1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
|
/////////////////////////////////////////////////////////////////////////
// $Id: ctrl_xfer_pro.cc,v 1.10 2001/11/10 23:00:55 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_CPU_LEVEL >= 2
void
BX_CPU_C::jump_protected(BxInstruction_t *i, Bit16u cs_raw, Bit32u disp32)
{
bx_descriptor_t descriptor;
bx_selector_t selector;
Bit32u dword1, dword2;
/* destination selector is not null else #GP(0) */
if ((cs_raw & 0xfffc) == 0) {
BX_PANIC(("jump_protected: cs == 0"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
parse_selector(cs_raw, &selector);
/* destination selector index is whithin its descriptor table
limits else #GP(selector) */
fetch_raw_descriptor(&selector, &dword1, &dword2,
BX_GP_EXCEPTION);
/* examine AR byte of destination selector for legal values: */
parse_descriptor(dword1, dword2, &descriptor);
if ( descriptor.segment ) {
if ( descriptor.u.segment.executable==0 ) {
BX_ERROR(("jump_protected: S=1: descriptor not executable"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// CASE: JUMP CONFORMING CODE SEGMENT:
if ( descriptor.u.segment.c_ed ) {
// descripor DPL must be <= CPL else #GP(selector)
if (descriptor.dpl > CPL) {
BX_ERROR(("jump_protected: dpl > CPL"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
/* segment must be PRESENT else #NP(selector) */
if (descriptor.p == 0) {
BX_ERROR(("jump_protected: p == 0"));
exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
/* instruction pointer must be in code segment limit else #GP(0) */
if (disp32 > descriptor.u.segment.limit_scaled) {
BX_PANIC(("jump_protected: IP > limit"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
/* Load CS:IP from destination pointer */
/* Load CS-cache with new segment descriptor */
/* CPL does not change for conforming code segment */
load_cs(&selector, &descriptor, CPL);
BX_CPU_THIS_PTR eip = disp32;
return;
}
// CASE: jump nonconforming code segment:
else {
/* RPL of destination selector must be <= CPL else #GP(selector) */
if (selector.rpl > CPL) {
BX_PANIC(("jump_protected: rpl > CPL"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// descriptor DPL must = CPL else #GP(selector)
if (descriptor.dpl != CPL) {
BX_ERROR(("jump_protected: dpl != CPL"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
/* segment must be PRESENT else #NP(selector) */
if (descriptor.p == 0) {
BX_ERROR(("jump_protected: p == 0"));
exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
/* IP must be in code segment limit else #GP(0) */
if (disp32 > descriptor.u.segment.limit_scaled) {
BX_PANIC(("jump_protected: IP > limit"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
/* load CS:IP from destination pointer */
/* load CS-cache with new segment descriptor */
/* set RPL field of CS register to CPL */
load_cs(&selector, &descriptor, CPL);
BX_CPU_THIS_PTR eip = disp32;
return;
}
BX_PANIC(("jump_protected: segment=1"));
}
else {
Bit16u raw_tss_selector;
bx_selector_t tss_selector, gate_cs_selector;
bx_descriptor_t tss_descriptor, gate_cs_descriptor;
Bit16u gate_cs_raw;
Bit32u temp_eIP;
switch ( descriptor.type ) {
case 1: // 286 available TSS
case 9: // 386 available TSS
//if ( descriptor.type==1 )
// BX_INFO(("jump to 286 TSS"));
//else
// BX_INFO(("jump to 386 TSS"));
// TSS DPL must be >= CPL, else #GP(TSS selector)
if (descriptor.dpl < CPL) {
BX_PANIC(("jump_protected: TSS.dpl < CPL"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// TSS DPL must be >= TSS selector RPL, else #GP(TSS selector)
if (descriptor.dpl < selector.rpl) {
BX_PANIC(("jump_protected: TSS.dpl < selector.rpl"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// descriptor AR byte must specify available TSS,
// else #GP(TSS selector) */
// this is taken care of by the 'default' case of switch statement */
// Task State Seg must be present, else #NP(TSS selector)
// checked in task_switch()
// SWITCH_TASKS _without_ nesting to TSS
task_switch(&selector, &descriptor,
BX_TASK_FROM_JUMP, dword1, dword2);
// IP must be in code seg limit, else #GP(0)
if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
BX_ERROR(("jump_protected: TSS.p == 0"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
return;
break;
case 3: // Busy 286 TSS
BX_PANIC(("jump_protected: JUMP to busy 286 TSS unsupported."));
return;
break;
case 4: // 286 call gate
BX_ERROR(("jump_protected: JUMP TO 286 CALL GATE:"));
// descriptor DPL must be >= CPL else #GP(gate selector)
if (descriptor.dpl < CPL) {
BX_ERROR(("jump_protected: gate.dpl < CPL"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// descriptor DPL must be >= gate selector RPL else #GP(gate selector)
if (descriptor.dpl < selector.rpl) {
BX_ERROR(("jump_protected: gate.dpl < selector.rpl"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// gate must be present else #NP(gate selector)
if (descriptor.p==0) {
BX_PANIC(("jump_protected: task gate.p == 0"));
exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// examine selector to code segment given in call gate descriptor
// selector must not be null, else #GP(0)
gate_cs_raw = descriptor.u.gate286.dest_selector;
if ( (gate_cs_raw & 0xfffc) == 0 ) {
BX_PANIC(("jump_protected: CS selector null"));
exception(BX_GP_EXCEPTION, 0x0000, 0);
}
parse_selector(gate_cs_raw, &gate_cs_selector);
// selector must be within its descriptor table limits else #GP(CS selector)
fetch_raw_descriptor(&gate_cs_selector, &dword1, &dword2,
BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &gate_cs_descriptor);
// descriptor AR byte must indicate code segment else #GP(CS selector)
if ( (gate_cs_descriptor.valid==0) ||
(gate_cs_descriptor.segment==0) ||
(gate_cs_descriptor.u.segment.executable==0) ) {
BX_ERROR(("jump_protected: AR byte: not code segment."));
exception(BX_GP_EXCEPTION, gate_cs_raw & 0xfffc, 0);
}
// if non-conforming, code segment descriptor DPL must = CPL else #GP(CS selector)
if (gate_cs_descriptor.u.segment.c_ed==0) {
if (gate_cs_descriptor.dpl != CPL) {
BX_ERROR(("jump_protected: non-conform: code seg des DPL != CPL."));
exception(BX_GP_EXCEPTION, gate_cs_raw & 0xfffc, 0);
}
}
// if conforming, then code segment descriptor DPL must <= CPL else #GP(CS selector)
else {
if (gate_cs_descriptor.dpl > CPL) {
BX_ERROR(("jump_protected: conform: code seg des DPL > CPL."));
exception(BX_GP_EXCEPTION, gate_cs_raw & 0xfffc, 0);
}
}
// code segment must be present else #NP(CS selector)
if (gate_cs_descriptor.p==0) {
BX_ERROR(("jump_protected: code seg not present."));
exception(BX_NP_EXCEPTION, gate_cs_raw & 0xfffc, 0);
}
// IP must be in code segment limit else #GP(0)
if ( descriptor.u.gate286.dest_offset >
gate_cs_descriptor.u.segment.limit_scaled ) {
BX_PANIC(("jump_protected: IP > limit"));
exception(BX_GP_EXCEPTION, 0x0000, 0);
}
// load CS:IP from call gate
// load CS cache with new code segment
// set rpl of CS to CPL
load_cs(&gate_cs_selector, &gate_cs_descriptor, CPL);
EIP = descriptor.u.gate286.dest_offset;
return;
break;
case 5: // task gate
//BX_INFO(("jump_pro: task gate"));
// gate descriptor DPL must be >= CPL else #GP(gate selector)
if (descriptor.dpl < CPL) {
BX_PANIC(("jump_protected: gate.dpl < CPL"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// gate descriptor DPL must be >= gate selector RPL
// else #GP(gate selector)
if (descriptor.dpl < selector.rpl) {
BX_PANIC(("jump_protected: gate.dpl < selector.rpl"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// task gate must be present else #NP(gate selector)
if (descriptor.p==0) {
BX_PANIC(("jump_protected: task gate.p == 0"));
exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// examine selector to TSS, given in Task Gate descriptor
// must specify global in the local/global bit else #GP(TSS selector)
raw_tss_selector = descriptor.u.taskgate.tss_selector;
parse_selector(raw_tss_selector, &tss_selector);
if (tss_selector.ti) {
BX_PANIC(("jump_protected: tss_selector.ti=1"));
exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
return;
}
// index must be within GDT limits else #GP(TSS selector)
fetch_raw_descriptor(&tss_selector, &dword1, &dword2,
BX_GP_EXCEPTION);
// descriptor AR byte must specify available TSS
// else #GP(TSS selector)
parse_descriptor(dword1, dword2, &tss_descriptor);
if (tss_descriptor.valid==0 || tss_descriptor.segment) {
BX_ERROR(("jump_protected: TSS selector points to bad TSS"));
exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
}
if (tss_descriptor.type!=9 && tss_descriptor.type!=1) {
BX_ERROR(("jump_protected: TSS selector points to bad TSS"));
exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
}
// task state segment must be present, else #NP(tss selector)
if (tss_descriptor.p==0) {
BX_PANIC(("jump_protected: task descriptor.p == 0"));
exception(BX_NP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
}
// SWITCH_TASKS _without_ nesting to TSS
task_switch(&tss_selector, &tss_descriptor,
BX_TASK_FROM_JUMP, dword1, dword2);
// eIP must be within code segment limit, else #GP(0)
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b)
temp_eIP = EIP;
else
temp_eIP = IP;
if (temp_eIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
BX_PANIC(("jump_protected: eIP > cs.limit"));
exception(BX_GP_EXCEPTION, 0x0000, 0);
}
break;
case 11: // Busy 386 TSS
BX_PANIC(("jump_protected: JUMP to busy 386 TSS unsupported."));
return;
break;
case 12: // 386 call gate
//BX_ERROR(("jump_protected: JUMP TO 386 CALL GATE:"));
// descriptor DPL must be >= CPL else #GP(gate selector)
if (descriptor.dpl < CPL) {
BX_PANIC(("jump_protected: gate.dpl < CPL"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// descriptor DPL must be >= gate selector RPL else #GP(gate selector)
if (descriptor.dpl < selector.rpl) {
BX_PANIC(("jump_protected: gate.dpl < selector.rpl"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// gate must be present else #NP(gate selector)
if (descriptor.p==0) {
BX_PANIC(("jump_protected: task gate.p == 0"));
exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// examine selector to code segment given in call gate descriptor
// selector must not be null, else #GP(0)
gate_cs_raw = descriptor.u.gate386.dest_selector;
if ( (gate_cs_raw & 0xfffc) == 0 ) {
BX_PANIC(("jump_protected: CS selector null"));
exception(BX_GP_EXCEPTION, 0x0000, 0);
}
parse_selector(gate_cs_raw, &gate_cs_selector);
// selector must be within its descriptor table limits else #GP(CS selector)
fetch_raw_descriptor(&gate_cs_selector, &dword1, &dword2,
BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &gate_cs_descriptor);
// descriptor AR byte must indicate code segment else #GP(CS selector)
if ( (gate_cs_descriptor.valid==0) ||
(gate_cs_descriptor.segment==0) ||
(gate_cs_descriptor.u.segment.executable==0) ) {
BX_PANIC(("jump_protected: AR byte: not code segment."));
exception(BX_GP_EXCEPTION, gate_cs_raw & 0xfffc, 0);
}
// if non-conforming, code segment descriptor DPL must = CPL else #GP(CS selector)
if (gate_cs_descriptor.u.segment.c_ed==0) {
if (gate_cs_descriptor.dpl != CPL) {
BX_PANIC(("jump_protected: non-conform: code seg des DPL != CPL."));
exception(BX_GP_EXCEPTION, gate_cs_raw & 0xfffc, 0);
}
}
// if conforming, then code segment descriptor DPL must <= CPL else #GP(CS selector)
else {
if (gate_cs_descriptor.dpl > CPL) {
BX_PANIC(("jump_protected: conform: code seg des DPL > CPL."));
exception(BX_GP_EXCEPTION, gate_cs_raw & 0xfffc, 0);
}
}
// code segment must be present else #NP(CS selector)
if (gate_cs_descriptor.p==0) {
BX_PANIC(("jump_protected: code seg not present."));
exception(BX_NP_EXCEPTION, gate_cs_raw & 0xfffc, 0);
}
// IP must be in code segment limit else #GP(0)
if ( descriptor.u.gate386.dest_offset >
gate_cs_descriptor.u.segment.limit_scaled ) {
BX_PANIC(("jump_protected: IP > limit"));
exception(BX_GP_EXCEPTION, 0x0000, 0);
}
// load CS:IP from call gate
// load CS cache with new code segment
// set rpl of CS to CPL
load_cs(&gate_cs_selector, &gate_cs_descriptor, CPL);
EIP = descriptor.u.gate386.dest_offset;
return;
break;
default:
BX_ERROR(("jump_protected: gate type %u unsupported",
(unsigned) descriptor.type));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
break;
}
}
return;
}
#endif /* if BX_CPU_LEVEL >= 2 */
#if BX_CPU_LEVEL >= 2
void
BX_CPU_C::call_protected(BxInstruction_t *i, Bit16u cs_raw, Bit32u disp32)
{
bx_selector_t cs_selector;
Bit32u dword1, dword2;
bx_descriptor_t cs_descriptor;
/* Opsize in effect for CALL is specified by the D bit for the
* segment containing dest & by any opsize prefix.
* For gate descriptor, deterermined by type of call gate:
* 4=16bit, 12=32bit
* count field: 16bit specifies #words, 32bit specifies #dwords
*/
/* new cs selector must not be null, else #GP(0) */
if ( (cs_raw & 0xfffc) == 0 ) {
BX_PANIC(("call_protected: CS selector null"));
exception(BX_GP_EXCEPTION, 0, 0);
}
parse_selector(cs_raw, &cs_selector);
// check new CS selector index within its descriptor limits,
// else #GP(new CS selector)
fetch_raw_descriptor(&cs_selector, &dword1, &dword2,
BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
// examine AR byte of selected descriptor for various legal values
if (cs_descriptor.valid==0) {
BX_PANIC(("call_protected: invalid CS descriptor"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
}
if (cs_descriptor.segment) { // normal segment
Bit32u temp_ESP;
if (cs_descriptor.u.segment.executable==0) {
BX_PANIC(("call_protected: non executable segment"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
if (cs_descriptor.u.segment.c_ed) { // conforming code segment
// DPL must be <= CPL, else #GP(code seg selector)
if (cs_descriptor.dpl > CPL) {
BX_PANIC(("call_protected: cs.dpl > CPL"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
}
else { // non-conforming code segment
// RPL must be <= CPL, else #GP(code seg selector)
// DPL must be = CPL, else #GP(code seg selector)
if ( (cs_selector.rpl > CPL) ||
(cs_descriptor.dpl != CPL) ) {
BX_PANIC(("call_protected: cs.rpl > CPL"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
}
}
// segment must be present, else #NP(code seg selector)
if (cs_descriptor.p == 0) {
BX_ERROR(("call_protected: cs.p = 0"));
exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0);
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_ESP = ESP;
else
temp_ESP = SP;
// stack must be big enough for return addr, else #SS(0)
if (i->os_32) {
if ( !can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, 8) ) {
BX_PANIC(("call_protected: stack doesn't have room for ret addr"));
exception(BX_SS_EXCEPTION, 0, 0);
}
// IP must be in code seg limit, else #GP(0)
if (disp32 > cs_descriptor.u.segment.limit_scaled) {
BX_PANIC(("call_protected: IP not in code seg limit"));
exception(BX_GP_EXCEPTION, 0, 0);
}
// push return address onto stack (CS padded to 32bits)
push_32((Bit32u) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_32(EIP);
}
else { // 16bit opsize
if ( !can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, 4) ) {
BX_PANIC(("call_protected: stack doesn't have room for ret addr"));
exception(BX_SS_EXCEPTION, 0, 0);
}
// IP must be in code seg limit, else #GP(0)
if (disp32 > cs_descriptor.u.segment.limit_scaled) {
BX_PANIC(("call_protected: IP not in code seg limit"));
exception(BX_GP_EXCEPTION, 0, 0);
}
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_16(IP);
}
// load code segment descriptor into CS cache
// load CS with new code segment selector
// set RPL of CS to CPL
// load eIP with new offset
load_cs(&cs_selector, &cs_descriptor, CPL);
BX_CPU_THIS_PTR eip = disp32;
if (cs_descriptor.u.segment.d_b==0)
BX_CPU_THIS_PTR eip &= 0x0000ffff;
return;
}
else { // gate & special segment
bx_descriptor_t gate_descriptor;
bx_selector_t gate_selector;
Bit32u new_EIP;
Bit16u dest_selector;
Bit16u raw_tss_selector;
bx_selector_t tss_selector;
bx_descriptor_t tss_descriptor;
Bit32u temp_eIP;
/* 1 level of indirection via gate, switch gate & cs */
gate_descriptor = cs_descriptor;
gate_selector = cs_selector;
switch (gate_descriptor.type) {
case 1: // available 16bit TSS
case 9: // available 32bit TSS
//if (gate_descriptor.type==1)
// BX_INFO(("call_protected: 16bit available TSS"));
//else
// BX_INFO(("call_protected: 32bit available TSS"));
// TSS DPL must be >= CPL, else #TS(TSS selector)
if (gate_descriptor.dpl < CPL) {
BX_PANIC(("call_protected: TSS.dpl < CPL"));
exception(BX_TS_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// TSS DPL must be >= TSS selector RPL, else #TS(TSS selector)
if (gate_descriptor.dpl < gate_selector.rpl) {
BX_PANIC(("call_protected: TSS.dpl < selector.rpl"));
exception(BX_TS_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// descriptor AR byte must specify available TSS,
// else #TS(TSS selector) */
// this is taken care of by the 'default' case of switch statement */
// Task State Seg must be present, else #NP(TSS selector)
// checked in task_switch()
// SWITCH_TASKS _without_ nesting to TSS
task_switch(&gate_selector, &gate_descriptor,
BX_TASK_FROM_CALL_OR_INT, dword1, dword2);
// IP must be in code seg limit, else #TS(0)
if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
BX_INFO(("call_protected: TSS.p == 0"));
exception(BX_TS_EXCEPTION, 0, 0);
return;
}
return;
break;
case 5: // TASK GATE
//BX_INFO(("call_protected: task gate"));
// gate descriptor DPL must be >= CPL else #TS(gate selector)
if (gate_descriptor.dpl < CPL) {
BX_PANIC(("call_protected: gate.dpl < CPL"));
exception(BX_TS_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// gate descriptor DPL must be >= gate selector RPL
// else #TS(gate selector)
if (gate_descriptor.dpl < gate_selector.rpl) {
BX_PANIC(("call_protected: gate.dpl < selector.rpl"));
exception(BX_TS_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// task gate must be present else #NP(gate selector)
if (gate_descriptor.p==0) {
BX_PANIC(("call_protected: task gate.p == 0"));
exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0);
return;
}
// examine selector to TSS, given in Task Gate descriptor
// must specify global in the local/global bit else #TS(TSS selector)
raw_tss_selector = gate_descriptor.u.taskgate.tss_selector;
parse_selector(raw_tss_selector, &tss_selector);
if (tss_selector.ti) {
BX_PANIC(("call_protected: tss_selector.ti=1"));
exception(BX_TS_EXCEPTION, raw_tss_selector & 0xfffc, 0);
return;
}
// index must be within GDT limits else #TS(TSS selector)
fetch_raw_descriptor(&tss_selector, &dword1, &dword2,
BX_TS_EXCEPTION);
// descriptor AR byte must specify available TSS
// else #TS(TSS selector)
parse_descriptor(dword1, dword2, &tss_descriptor);
if (tss_descriptor.valid==0 || tss_descriptor.segment) {
BX_PANIC(("call_protected: TSS selector points to bad TSS"));
exception(BX_TS_EXCEPTION, raw_tss_selector & 0xfffc, 0);
}
if (tss_descriptor.type!=9 && tss_descriptor.type!=1) {
BX_PANIC(("call_protected: TSS selector points to bad TSS"));
exception(BX_TS_EXCEPTION, raw_tss_selector & 0xfffc, 0);
}
// task state segment must be present, else #NP(tss selector)
if (tss_descriptor.p==0) {
BX_PANIC(("call_protected: task descriptor.p == 0"));
exception(BX_NP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
}
// SWITCH_TASKS without nesting to TSS
task_switch(&tss_selector, &tss_descriptor,
BX_TASK_FROM_CALL_OR_INT, dword1, dword2);
// eIP must be within code segment limit, else #TS(0)
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b)
temp_eIP = EIP;
else
temp_eIP = IP;
if (temp_eIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
BX_PANIC(("call_protected: eIP > cs.limit"));
exception(BX_TS_EXCEPTION, 0x0000, 0);
}
return;
break;
case 4: // 16bit CALL GATE
case 12: // 32bit CALL GATE
//if (gate_descriptor.type==4)
// BX_INFO(("CALL: 16bit call gate"));
//else
// BX_INFO(("CALL: 32bit call gate"));
// call gate DPL must be >= CPL, else #GP(call gate selector)
// call gate DPL must be >= RPL, else #GP(call gate selector)
if ( (gate_descriptor.dpl < CPL) ||
(gate_descriptor.dpl < gate_selector.rpl) ) {
BX_PANIC(("call_protected: DPL < CPL or RPL"));
exception(BX_GP_EXCEPTION, gate_selector.value & 0xfffc, 0);
}
// call gate must be present, else #NP(call gate selector)
if (gate_descriptor.p==0) {
BX_PANIC(("call_protected: not present"));
exception(BX_NP_EXCEPTION, gate_selector.value & 0xfffc, 0);
}
// examine code segment selector in call gate descriptor
if (gate_descriptor.type==4) {
dest_selector = gate_descriptor.u.gate286.dest_selector;
new_EIP = gate_descriptor.u.gate286.dest_offset;
}
else {
dest_selector = gate_descriptor.u.gate386.dest_selector;
new_EIP = gate_descriptor.u.gate386.dest_offset;
}
// selector must not be null else #GP(0)
if ( (dest_selector & 0xfffc) == 0 ) {
BX_PANIC(("call_protected: selector in gate null"));
exception(BX_GP_EXCEPTION, 0, 0);
}
parse_selector(dest_selector, &cs_selector);
// selector must be within its descriptor table limits,
// else #GP(code segment selector)
fetch_raw_descriptor(&cs_selector, &dword1, &dword2,
BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
// AR byte of selected descriptor must indicate code segment,
// else #GP(code segment selector)
// DPL of selected descriptor must be <= CPL,
// else #GP(code segment selector)
if (cs_descriptor.valid==0 ||
cs_descriptor.segment==0 ||
cs_descriptor.u.segment.executable==0 ||
cs_descriptor.dpl > CPL) {
BX_PANIC(("call_protected: selected desciptor not code"));
exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0);
}
// CALL GATE TO MORE PRIVILEGE
// if non-conforming code segment and DPL < CPL then
// ??? use gate_descriptor.dpl or cs_descriptor.dpl ???
if ( (cs_descriptor.u.segment.c_ed==0) &&
(cs_descriptor.dpl < CPL) ) {
Bit16u SS_for_cpl_x;
Bit32u ESP_for_cpl_x;
bx_selector_t ss_selector;
bx_descriptor_t ss_descriptor;
unsigned room_needed;
Bit8u param_count;
Bit16u return_SS, return_CS;
Bit32u return_ESP, return_EIP;
Bit32u return_ss_base;
unsigned i;
Bit16u parameter_word[32];
Bit32u parameter_dword[32];
Bit32u temp_ESP;
//BX_INFO(("CALL: Call Gate: to more priviliged level"));
// get new SS selector for new privilege level from TSS
get_SS_ESP_from_TSS(cs_descriptor.dpl,
&SS_for_cpl_x, &ESP_for_cpl_x);
/* ??? use dpl or rpl ??? */
// check selector & descriptor for new SS:
// selector must not be null, else #TS(0)
if ( (SS_for_cpl_x & 0xfffc) == 0 ) {
BX_PANIC(("call_protected: new SS null"));
exception(BX_TS_EXCEPTION, 0, 0);
return;
}
// selector index must be within its descriptor table limits,
// else #TS(SS selector)
parse_selector(SS_for_cpl_x, &ss_selector);
fetch_raw_descriptor(&ss_selector, &dword1, &dword2,
BX_TS_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
// selector's RPL must equal DPL of code segment,
// else #TS(SS selector)
if (ss_selector.rpl != cs_descriptor.dpl) {
BX_PANIC(("call_protected: SS selector.rpl != CS descr.dpl"));
exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
return;
}
// stack segment DPL must equal DPL of code segment,
// else #TS(SS selector)
if (ss_descriptor.dpl != cs_descriptor.dpl) {
BX_PANIC(("call_protected: SS descr.rpl != CS descr.dpl"));
exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
return;
}
// descriptor must indicate writable data segment,
// else #TS(SS selector)
if (ss_descriptor.valid==0 ||
ss_descriptor.segment==0 ||
ss_descriptor.u.segment.executable ||
ss_descriptor.u.segment.r_w==0) {
BX_INFO(("call_protected: ss descriptor not writable data seg"));
exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
return;
}
// segment must be present, else #SS(SS selector)
if (ss_descriptor.p==0) {
BX_PANIC(("call_protected: ss descriptor not present."));
exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
return;
}
if ( cs_descriptor.u.segment.d_b )
// new stack must have room for parameters plus 16 bytes
room_needed = 16;
else
// new stack must have room for parameters plus 8 bytes
room_needed = 8;
if (gate_descriptor.type==4) {
// get word count from call gate, mask to 5 bits
param_count = gate_descriptor.u.gate286.word_count & 0x1f;
room_needed += param_count*2;
}
else {
// get word count from call gate, mask to 5 bits
param_count = gate_descriptor.u.gate386.dword_count & 0x1f;
room_needed += param_count*4;
}
// new stack must have room for parameters plus return info
// else #SS(SS selector)
if ( !can_push(&ss_descriptor, ESP_for_cpl_x, room_needed) ) {
BX_INFO(("call_protected: stack doesn't have room"));
exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
return;
}
// new eIP must be in code segment limit else #GP(0)
if ( new_EIP > cs_descriptor.u.segment.limit_scaled ) {
BX_PANIC(("call_protected: IP not within CS limits"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
// save return SS:eSP to be pushed on new stack
return_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
return_ESP = ESP;
else
return_ESP = SP;
return_ss_base = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base;
// save return CS:eIP to be pushed on new stack
return_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
if ( cs_descriptor.u.segment.d_b )
return_EIP = EIP;
else
return_EIP = IP;
if (gate_descriptor.type==4) {
for (i=0; i<param_count; i++) {
access_linear(return_ss_base + return_ESP + i*2,
2, 0, BX_READ, ¶meter_word[i]);
}
}
else {
for (i=0; i<param_count; i++) {
access_linear(return_ss_base + return_ESP + i*4,
4, 0, BX_READ, ¶meter_dword[i]);
}
}
/* load new SS:SP value from TSS */
/* load SS descriptor */
load_ss(&ss_selector, &ss_descriptor, ss_descriptor.dpl);
if (ss_descriptor.u.segment.d_b)
ESP = ESP_for_cpl_x;
else
SP = (Bit16u) ESP_for_cpl_x;
/* load new CS:IP value from gate */
/* load CS descriptor */
/* set CPL to stack segment DPL */
/* set RPL of CS to CPL */
load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);
EIP = new_EIP;
// push pointer of old stack onto new stack
if (gate_descriptor.type==4) {
push_16(return_SS);
push_16((Bit16u) return_ESP);
}
else {
push_32(return_SS);
push_32(return_ESP);
}
/* get word count from call gate, mask to 5 bits */
/* copy parameters from old stack onto new stack */
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_ESP = ESP;
else
temp_ESP = SP;
if (gate_descriptor.type==4) {
for (i=param_count; i>0; i--) {
push_16(parameter_word[i-1]);
//access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + i*2,
// 2, 0, BX_WRITE, ¶meter_word[i]);
}
}
else {
for (i=param_count; i>0; i--) {
push_32(parameter_dword[i-1]);
//access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + i*4,
// 4, 0, BX_WRITE, ¶meter_dword[i]);
}
}
// push return address onto new stack
if (gate_descriptor.type==4) {
push_16(return_CS);
push_16((Bit16u) return_EIP);
}
else {
push_32(return_CS);
push_32(return_EIP);
}
return;
}
// CALL GATE TO SAME PRIVILEGE
else {
Bit32u temp_ESP;
//BX_INFO(("CALL: Call Gate: to same priviliged level"));
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_ESP = ESP;
else
temp_ESP = SP;
if (gate_descriptor.type==12) {
//if (i->os_32) {}
// stack must room for 8-byte return address (2 are padding)
// else #SS(0)
if ( !can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, 8) ) {
BX_PANIC(("call_protected: stack doesn't have room for 8 bytes"));
exception(BX_SS_EXCEPTION, 0, 0);
}
}
else {
// stack must room for 4-byte return address
// else #SS(0)
if ( !can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, 4) ) {
BX_PANIC(("call_protected: stack doesn't have room for 4 bytes"));
exception(BX_SS_EXCEPTION, 0, 0);
}
}
// EIP must be within code segment limit, else #GP(0)
if ( new_EIP > cs_descriptor.u.segment.limit_scaled ) {
BX_PANIC(("call_protected: IP not within code segment limits"));
exception(BX_GP_EXCEPTION, 0, 0);
}
if (gate_descriptor.type==12) {
// push return address onto stack
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_32(EIP);
}
else {
// push return address onto stack
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_16(IP);
}
// load CS:EIP from gate
// load code segment descriptor into CS register
// set RPL of CS to CPL
load_cs(&cs_selector, &cs_descriptor, CPL);
EIP = new_EIP;
return;
}
BX_PANIC(("call_protected: call gate: should not get here"));
return;
default:
BX_PANIC(("call_protected: type = %d",
(unsigned) cs_descriptor.type));
return;
}
BX_PANIC(("call_protected: gate segment unfinished"));
}
BX_PANIC(("call_protected: shouldn't get here!"));
return;
}
#endif /* 286+ */
#if BX_CPU_LEVEL >= 2
void
BX_CPU_C::return_protected(BxInstruction_t *i, Bit16u pop_bytes)
{
Bit16u raw_cs_selector, raw_ss_selector;
bx_selector_t cs_selector, ss_selector;
bx_descriptor_t cs_descriptor, ss_descriptor;
Bit32u stack_cs_offset, stack_param_offset;
Bit32u return_EIP, return_ESP, temp_ESP;
Bit32u dword1, dword2;
Bit16u return_IP;
/* + 6+N*2: SS | +12+N*4: SS */
/* + 4+N*2: SP | + 8+N*4: ESP */
/* parm N | + parm N */
/* parm 3 | + parm 3 */
/* parm 2 | + parm 2 */
/* parm 1 | + 8: parm 1 */
/* + 2: CS | + 4: CS */
/* + 0: IP | + 0: EIP */
#if BX_CPU_LEVEL >= 3
if ( i->os_32 ) {
/* operand size=32: third word on stack must be within stack limits,
* else #SS(0); */
if (!can_pop(6)) {
BX_PANIC(("return_protected: 3rd word not in stack limits"));
/* #SS(0) */
return;
}
stack_cs_offset = 4;
stack_param_offset = 8;
}
else
#endif
{
/* operand size=16: second word on stack must be within stack limits,
* else #SS(0);
*/
if ( !can_pop(4) ) {
BX_PANIC(("return_protected: 2nd word not in stack limits"));
/* #SS(0) */
return;
}
stack_cs_offset = 2;
stack_param_offset = 4;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_ESP = ESP;
else temp_ESP = SP;
// return selector RPL must be >= CPL, else #GP(return selector)
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP +
stack_cs_offset, 2, CPL==3, BX_READ, &raw_cs_selector);
parse_selector(raw_cs_selector, &cs_selector);
if ( cs_selector.rpl < CPL ) {
BX_ERROR(("return_protected: CS.rpl < CPL"));
BX_ERROR((" CS.rpl=%u CPL=%u", (unsigned) cs_selector.rpl,
(unsigned) CPL));
exception(BX_GP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
return;
}
// if return selector RPL == CPL then
// RETURN TO SAME LEVEL
if ( cs_selector.rpl == CPL ) {
//BX_INFO(("return: to same level %04x:%08x",
// BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
// BX_CPU_THIS_PTR prev_eip));
// return selector must be non-null, else #GP(0)
if ( (raw_cs_selector & 0xfffc) == 0 ) {
BX_PANIC(("return_protected: CS null"));
/* #GP(0) */
return;
}
// selector index must be within its descriptor table limits,
// else #GP(selector)
fetch_raw_descriptor(&cs_selector, &dword1, &dword2,
BX_GP_EXCEPTION);
// descriptor AR byte must indicate code segment, else #GP(selector)
parse_descriptor(dword1, dword2, &cs_descriptor);
if (cs_descriptor.valid==0 ||
cs_descriptor.segment==0 ||
cs_descriptor.u.segment.executable==0) {
BX_INFO(("return_protected: same: AR byte not code"));
exception(BX_GP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
}
// if non-conforming then code segment DPL must = CPL,
// else #GP(selector)
if ((cs_descriptor.u.segment.c_ed==0) && (cs_descriptor.dpl!=CPL)) {
BX_PANIC(("return_protected: non-conforming, DPL!=CPL"));
/* #GP(selector) */
return;
}
// if conforming then code segment DPL must be <= CPL,
// else #GP(selector)
if (cs_descriptor.u.segment.c_ed && (cs_descriptor.dpl>CPL)) {
BX_INFO(("return_protected: conforming, DPL>CPL"));
exception(BX_GP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
}
// code segment must be present, else #NP(selector)
if (cs_descriptor.p==0) {
BX_ERROR(("return_protected: not present"));
exception(BX_NP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
return;
}
// top word on stack must be within stack limits, else #SS(0)
if ( !can_pop(stack_param_offset + pop_bytes) ) {
BX_PANIC(("return_protected: top word not in stack limits"));
/* #SS(0) */
return;
}
// eIP must be in code segment limit, else #GP(0)
#if BX_CPU_LEVEL >= 3
if (i->os_32) {
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 0,
4, CPL==3, BX_READ, &return_EIP);
}
else
#endif
{
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 0,
2, CPL==3, BX_READ, &return_IP);
return_EIP = return_IP;
}
if ( return_EIP > cs_descriptor.u.segment.limit_scaled ) {
BX_PANIC(("return_protected: return IP > CS.limit"));
/* #GP(0) */
return;
}
// load CS:eIP from stack
// load CS register with descriptor
// increment eSP
load_cs(&cs_selector, &cs_descriptor, CPL);
BX_CPU_THIS_PTR eip = return_EIP;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
ESP += stack_param_offset + pop_bytes;
else
SP += stack_param_offset + pop_bytes;
return;
}
/* RETURN TO OUTER PRIVILEGE LEVEL */
else {
/* + 6+N*2: SS | +12+N*4: SS */
/* + 4+N*2: SP | + 8+N*4: ESP */
/* parm N | + parm N */
/* parm 3 | + parm 3 */
/* parm 2 | + parm 2 */
/* parm 1 | + 8: parm 1 */
/* + 2: CS | + 4: CS */
/* + 0: IP | + 0: EIP */
//BX_INFO(("return: to outer level %04x:%08x",
// BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
// BX_CPU_THIS_PTR prev_eip));
if (i->os_32) {
/* top 16+immediate bytes on stack must be within stack limits, else #SS(0) */
if ( !can_pop(16 + pop_bytes) ) {
BX_PANIC(("return_protected: 8 bytes not within stack limits"));
/* #SS(0) */
return;
}
}
else {
/* top 8+immediate bytes on stack must be within stack limits, else #SS(0) */
if ( !can_pop(8 + pop_bytes) ) {
BX_PANIC(("return_protected: 8 bytes not within stack limits"));
/* #SS(0) */
return;
}
}
/* examine return CS selector and associated descriptor */
/* selector must be non-null else #GP(0) */
if ( (raw_cs_selector & 0xfffc) == 0 ) {
BX_PANIC(("return_protected: CS selector null"));
/* #GP(0) */
return;
}
/* selector index must be within its descriptor table limits,
* else #GP(selector) */
fetch_raw_descriptor(&cs_selector, &dword1, &dword2,
BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
/* descriptor AR byte must indicate code segment else #GP(selector) */
if (cs_descriptor.valid==0 ||
cs_descriptor.segment==0 ||
cs_descriptor.u.segment.executable==0) {
BX_PANIC(("return_protected: AR byte not code"));
/* #GP(selector) */
return;
}
/* if non-conforming code then code seg DPL must equal return selector RPL
* else #GP(selector) */
if (cs_descriptor.u.segment.c_ed==0 &&
cs_descriptor.dpl!=cs_selector.rpl) {
BX_PANIC(("return_protected: non-conforming seg DPL != selector.rpl"));
/* #GP(selector) */
return;
}
/* if conforming then code segment DPL must be <= return selector RPL
* else #GP(selector) */
if (cs_descriptor.u.segment.c_ed &&
cs_descriptor.dpl>cs_selector.rpl) {
BX_PANIC(("return_protected: conforming seg DPL > selector.rpl"));
/* #GP(selector) */
return;
}
/* segment must be present else #NP(selector) */
if (cs_descriptor.p==0) {
BX_PANIC(("return_protected: segment not present"));
/* #NP(selector) */
return;
}
/* examine return SS selector and associated descriptor: */
if (i->os_32) {
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 12 + pop_bytes,
2, 0, BX_READ, &raw_ss_selector);
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 8 + pop_bytes,
4, 0, BX_READ, &return_ESP);
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 0,
4, 0, BX_READ, &return_EIP);
}
else {
Bit16u return_SP;
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 6 + pop_bytes,
2, 0, BX_READ, &raw_ss_selector);
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 4 + pop_bytes,
2, 0, BX_READ, &return_SP);
return_ESP = return_SP;
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 0,
2, 0, BX_READ, &return_IP);
return_EIP = return_IP;
}
/* selector must be non-null else #GP(0) */
if ( (raw_ss_selector & 0xfffc) == 0 ) {
BX_PANIC(("return_protected: SS selector null"));
/* #GP(0) */
return;
}
/* selector index must be within its descriptor table limits,
* else #GP(selector) */
parse_selector(raw_ss_selector, &ss_selector);
fetch_raw_descriptor(&ss_selector, &dword1, &dword2,
BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
/* selector RPL must = RPL of the return CS selector,
* else #GP(selector) */
if (ss_selector.rpl != cs_selector.rpl) {
BX_INFO(("return_protected: ss.rpl != cs.rpl"));
exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
return;
}
/* descriptor AR byte must indicate a writable data segment,
* else #GP(selector) */
if (ss_descriptor.valid==0 ||
ss_descriptor.segment==0 ||
ss_descriptor.u.segment.executable ||
ss_descriptor.u.segment.r_w==0) {
BX_PANIC(("return_protected: SS.AR byte not writable data"));
/* #GP(selector) */
return;
}
/* descriptor dpl must = RPL of the return CS selector,
* else #GP(selector) */
if (ss_descriptor.dpl != cs_selector.rpl) {
BX_PANIC(("return_protected: SS.dpl != cs.rpl"));
/* #GP(selector) */
return;
}
/* segment must be present else #SS(selector) */
if (ss_descriptor.p==0) {
BX_PANIC(("ss.p == 0"));
/* #NP(selector) */
return;
}
/* eIP must be in code segment limit, else #GP(0) */
if (return_EIP > cs_descriptor.u.segment.limit_scaled) {
BX_PANIC(("return_protected: eIP > cs.limit"));
/* #GP(0) */
return;
}
/* set CPL to RPL of return CS selector */
/* load CS:IP from stack */
/* set CS RPL to CPL */
/* load the CS-cache with return CS descriptor */
load_cs(&cs_selector, &cs_descriptor, cs_selector.rpl);
BX_CPU_THIS_PTR eip = return_EIP;
/* load SS:SP from stack */
/* load SS-cache with return SS descriptor */
load_ss(&ss_selector, &ss_descriptor, cs_selector.rpl);
if (ss_descriptor.u.segment.d_b)
ESP = return_ESP + pop_bytes;
else
SP = (Bit16u) return_ESP + pop_bytes;
/* check ES, DS, FS, GS for validity */
validate_seg_regs();
return;
}
return;
}
#endif
#if BX_CPU_LEVEL >= 2
void
BX_CPU_C::iret_protected(BxInstruction_t *i)
{
Bit16u raw_cs_selector, raw_ss_selector;
bx_selector_t cs_selector, ss_selector;
Bit32u dword1, dword2;
bx_descriptor_t cs_descriptor, ss_descriptor;
if (BX_CPU_THIS_PTR eflags.nt) { /* NT = 1: RETURN FROM NESTED TASK */
/* what's the deal with NT & VM ? */
Bit32u base32;
Bit16u raw_link_selector;
bx_selector_t link_selector;
bx_descriptor_t tss_descriptor;
if (BX_CPU_THIS_PTR eflags.vm)
BX_PANIC(("IRET: vm set?"));
// TASK_RETURN:
//BX_INFO(("IRET: nested task return"));
if (BX_CPU_THIS_PTR tr.cache.valid==0)
BX_PANIC(("IRET: TR not valid"));
if (BX_CPU_THIS_PTR tr.cache.type == 1)
base32 = BX_CPU_THIS_PTR tr.cache.u.tss286.base;
else if (BX_CPU_THIS_PTR tr.cache.type == 9)
base32 = BX_CPU_THIS_PTR tr.cache.u.tss386.base;
else {
BX_PANIC(("IRET: TR not valid"));
base32 = 0; // keep compiler happy
}
// examine back link selector in TSS addressed by current TR:
access_linear(base32 + 0, 2, 0, BX_READ, &raw_link_selector);
// must specify global, else #TS(new TSS selector)
parse_selector(raw_link_selector, &link_selector);
if (link_selector.ti) {
BX_PANIC(("iret: link selector.ti=1"));
exception(BX_TS_EXCEPTION, raw_link_selector & 0xfffc, 0);
}
// index must be within GDT limits, else #TS(new TSS selector)
fetch_raw_descriptor(&link_selector, &dword1, &dword2, BX_TS_EXCEPTION);
// AR byte must specify TSS, else #TS(new TSS selector)
// new TSS must be busy, else #TS(new TSS selector)
parse_descriptor(dword1, dword2, &tss_descriptor);
if (tss_descriptor.valid==0 || tss_descriptor.segment) {
BX_INFO(("iret: TSS selector points to bad TSS"));
exception(BX_TS_EXCEPTION, raw_link_selector & 0xfffc, 0);
}
if ((tss_descriptor.type!=11) && (tss_descriptor.type!=3)) {
BX_INFO(("iret: TSS selector points to bad TSS"));
exception(BX_TS_EXCEPTION, raw_link_selector & 0xfffc, 0);
}
// TSS must be present, else #NP(new TSS selector)
if (tss_descriptor.p==0) {
BX_INFO(("iret: task descriptor.p == 0"));
exception(BX_NP_EXCEPTION, raw_link_selector & 0xfffc, 0);
}
// switch tasks (without nesting) to TSS specified by back link selector
task_switch(&link_selector, &tss_descriptor,
BX_TASK_FROM_IRET, dword1, dword2);
// mark the task just abandoned as not busy
// eIP must be within code seg limit, else #GP(0)
if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
BX_PANIC(("iret: eIP > cs.limit"));
exception(BX_GP_EXCEPTION, 0x0000, 0);
}
return;
}
else { /* NT = 0: INTERRUPT RETURN ON STACK -or STACK_RETURN_TO_V86 */
Bit16u top_nbytes_same, top_nbytes_outer;
Bit32u cs_offset, ss_offset;
Bit32u new_eip, new_esp, temp_ESP, new_eflags;
Bit16u new_ip, new_sp, new_flags;
Bit8u prev_cpl;
/* 16bit opsize | 32bit opsize
* ==============================
* SS eSP+8 | SS eSP+16
* SP eSP+6 | ESP eSP+12
* -------------------------------
* FLAGS eSP+4 | EFLAGS eSP+8
* CS eSP+2 | CS eSP+4
* IP eSP+0 | EIP eSP+0
*/
if (i->os_32) {
top_nbytes_same = 12;
top_nbytes_outer = 20;
cs_offset = 4;
ss_offset = 16;
}
else {
top_nbytes_same = 6;
top_nbytes_outer = 10;
cs_offset = 2;
ss_offset = 8;
}
/* CS on stack must be within stack limits, else #SS(0) */
if ( !can_pop(top_nbytes_same) ) {
BX_PANIC(("iret: CS not within stack limits"));
exception(BX_SS_EXCEPTION, 0, 0);
return;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_ESP = ESP;
else
temp_ESP = SP;
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + cs_offset,
2, CPL==3, BX_READ, &raw_cs_selector);
if (i->os_32) {
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 0,
4, CPL==3, BX_READ, &new_eip);
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 8,
4, CPL==3, BX_READ, &new_eflags);
// if VM=1 in flags image on stack then STACK_RETURN_TO_V86
if (new_eflags & 0x00020000) {
if (CPL != 0)
BX_PANIC(("iret: VM set on stack, CPL!=0"));
BX_CPU_THIS_PTR stack_return_to_v86(new_eip, raw_cs_selector, new_eflags);
return;
}
}
else {
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 0,
2, CPL==3, BX_READ, &new_ip);
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 4,
2, CPL==3, BX_READ, &new_flags);
}
parse_selector(raw_cs_selector, &cs_selector);
// return CS selector must be non-null, else #GP(0)
if ( (raw_cs_selector & 0xfffc) == 0 ) {
BX_PANIC(("iret: return CS selector null"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
// selector index must be within descriptor table limits,
// else #GP(return selector)
fetch_raw_descriptor(&cs_selector, &dword1, &dword2,
BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
// AR byte must indicate code segment else #GP(return selector)
if ( cs_descriptor.valid==0 ||
cs_descriptor.segment==0 ||
cs_descriptor.u.segment.executable==0 ) {
BX_PANIC(("iret: AR byte indicated non code segment"));
exception(BX_GP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
return;
}
// return CS selector RPL must be >= CPL, else #GP(return selector)
if (cs_selector.rpl < CPL) {
BX_PANIC(("iret: return selector RPL < CPL"));
exception(BX_GP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
return;
}
// if return code seg descriptor is conforming
// and return code seg DPL > return code seg selector RPL
// then #GP(return selector)
if ( cs_descriptor.u.segment.c_ed &&
cs_descriptor.dpl > cs_selector.rpl ) {
BX_PANIC(("iret: conforming, DPL > cs_selector.RPL"));
exception(BX_GP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
return;
}
// if return code seg descriptor is non-conforming
// and return code seg DPL != return code seg selector RPL
// then #GP(return selector)
if ( cs_descriptor.u.segment.c_ed==0 &&
cs_descriptor.dpl != cs_selector.rpl ) {
BX_INFO(("(mch) iret: Return with DPL != RPL. #GP(selector)"));
exception(BX_GP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
return;
}
// segment must be present else #NP(return selector)
if ( cs_descriptor.p==0 ) {
BX_PANIC(("iret: not present"));
exception(BX_NP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
return;
}
if (cs_selector.rpl == CPL) { /* INTERRUPT RETURN TO SAME LEVEL */
/* top 6/12 bytes on stack must be within limits, else #SS(0) */
/* satisfied above */
if (i->os_32) {
/* return EIP must be in code segment limit else #GP(0) */
if ( new_eip > cs_descriptor.u.segment.limit_scaled ) {
BX_PANIC(("iret: IP > descriptor limit"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
/* load CS:EIP from stack */
/* load CS-cache with new code segment descriptor */
load_cs(&cs_selector, &cs_descriptor, CPL);
EIP = new_eip;
/* load EFLAGS with 3rd doubleword from stack */
write_eflags(new_eflags, CPL==0, CPL<=IOPL, 0, 1);
}
else {
/* return IP must be in code segment limit else #GP(0) */
if ( new_ip > cs_descriptor.u.segment.limit_scaled ) {
BX_PANIC(("iret: IP > descriptor limit"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
/* load CS:IP from stack */
/* load CS-cache with new code segment descriptor */
load_cs(&cs_selector, &cs_descriptor, CPL);
EIP = new_ip;
/* load flags with third word on stack */
write_flags(new_flags, CPL==0, CPL<=IOPL);
}
/* increment stack by 6/12 */
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
ESP += top_nbytes_same;
else
SP += top_nbytes_same;
return;
}
else { /* INTERRUPT RETURN TO OUTER PRIVILEGE LEVEL */
/* 16bit opsize | 32bit opsize
* ==============================
* SS eSP+8 | SS eSP+16
* SP eSP+6 | ESP eSP+12
* FLAGS eSP+4 | EFLAGS eSP+8
* CS eSP+2 | CS eSP+4
* IP eSP+0 | EIP eSP+0
*/
/* top 10/20 bytes on stack must be within limits else #SS(0) */
if ( !can_pop(top_nbytes_outer) ) {
BX_PANIC(("iret: top 10/20 bytes not within stack limits"));
exception(BX_SS_EXCEPTION, 0, 0);
return;
}
/* examine return SS selector and associated descriptor */
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + ss_offset,
2, 0, BX_READ, &raw_ss_selector);
/* selector must be non-null, else #GP(0) */
if ( (raw_ss_selector & 0xfffc) == 0 ) {
BX_PANIC(("iret: SS selector null"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
parse_selector(raw_ss_selector, &ss_selector);
/* selector RPL must = RPL of return CS selector,
* else #GP(SS selector) */
if ( ss_selector.rpl != cs_selector.rpl) {
BX_PANIC(("iret: SS.rpl != CS.rpl"));
exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
return;
}
/* selector index must be within its descriptor table limits,
* else #GP(SS selector) */
fetch_raw_descriptor(&ss_selector, &dword1, &dword2,
BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
/* AR byte must indicate a writable data segment,
* else #GP(SS selector) */
if ( ss_descriptor.valid==0 ||
ss_descriptor.segment==0 ||
ss_descriptor.u.segment.executable ||
ss_descriptor.u.segment.r_w==0 ) {
BX_PANIC(("iret: SS AR byte not writable code segment"));
exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
return;
}
/* stack segment DPL must equal the RPL of the return CS selector,
* else #GP(SS selector) */
if ( ss_descriptor.dpl != cs_selector.rpl ) {
BX_PANIC(("iret: SS.dpl != CS selector RPL"));
exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
return;
}
/* SS must be present, else #NP(SS selector) */
if ( ss_descriptor.p==0 ) {
BX_PANIC(("iret: SS not present!"));
exception(BX_NP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
return;
}
if (i->os_32) {
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 0,
4, 0, BX_READ, &new_eip);
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 8,
4, 0, BX_READ, &new_eflags);
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 12,
4, 0, BX_READ, &new_esp);
}
else {
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 0,
2, 0, BX_READ, &new_ip);
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 4,
2, 0, BX_READ, &new_flags);
access_linear(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP + 6,
2, 0, BX_READ, &new_sp);
new_eip = new_ip;
new_esp = new_sp;
new_eflags = new_flags;
}
/* EIP must be in code segment limit, else #GP(0) */
if ( new_eip > cs_descriptor.u.segment.limit_scaled ) {
BX_PANIC(("iret: IP > descriptor limit"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
/* load CS:EIP from stack */
/* load the CS-cache with CS descriptor */
/* set CPL to the RPL of the return CS selector */
prev_cpl = CPL; /* previous CPL */
load_cs(&cs_selector, &cs_descriptor, cs_selector.rpl);
BX_CPU_THIS_PTR eip = new_eip;
/* load flags from stack */
// perhaps I should always write_eflags(), thus zeroing
// out the upper 16bits of eflags for CS.D_B==0 ???
if (cs_descriptor.u.segment.d_b)
write_eflags(new_eflags, prev_cpl==0, prev_cpl<=IOPL, 0, 1);
else
write_flags((Bit16u) new_eflags, prev_cpl==0, prev_cpl<=IOPL);
// load SS:eSP from stack
// load the SS-cache with SS descriptor
load_ss(&ss_selector, &ss_descriptor, cs_selector.rpl);
if (ss_descriptor.u.segment.d_b)
ESP = new_esp;
else
SP = new_esp;
validate_seg_regs();
return;
}
}
BX_PANIC(("IRET: shouldn't get here!"));
}
#endif
#if BX_CPU_LEVEL >= 2
void
BX_CPU_C::validate_seg_regs(void)
{
if ( BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl<CPL ) {
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = 0;
}
if ( BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl<CPL ) {
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = 0;
}
if ( BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.dpl<CPL ) {
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = 0;
}
if ( BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.dpl<CPL ) {
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = 0;
}
}
#endif
|