void);
  BX_SMF void stack_return_to_v86(Bit32u new_eip, Bit32u raw_cs_selector,
                                     Bit32u flags32);
  BX_SMF void stack_return_from_v86(BxInstruction_t *);
  BX_SMF void init_v8086_mode(void);
  BX_SMF void v8086_message(void);
  BX_SMF void task_switch(bx_selector_t *selector,
                     bx_descriptor_t *descriptor,
                     unsigned source,
                     Bit32u dword1, Bit32u dword2);
  BX_SMF void get_SS_ESP_from_TSS(unsigned pl, Bit16u *ss, Bit32u *esp);
  BX_SMF void write_flags(Bit16u flags, Boolean change_IOPL, Boolean change_IF);
  BX_SMF void write_eflags(Bit32u eflags, Boolean change_IOPL, Boolean change_IF,
                    Boolean change_VM, Boolean change_RF);
  BX_SMF Bit16u read_flags(void);
  BX_SMF Bit32u read_eflags(void);

  BX_SMF Bit8u   inp8(Bit16u addr);
  BX_SMF void    outp8(Bit16u addr, Bit8u value);
  BX_SMF Bit16u  inp16(Bit16u addr);
  BX_SMF void    outp16(Bit16u addr, Bit16u value);
  BX_SMF Bit32u  inp32(Bit16u addr);
  BX_SMF void    outp32(Bit16u addr, Bit32u value);
  BX_SMF Boolean allow_io(Bit16u addr, unsigned len);
  BX_SMF void    enter_protected_mode(void);
  BX_SMF void    enter_real_mode(void);
  BX_SMF void    parse_selector(Bit16u raw_selector, bx_selector_t *selector);
  BX_SMF void    parse_descriptor(Bit32u dword1, Bit32u dword2, bx_descriptor_t *temp);
  BX_SMF void    load_ldtr(bx_selector_t *selector, bx_descriptor_t *descriptor);
  BX_SMF void    load_cs(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl);
  BX_SMF void    load_ss(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl);
  BX_SMF void    fetch_raw_descriptor(bx_selector_t *selector,
                               Bit32u *dword1, Bit32u *dword2, Bit8u exception);
  BX_SMF void    load_seg_reg(bx_segment_reg_t *seg, Bit16u new_value);
  BX_SMF Boolean fetch_raw_descriptor2(bx_selector_t *selector,
                                Bit32u *dword1, Bit32u *dword2);
  BX_SMF void    push_16(Bit16u value16);
  BX_SMF void    push_32(Bit32u value32);
  BX_SMF void    pop_16(Bit16u *value16_ptr);
  BX_SMF void    pop_32(Bit32u *value32_ptr);
  BX_SMF Boolean can_push(bx_descriptor_t *descriptor, Bit32u esp, Bit32u bytes);
  BX_SMF Boolean can_pop(Bit32u bytes);
  BX_SMF void    sanity_checks(void);

  BX_SMF void    debug(Bit32u offset);

#if BX_X86_DEBUGGER
  // x86 hardware debug support
  BX_SMF Bit32u  hwdebug_compare(Bit32u laddr, unsigned size,
                                 unsigned opa, unsigned opb);
#endif

  BX_SMF BX_CPP_INLINE void set_CF(Boolean val);
  BX_SMF BX_CPP_INLINE void set_AF(Boolean val);
  BX_SMF BX_CPP_INLINE void set_ZF(Boolean val);
  BX_SMF BX_CPP_INLINE void set_SF(Boolean val);
  BX_SMF BX_CPP_INLINE void set_OF(Boolean val);
  BX_SMF BX_CPP_INLINE void set_PF(Boolean val);
  BX_SMF BX_CPP_INLINE void set_PF_base(Bit8u val);


  BX_SMF BX_CPP_INLINE void set_AX(Bit16u ax);
  BX_SMF BX_CPP_INLINE void set_BX(Bit16u bx);
  BX_SMF BX_CPP_INLINE void set_CX(Bit16u cx);
  BX_SMF BX_CPP_INLINE void set_DX(Bit16u dx);
  BX_SMF BX_CPP_INLINE void set_AL(Bit8u  al);
  BX_SMF BX_CPP_INLINE void set_AH(Bit8u  ah);
  BX_SMF BX_CPP_INLINE void set_BL(Bit8u  bl);
  BX_SMF BX_CPP_INLINE void set_BH(Bit8u  bh);
  BX_SMF BX_CPP_INLINE void set_CL(Bit8u  cl);
  BX_SMF BX_CPP_INLINE void set_CH(Bit8u  ch);
  BX_SMF BX_CPP_INLINE void set_DL(Bit8u  dl);
  BX_SMF BX_CPP_INLINE void set_DH(Bit8u  dh);

  BX_SMF BX_CPP_INLINE Bit8u get_AL(void);
  BX_SMF BX_CPP_INLINE Bit8u get_AH(void);
  BX_SMF BX_CPP_INLINE Bit8u get_BL(void);
  BX_SMF BX_CPP_INLINE Bit8u get_BH(void);
  BX_SMF BX_CPP_INLINE Bit8u get_CL(void);
  BX_SMF BX_CPP_INLINE Bit8u get_CH(void);
  BX_SMF BX_CPP_INLINE Bit8u get_DL(void);
  BX_SMF BX_CPP_INLINE Bit8u get_DH(void);

  BX_SMF BX_CPP_INLINE Bit16u get_AX(void);
  BX_SMF BX_CPP_INLINE Bit16u get_BX(void);
  BX_SMF BX_CPP_INLINE Bit16u get_CX(void);
  BX_SMF BX_CPP_INLINE Bit16u get_DX(void);

#if BX_CPU_LEVEL >= 2
  BX_SMF BX_CPP_INLINE Boolean real_mode(void);
#endif
#if BX_CPU_LEVEL >= 3
  BX_SMF BX_CPP_INLINE Boolean protected_mode(void);
  BX_SMF BX_CPP_INLINE Boolean v8086_mode(void);
#endif
#if BX_SUPPORT_APIC
  bx_local_apic_c local_apic;
  Boolean int_from_local_apic;
#endif
  };


#if BX_X86_DEBUGGER
#define BX_HWDebugInstruction   0x00
#define BX_HWDebugMemW          0x01
#define BX_HWDebugIO            0x02
#define BX_HWDebugMemRW         0x03
#endif


#if BX_SMP_PROCESSORS==1
// single processor simulation, so there's one of everything
extern BX_CPU_C       bx_cpu;
#else
// multiprocessor simulation, we need an array of cpus and memories
extern BX_CPU_C       *bx_cpu_array[BX_SMP_PROCESSORS];
#endif

#if defined(NEED_CPU_REG_SHORTCUTS)

BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_AX(Bit16u ax) { AX = ax; };
BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_BX(Bit16u bx) { BX = bx; };
BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_CX(Bit16u cx) { CX = cx; };
BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_DX(Bit16u dx) { DX = dx; };
BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_AL(Bit8u  al) { AL = al; };
BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_AH(Bit8u  ah) { AH = ah; };
BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_BL(Bit8u  bl) { BL = bl; };
BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_BH(Bit8u  bh) { BH = bh; };
BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_CL(Bit8u  cl) { CL = cl; };
BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_CH(Bit8u  ch) { CH = ch; };
BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_DL(Bit8u  dl) { DL = dl; };
BX_SMF BX_CPP_INLINE void BX_CPU_C_PREFIX set_DH(Bit8u  dh) { DH = dh; };

BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_AL(void) { return(AL); };
BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_AH(void) { return(AH); };
BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_BL(void) { return(BL); };
BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_BH(void) { return(BH); };
BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_CL(void) { return(CL); };
BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_CH(void) { return(CH); };
BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_DL(void) { return(DL); };
BX_SMF BX_CPP_INLINE Bit8u BX_CPU_C_PREFIX get_DH(void) { return(DH); };

BX_SMF BX_CPP_INLINE Bit16u BX_CPU_C_PREFIX get_AX(void) { return(AX); };
BX_SMF BX_CPP_INLINE Bit16u BX_CPU_C_PREFIX get_BX(void) { return(BX); };
BX_SMF BX_CPP_INLINE Bit16u BX_CPU_C_PREFIX get_CX(void) { return(CX); };
BX_SMF BX_CPP_INLINE Bit16u BX_CPU_C_PREFIX get_DX(void) { return(DX); };

#endif


#if BX_CPU_LEVEL >= 2
  BX_CPP_INLINE Boolean BX_CPU_C::real_mode(void) { return( !BX_CPU_THIS_PTR cr0.pe ); };
#endif

#if BX_CPU_LEVEL == 2
  BX_CPP_INLINE Boolean BX_CPU_C::protected_mode(void) { return( BX_CPU_THIS_PTR cr0.pe ); };
#endif


#if BX_CPU_LEVEL >= 3
#  if BX_SUPPORT_V8086_MODE
  BX_CPP_INLINE Boolean
BX_CPU_C::v8086_mode(void) {
  return(BX_CPU_THIS_PTR eflags.vm);
  }

  BX_CPP_INLINE Boolean
BX_CPU_C::protected_mode(void) {
  return(BX_CPU_THIS_PTR cr0.pe && !BX_CPU_THIS_PTR eflags.vm);
  }
#  else
  BX_CPP_INLINE Boolean
BX_CPU_C::v8086_mode(void) {
  return(0);
  }

  BX_CPP_INLINE Boolean
BX_CPU_C::protected_mode(void) {
  return(BX_CPU_THIS_PTR cr0.pe);
  }
#  endif
#endif

    BX_CPP_INLINE void
BX_CPU_C::set_CF(Boolean val) {
    BX_CPU_THIS_PTR lf_flags_status &= 0xfffff0;
    BX_CPU_THIS_PTR eflags.cf = val;
    }

    BX_CPP_INLINE void
BX_CPU_C::set_AF(Boolean val) {
    BX_CPU_THIS_PTR lf_flags_status &= 0xfff0ff;
    BX_CPU_THIS_PTR eflags.af = val;
    }

    BX_CPP_INLINE void
BX_CPU_C::set_ZF(Boolean val) {
    BX_CPU_THIS_PTR lf_flags_status &= 0xff0fff;
    BX_CPU_THIS_PTR eflags.zf = val;
    }

    BX_CPP_INLINE void
BX_CPU_C::set_SF(Boolean val) {
    BX_CPU_THIS_PTR lf_flags_status &= 0xf0ffff;
    BX_CPU_THIS_PTR eflags.sf = val;
    }


    BX_CPP_INLINE void
BX_CPU_C::set_OF(Boolean val) {
    BX_CPU_THIS_PTR lf_flags_status &= 0x0fffff;
    BX_CPU_THIS_PTR eflags.of = val;
    }

    BX_CPP_INLINE void
BX_CPU_C::set_PF(Boolean val) {
    BX_CPU_THIS_PTR lf_flags_status &= 0xffff0f;
    BX_CPU_THIS_PTR lf_pf = val;
    }

    BX_CPP_INLINE void
BX_CPU_C::set_PF_base(Bit8u val) {
    BX_CPU_THIS_PTR eflags.pf_byte = val;
    BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0xffff0f) | BX_LF_MASK_P;
    }


#define SET_FLAGS_OSZAPC_8(op1, op2, result, ins) { \
    BX_CPU_THIS_PTR oszapc.op1_8 = op1; \
    BX_CPU_THIS_PTR oszapc.op2_8 = op2; \
    BX_CPU_THIS_PTR oszapc.result_8 = result; \
    BX_CPU_THIS_PTR oszapc.instr = ins; \
    BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
    }

#define SET_FLAGS_OSZAPC_8_CF(op1, op2, result, ins, last_CF) { \
    BX_CPU_THIS_PTR oszapc.op1_8 = op1; \
    BX_CPU_THIS_PTR oszapc.op2_8 = op2; \
    BX_CPU_THIS_PTR oszapc.result_8 = result; \
    BX_CPU_THIS_PTR oszapc.instr = ins; \
    BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \
    BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
    }

#define SET_FLAGS_OSZAPC_16(op1, op2, result, ins) { \
    BX_CPU_THIS_PTR oszapc.op1_16 = op1; \
    BX_CPU_THIS_PTR oszapc.op2_16 = op2; \
    BX_CPU_THIS_PTR oszapc.result_16 = result; \
    BX_CPU_THIS_PTR oszapc.instr = ins; \
    BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
    }

#define SET_FLAGS_OSZAPC_16_CF(op1, op2, result, ins, last_CF) { \
    BX_CPU_THIS_PTR oszapc.op1_16 = op1; \
    BX_CPU_THIS_PTR oszapc.op2_16 = op2; \
    BX_CPU_THIS_PTR oszapc.result_16 = result; \
    BX_CPU_THIS_PTR oszapc.instr = ins; \
    BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \
    BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
    }

#define SET_FLAGS_OSZAPC_32(op1, op2, result, ins) { \
    BX_CPU_THIS_PTR oszapc.op1_32 = op1; \
    BX_CPU_THIS_PTR oszapc.op2_32 = op2; \
    BX_CPU_THIS_PTR oszapc.result_32 = result; \
    BX_CPU_THIS_PTR oszapc.instr = ins; \
    BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
    }

#define SET_FLAGS_OSZAPC_32_CF(op1, op2, result, ins, last_CF) { \
    BX_CPU_THIS_PTR oszapc.op1_32 = op1; \
    BX_CPU_THIS_PTR oszapc.op2_32 = op2; \
    BX_CPU_THIS_PTR oszapc.result_32 = result; \
    BX_CPU_THIS_PTR oszapc.instr = ins; \
    BX_CPU_THIS_PTR oszapc.prev_CF = last_CF; \
    BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
    }


#define SET_FLAGS_OSZAP_8(op1, op2, result, ins) { \
    BX_CPU_THIS_PTR oszap.op1_8 = op1; \
    BX_CPU_THIS_PTR oszap.op2_8 = op2; \
    BX_CPU_THIS_PTR oszap.result_8 = result; \
    BX_CPU_THIS_PTR oszap.instr = ins; \
    BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
    }

#define SET_FLAGS_OSZAP_16(op1, op2, result, ins) { \
    BX_CPU_THIS_PTR oszap.op1_16 = op1; \
    BX_CPU_THIS_PTR oszap.op2_16 = op2; \
    BX_CPU_THIS_PTR oszap.result_16 = result; \
    BX_CPU_THIS_PTR oszap.instr = ins; \
    BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
    }

#define SET_FLAGS_OSZAP_32(op1, op2, result, ins) { \
    BX_CPU_THIS_PTR oszap.op1_32 = op1; \
    BX_CPU_THIS_PTR oszap.op2_32 = op2; \
    BX_CPU_THIS_PTR oszap.result_32 = result; \
    BX_CPU_THIS_PTR oszap.instr = ins; \
    BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
    }

#define SET_FLAGS_OxxxxC(new_of, new_cf) { \
    BX_CPU_THIS_PTR eflags.of = (Boolean) new_of; \
    BX_CPU_THIS_PTR eflags.cf = (Boolean) new_cf; \
    BX_CPU_THIS_PTR lf_flags_status &= 0x0ffff0; \
    /* ??? could also mark other bits undefined here */ \
    }






extern const Boolean bx_parity_lookup[256];

#define BX_REPE_PREFIX  10
#define BX_REPNE_PREFIX 11



#define BX_TASK_FROM_JUMP         10
#define BX_TASK_FROM_CALL_OR_INT  11
#define BX_TASK_FROM_IRET         12


//
// For decoding...
//

// If the Immediate bit is set, the lowest 3 bits of the attribute
// specify which kinds of immediate data a required by instruction.

#define BxImmediate         0x000f // bits 3..0: any immediate
#define BxImmediate_Ib      0x0001 // 8 bits regardless
#define BxImmediate_Ib_SE   0x0002 // sign extend to OS size
#define BxImmediate_Iv      0x0003 // 16 or 32 depending on OS size
#define BxImmediate_Iw      0x0004 // 16 bits regardless
#define BxImmediate_IvIw    0x0005 // call_Ap
#define BxImmediate_IwIb    0x0006 // enter_IwIb
#define BxImmediate_O       0x0007 // mov_ALOb, mov_ObAL, mov_eAXOv, mov_OveAX
#define BxImmediate_BrOff8  0x0008 // Relative branch offset byte
#define BxImmediate_BrOff16 0x0009 // Relative branch offset word
#define BxImmediate_BrOff32 BxImmediate_Iv

#define BxPrefix          0x0010 // bit  4
#define BxAnother         0x0020 // bit  5
#define BxRepeatable      0x0040 // bit  6
#define BxRepeatableZF    0x0080 // bit  7
#define BxGroupN          0x0100 // bits 8
#define BxGroup1          BxGroupN
#define BxGroup2          BxGroupN
#define BxGroup3          BxGroupN
#define BxGroup4          BxGroupN
#define BxGroup5          BxGroupN
#define BxGroup6          BxGroupN
#define BxGroup7          BxGroupN
#define BxGroup8          BxGroupN
#define BxGroup9          BxGroupN
#define BxGroupa          BxGroupN

#if BX_DEBUGGER
typedef enum _show_flags {
      Flag_call = 0x1,
      Flag_ret = 0x2,
      Flag_int = 0x4,
      Flag_iret = 0x8,
      Flag_intsig = 0x10
} show_flags_t;
#endif

#endif  // #ifndef BX_CPU_H