File: paging.cc

package info (click to toggle)
bochs 1.4pre2-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 7,656 kB
  • ctags: 10,322
  • sloc: cpp: 66,880; ansic: 19,674; sh: 2,951; makefile: 2,183; asm: 2,110; yacc: 723; lex: 171; csh: 147; perl: 35
file content (964 lines) | stat: -rw-r--r-- 31,347 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
/////////////////////////////////////////////////////////////////////////
// $Id: paging.cc,v 1.8 2001/10/03 13:10:37 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2001  MandrakeSoft S.A.
//
//    MandrakeSoft S.A.
//    43, rue d'Aboukir
//    75002 Paris - France
//    http://www.linux-mandrake.com/
//    http://www.mandrakesoft.com/
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA



#if 0
  // - what should the reserved bits in the error code be ?
  // - move CR0.wp bit in lookup table to cache.  Then dump
  //   cache whenever it is changed.  This eliminates the
  //   extra calculation and shifting.
  // - change BX_READ and BX_WRITE to 0,1 ???
#endif



#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR

#if BX_USE_CPU_SMF
#define this (BX_CPU(0))
#endif




#if 0
// X86 Registers Which Affect Paging:
// ==================================
//
// CR0:
//   bit 31: PG, Paging (386+)
//   bit 16: WP, Write Protect (486+)
//     0: allow   supervisor level writes into user level RO pages
//     1: inhibit supervisor level writes into user level RO pages
//
// CR3:
//   bit 31..12: PDBR, Page Directory Base Register (386+)
//   bit      4: PCD, Page level Cache Disable (486+)
//     Controls caching of current page directory.  Affects only the processor's
//     internal caches (L1 and L2).
//     This flag ignored if paging disabled (PG=0) or cache disabled (CD=1).
//     Values:
//       0: Page Directory can be cached
//       1: Page Directory not cached
//   bit      3: PWT, Page level Writes Transparent (486+)
//     Controls write-through or write-back caching policy of current page
//     directory.  Affects only the processor's internal caches (L1 and L2).
//     This flag ignored if paging disabled (PG=0) or cache disabled (CD=1).
//     Values:
//       0: write-back caching enabled
//       1: write-through caching enabled
//
// CR4:
//   bit 4: PSE, Page Size Extension (Pentium+)
//     0: 4KByte pages (typical)
//     1: 4MByte or 2MByte pages
//   bit 5: PAE, Physical Address Extension (Pentium Pro+)
//     0: 32bit physical addresses
//     1: 36bit physical addresses
//   bit 7: PGE, Page Global Enable (Pentium Pro+)
//     The global page feature allows frequently used or shared pages
//     to be marked as global (PDE or PTE bit 8).  Global pages are
//     not flushed from TLB on a task switch or write to CR3.
//     Values:
//       0: disables global page feature
//       1: enables global page feature
//
//     Page size extention and physical address size extention matrix
//   ====================================================================
//   CR0.PG  CR4.PAE  CR4.PSE  PDE.PS | page size   physical address size
//   ====================================================================
//      0       X        X        X   |    -          paging disabled
//      1       0        0        X   |   4K              32bits
//      1       0        1        0   |   4K              32bits
//      1       0        1        1   |   4M              32bits
//      1       1        X        0   |   4K              36bits
//      1       1        X        1   |   2M              36bits



// Page Directory/Table Entry format when P=0:
// ===========================================
//
//   31.. 1: available
//        0: P=0

// Page Directory Entry format when P=1 (4-Kbyte Page Table):
// ==========================================================
//
//   31..12: page table base address
//   11.. 9: available
//        8: G (Pentium Pro+), 0=reserved otherwise
//        7: PS (Pentium+), 0=reserved otherwise
//        6: 0=reserved
//        5: A   (386+)
//        4: PCD (486+), 0=reserved otherwise
//        3: PWT (486+), 0=reserved otherwise
//        2: U/S (386+)
//        1: R/W (386+)
//        0: P=1 (386+)

// Page Table Entry format when P=1 (4-Kbyte Page):
// ================================================
//
//   31..12: page base address
//   11.. 9: available
//        8: G (Pentium Pro+), 0=reserved otherwise
//        7: 0=reserved
//        6: D   (386+)
//        5: A   (386+)
//        4: PCD (486+), 0=reserved otherwise
//        3: PWT (486+), 0=reserved otherwise
//        2: U/S (386+)
//        1: R/W (386+)
//        0: P=1 (386+)


// Page Directory/Table Entry Fields Defined:
// ==========================================
// G: Global flag
//   Indiciates a global page when set.  When a page is marked
//   global and the PGE flag in CR4 is set, the page table or
//   directory entry for the page is not invalidated in the TLB
//   when CR3 is loaded or a task switch occurs.  Only software
//   clears and sets this flag.  For page directory entries that
//   point to page tables, this flag is ignored and the global
//   characteristics of a page are set in the page table entries.
//
// PS: Page Size flag
//   Only used in page directory entries.  When PS=0, the page
//   size is 4KBytes and the page directory entry points to a
//   page table.  When PS=1, the page size is 4MBytes for
//   normal 32-bit addressing and 2MBytes if extended physical
//   addressing
//
// D: Dirty bit:
//   Processor sets the Dirty bit in the 2nd-level page table before a
//   write operation to an address mapped by that page table entry.
//   Dirty bit in directory entries is undefined.
//
// A: Accessed bit:
//   Processor sets the Accessed bits in both levels of page tables before
//   a read/write operation to a page.
//
// PCD: Page level Cache Disable
//   Controls caching of individual pages or page tables.
//   This allows a per-page based mechanism to disable caching, for
//   those pages which contained memory mapped IO, or otherwise
//   should not be cached.  Processor ignores this flag if paging
//   is not used (CR0.PG=0) or the cache disable bit is set (CR0.CD=1).
//   Values:
//     0: page or page table can be cached
//     1: page or page table is not cached (prevented)
//
// PWT: Page level Write Through
//   Controls the write-through or write-back caching policy of individual
//   pages or page tables.  Processor ignores this flag if paging
//   is not used (CR0.PG=0) or the cache disable bit is set (CR0.CD=1).
//   Values:
//     0: write-back caching
//     1: write-through caching
//
// U/S: User/Supervisor level
//   0: Supervisor level - for the OS, drivers, etc.
//   1: User level - application code and data
//
// R/W: Read/Write access
//   0: read-only access
//   1: read/write access
//
// P: Present
//   0: Not present
//   1: Present
// ==========================================



// Combined page directory/page table protection:
// ==============================================
// There is one column for the combined effect on a 386
// and one column for the combined effect on a 486+ CPU.
//
// +----------------+-----------------+----------------+----------------+
// |  Page Directory|     Page Table  |   Combined 386 |  Combined 486+ |
// |Privilege  Type | Privilege  Type | Privilege  Type| Privilege  Type|
// |----------------+-----------------+----------------+----------------|
// |User       R    | User       R    | User       R   | User       R   |
// |User       R    | User       RW   | User       R   | User       R   |
// |User       RW   | User       R    | User       R   | User       R   |
// |User       RW   | User       RW   | User       RW  | User       RW  |
// |User       R    | Supervisor R    | User       R   | Supervisor RW  |
// |User       R    | Supervisor RW   | User       R   | Supervisor RW  |
// |User       RW   | Supervisor R    | User       R   | Supervisor RW  |
// |User       RW   | Supervisor RW   | User       RW  | Supervisor RW  |
// |Supervisor R    | User       R    | User       R   | Supervisor RW  |
// |Supervisor R    | User       RW   | User       R   | Supervisor RW  |
// |Supervisor RW   | User       R    | User       R   | Supervisor RW  |
// |Supervisor RW   | User       RW   | User       RW  | Supervisor RW  |
// |Supervisor R    | Supervisor R    | Supervisor RW  | Supervisor RW  |
// |Supervisor R    | Supervisor RW   | Supervisor RW  | Supervisor RW  |
// |Supervisor RW   | Supervisor R    | Supervisor RW  | Supervisor RW  |
// |Supervisor RW   | Supervisor RW   | Supervisor RW  | Supervisor RW  |
// +----------------+-----------------+----------------+----------------+

// Page Fault Error Code Format:
// =============================
//
// bits 31..4: Reserved
// bit  3: RSVD (Pentium Pro+)
//   0: fault caused by reserved bits set to 1 in a page directory
//      when the PSE or PAE flags in CR4 are set to 1
//   1: fault was not caused by reserved bit violation
// bit  2: U/S (386+)
//   0: fault originated when in supervior mode
//   1: fault originated when in user mode
// bit  1: R/W (386+)
//   0: access causing the fault was a read
//   1: access causing the fault was a write
// bit  0: P (386+)
//   0: fault caused by a nonpresent page
//   1: fault caused by a page level protection violation


// Some paging related notes:
// ==========================
//
// - When the processor is running in supervisor level, all pages are both
//   readable and writable (write-protect ignored).  When running at user
//   level, only pages which belong to the user level are accessible;
//   read/write & read-only are readable, read/write are writable.
//
// - If the Present bit is 0 in either level of page table, an
//   access which uses these entries will generate a page fault.
//
// - (A)ccess bit is used to report read or write access to a page
//   or 2nd level page table.
//
// - (D)irty bit is used to report write access to a page.
//
// - Processor running at CPL=0,1,2 maps to U/S=0
//   Processor running at CPL=3     maps to U/S=1
//
// - Pentium+ processors have separate TLB's for data and instruction caches
// - Pentium Pro+ processors maintain separate 4K and 4M TLBs.
#endif




#if BX_SUPPORT_PAGING

#define BX_INVALID_TLB_ENTRY 0xffffffff

#if BX_CPU_LEVEL >= 4
#  define BX_PRIV_CHECK_SIZE 32
#else
#  define BX_PRIV_CHECK_SIZE 16
#endif

// The 'priv_check' array is used to decide if the current access
// has the proper paging permissions.  An index is formed, based
// on parameters such as the access type and level, the write protect
// flag and values cached in the TLB.  The format of the index into this
// array is:
//
//   |4 |3 |2 |1 |0 |
//   |wp|us|us|rw|rw|
//    |  |  |  |  |
//    |  |  |  |  +---> r/w of current access
//    |  |  +--+------> u/s,r/w combined of page dir & table (cached)
//    |  +------------> u/s of current access
//    +---------------> Current CR0.wp value
//
// The TLB cache holds the following info, from which the above
// fields can efficiently be extracted to facilitate a privilege check:
//
//   |4 |3 |2 |1 |0 |
//   |  |  |us|rw|D |
//          |  |  |
//          |  |  +---> Dirty bit from PTE (not used for privilege check)
//          +--+------> u/s,r/w combined of page dir & table
//
//
// The rest of the fields are taken from current access parameters
// and the write-protect field:
//
//   |4 |3 |2 |1 |0 |
//   |wp|us|  |  |rw|
//    |  |        |
//    |  |        +---> r/w of current access
//    |  |
//    |  +------------> u/s of current access
//    +---------------> Current CR0.wp value


static unsigned priv_check[BX_PRIV_CHECK_SIZE];



  void
BX_CPU_C::enable_paging(void)
{
  TLB_flush();
  if (bx_dbg.paging) BX_INFO(("enable_paging():"));
//BX_DEBUG(( "enable_paging():-------------------------" ));
}

  void
BX_CPU_C::disable_paging(void)
{
  TLB_flush();
  if (bx_dbg.paging) BX_INFO(("disable_paging():"));
}

  void
BX_CPU_C::CR3_change(Bit32u value32)
{
  if (bx_dbg.paging) {
    BX_INFO(("CR3_change(): flush TLB cache"));
    BX_INFO(("Page Directory Base %08x", (unsigned) value32));
    }

  // flush TLB even if value does not change
  TLB_flush();
  BX_CPU_THIS_PTR cr3 = value32;
}

  void
BX_CPU_C::TLB_init(void)
{
  // Called to initialize the TLB upon startup.
  // Unconditional initialization of all TLB entries.

#if BX_USE_TLB
  unsigned i;
  unsigned wp, us_combined, rw_combined, us_current, rw_current;

  for (i=0; i<BX_TLB_SIZE; i++) {
    BX_CPU_THIS_PTR TLB.entry[i].lpf = BX_INVALID_TLB_ENTRY;
    }

  //
  // Setup privilege check matrix.
  //

  for (i=0; i<BX_PRIV_CHECK_SIZE; i++) {
    wp          = (i & 0x10) >> 4;
    us_current  = (i & 0x08) >> 3;
    us_combined = (i & 0x04) >> 2;
    rw_combined = (i & 0x02) >> 1;
    rw_current  = (i & 0x01) >> 0;
    if (wp) { // when write protect on
      if (us_current > us_combined) // user access, supervisor page
        priv_check[i] = 0;
      else if (rw_current > rw_combined) // RW access, RO page
        priv_check[i] = 0;
      else
        priv_check[i] = 1;
      }
    else { // when write protect off
      if (us_current == 0) // Supervisor mode access, anything goes
        priv_check[i] = 1;
      else {
        // user mode access
        if (us_combined == 0) // user access, supervisor Page
          priv_check[i] = 0;
        else if (rw_current > rw_combined) // RW access, RO page
          priv_check[i] = 0;
        else
          priv_check[i] = 1;
        }
      }
    }

#endif  // #if BX_USE_TLB
}

  void
BX_CPU_C::TLB_flush(void)
{
#if BX_USE_TLB
  for (unsigned i=0; i<BX_TLB_SIZE; i++) {
    BX_CPU_THIS_PTR TLB.entry[i].lpf = BX_INVALID_TLB_ENTRY;
    }
#endif  // #if BX_USE_TLB

  invalidate_prefetch_q();
}

  void
BX_CPU_C::TLB_clear(void)
{
#if BX_USE_TLB
  for (unsigned i=0; i<BX_TLB_SIZE; i++) {
    BX_CPU_THIS_PTR TLB.entry[i].lpf = BX_INVALID_TLB_ENTRY;
    }
#endif  // #if BX_USE_TLB
}

  void
BX_CPU_C::INVLPG(BxInstruction_t* i)
{
#if BX_CPU_LEVEL >= 4
  invalidate_prefetch_q();

  // Operand must not be a register
  if (i->mod == 0xc0) {
    BX_INFO(("INVLPG: op is a register"));
    UndefinedOpcode(i);
    }
  // Can not be executed in v8086 mode
  if (v8086_mode())
    exception(BX_GP_EXCEPTION, 0, 0);

  // Protected instruction: CPL0 only
  if (BX_CPU_THIS_PTR cr0.pe) {
    if (CPL!=0) {
      BX_INFO(("INVLPG: CPL!=0"));
      exception(BX_GP_EXCEPTION, 0, 0);
      }
    }

#if BX_USE_TLB
  // Just clear the entire TLB, ugh!
  TLB_clear();
#endif // BX_USE_TLB
  BX_INSTR_TLB_CNTRL(BX_INSTR_INVLPG, 0);

#else
  // not supported on < 486
  UndefinedOpcode(i);
#endif
}


// Translate a linear address to a physical address, for
// a data access (D)

  Bit32u
BX_CPU_C::dtranslate_linear(Bit32u laddress, unsigned pl, unsigned rw)
{
  Bit32u   lpf, ppf, poffset, TLB_index, error_code, paddress;
  Bit32u   pde, pde_addr;
  Bit32u   pte, pte_addr;
  unsigned priv_index;
  Boolean  is_rw;
  Bit32u   combined_access, new_combined_access;

  lpf       = laddress & 0xfffff000; // linear page frame
  poffset   = laddress & 0x00000fff; // physical offset
  TLB_index = BX_TLB_INDEX_OF(lpf);


  is_rw = (rw>=BX_WRITE); // write or r-m-w

  if (BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf == lpf) {
    paddress        = BX_CPU_THIS_PTR TLB.entry[TLB_index].ppf | poffset;
    combined_access = BX_CPU_THIS_PTR TLB.entry[TLB_index].combined_access;
priv_check:
    priv_index =
#if BX_CPU_LEVEL >= 4
      (BX_CPU_THIS_PTR cr0.wp<<4) |  // bit 4
#endif
      (pl<<3) |                      // bit 3
      (combined_access & 0x06) |     // bit 2,1
      is_rw;                         // bit 0

    if (priv_check[priv_index]) {
      // Operation has proper privilege.
      // See if A/D bits need updating.
      //BW !! a read access does not do any updates, patched load
      new_combined_access = combined_access | is_rw;
      if (new_combined_access == combined_access) {
        // A/D bits already up-to-date
        return(paddress);
        }

      // A/D bits need updating first
      BX_CPU_THIS_PTR TLB.entry[TLB_index].combined_access = new_combined_access;
      pte_addr = BX_CPU_THIS_PTR TLB.entry[TLB_index].pte_addr;
      BX_CPU_THIS_PTR mem->read_physical(this, pte_addr, 4, &pte); // get old PTE
      pte |= 0x20 | (is_rw << 6);
      BX_CPU_THIS_PTR mem->write_physical(this, pte_addr, 4, &pte); // write updated PTE
      return(paddress);
      }

    // Protection violation
    error_code = 0xfffffff9; // RSVD=1, P=1
    goto page_fault_check;
    }

  // Get page dir entry
  pde_addr = (BX_CPU_THIS_PTR cr3 & 0xfffff000) |
             ((laddress & 0xffc00000) >> 20);
  BX_CPU_THIS_PTR mem->read_physical(this, pde_addr, 4, &pde);
  if ( !(pde & 0x01) ) {
    // Page Directory Entry NOT present
    error_code = 0xfffffff8; // RSVD=1, P=0
    goto page_fault_not_present;
    }

  // Get page table entry
  pte_addr = (pde & 0xfffff000) |
             ((laddress & 0x003ff000) >> 10);
  BX_CPU_THIS_PTR mem->read_physical(this, pte_addr, 4, &pte);

  // update PDE if A bit was not set before
  if ( !(pde & 0x20) ) {
    pde |= 0x20;
    BX_CPU_THIS_PTR mem->write_physical(this, pde_addr, 4, &pde);
    }

  if ( !(pte & 0x01) ) {
    // Page Table Entry NOT present
    error_code = 0xfffffff8; // RSVD=1, P=0
    goto page_fault_not_present;
    }

  //BW added: update PTE if A bit was not set before
  if ( !(pte & 0x20) ) {
    pte |= 0x20;
    BX_CPU_THIS_PTR mem->write_physical(this, pte_addr, 4, &pte);
    }

  // 386 and 486+ have different bahaviour for combining
  // privilege from PDE and PTE.
#if BX_CPU_LEVEL == 3
  combined_access  = (pde | pte) & 0x04; // U/S
  combined_access |= (pde & pte) & 0x02; // R/W
#else // 486+
  combined_access  = (pde & pte) & 0x06; // U/S and R/W
#endif

  ppf = pte & 0xfffff000;
  paddress = ppf | poffset;

  BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf = lpf;
  BX_CPU_THIS_PTR TLB.entry[TLB_index].ppf = ppf;
  BX_CPU_THIS_PTR TLB.entry[TLB_index].pte_addr = pte_addr;
  BX_CPU_THIS_PTR TLB.entry[TLB_index].combined_access = combined_access;
  goto priv_check;


page_fault_check:
// (mch) Define RMW_WRITES for old behavior
#if !defined(RMW_WRITES)
  /* (mch) Ok, so we know it's a page fault. It the access is a
     read-modify-write access we check if the read faults, if it
     does then we (optionally) do not set the write bit */
  if (rw == BX_RW) {
          priv_index =
#if BX_CPU_LEVEL >= 4
                  (BX_CPU_THIS_PTR cr0.wp<<4) |               // bit 4
#endif
                  (pl<<3) |                   // bit 3
                  (combined_access & 0x06) |  // bit 2,1
                  0;                      // bit 0 (read)
          if (!priv_check[priv_index]) {
                  // Fault on read
                  is_rw = 0;
          }
  }
#endif /* RMW_WRITES */
  goto page_fault_proper;

page_fault_not_present:
#if !defined(RMW_WRITES)
  if (rw == BX_RW)
          is_rw = 0;
#endif /* RMW_WRITES */
  goto page_fault_proper;

  page_fault_proper:
  error_code |= (pl << 2) | (is_rw << 1);
  BX_CPU_THIS_PTR cr2 = laddress;
  // invalidate entry - we can get away without maintaining A bit in PTE
  // if we don't maintain TLB entries without it set.
  BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf = BX_INVALID_TLB_ENTRY;
  exception(BX_PF_EXCEPTION, error_code, 0);
  return(0); // keep compiler happy
}


// Translate a linear address to a physical address, for
// an instruction fetch access (I)

  Bit32u
BX_CPU_C::itranslate_linear(Bit32u laddress, unsigned pl)
{
  Bit32u   lpf, ppf, poffset, TLB_index, error_code, paddress;
  Bit32u   pde, pde_addr;
  Bit32u   pte, pte_addr;
  unsigned priv_index;
  Bit32u   combined_access;

  lpf       = laddress & 0xfffff000; // linear page frame
  poffset   = laddress & 0x00000fff; // physical offset
  TLB_index = BX_TLB_INDEX_OF(lpf);


  if (BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf == lpf) {
    paddress        = BX_CPU_THIS_PTR TLB.entry[TLB_index].ppf | poffset;
    combined_access = BX_CPU_THIS_PTR TLB.entry[TLB_index].combined_access;
priv_check:
    priv_index =
#if BX_CPU_LEVEL >= 4
      (BX_CPU_THIS_PTR cr0.wp<<4) |   // bit 4
#endif
      (pl<<3) |                       // bit 3
      (combined_access & 0x06);       // bit 2,1
                                      // bit 0 == 0

    if (priv_check[priv_index]) {
      // Operation has proper privilege.
      return(paddress);
      }

    // Protection violation
    error_code = 0xfffffff9; // RSVD=1, P=1
    goto page_fault;
    }

  // Get page dir entry
  pde_addr = (BX_CPU_THIS_PTR cr3 & 0xfffff000) |
             ((laddress & 0xffc00000) >> 20);
  BX_CPU_THIS_PTR mem->read_physical(this, pde_addr, 4, &pde);
  if ( !(pde & 0x01) ) {
    // Page Directory Entry NOT present
    error_code = 0xfffffff8; // RSVD=1, P=0
    goto page_fault;
    }

  // Get page table entry
  pte_addr = (pde & 0xfffff000) |
             ((laddress & 0x003ff000) >> 10);
  BX_CPU_THIS_PTR mem->read_physical(this, pte_addr, 4, &pte);

  // update PDE if A bit was not set before
  if ( !(pde & 0x20) ) {
    pde |= 0x20;
    BX_CPU_THIS_PTR mem->write_physical(this, pde_addr, 4, &pde);
    }

  if ( !(pte & 0x01) ) {
    // Page Table Entry NOT present
    error_code = 0xfffffff8; // RSVD=1, P=0
    goto page_fault;
    }

  //BW added: update PTE if A bit was not set before
  if ( !(pte & 0x20) ) {
    pte |= 0x20;
    BX_CPU_THIS_PTR mem->write_physical(this, pte_addr, 4, &pte);
    }

  // 386 and 486+ have different bahaviour for combining
  // privilege from PDE and PTE.
#if BX_CPU_LEVEL == 3
  combined_access  = (pde | pte) & 0x04; // U/S
  combined_access |= (pde & pte) & 0x02; // R/W
#else // 486+
  combined_access  = (pde & pte) & 0x06; // U/S and R/W
#endif

  ppf = pte & 0xfffff000;
  paddress = ppf | poffset;

  BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf = lpf;
  BX_CPU_THIS_PTR TLB.entry[TLB_index].ppf = ppf;
  BX_CPU_THIS_PTR TLB.entry[TLB_index].pte_addr = pte_addr;
  BX_CPU_THIS_PTR TLB.entry[TLB_index].combined_access = combined_access;
  goto priv_check;


page_fault:
  error_code |= (pl << 2);
  BX_CPU_THIS_PTR cr2 = laddress;
  // invalidate entry - we can get away without maintaining A bit in PTE
  // if we don't maintain TLB entries without it set.
  BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf = BX_INVALID_TLB_ENTRY;
  exception(BX_PF_EXCEPTION, error_code, 0);
  return(0); // keep compiler happy
}


#if BX_DEBUGGER || BX_DISASM || BX_INSTRUMENTATION

  void
BX_CPU_C::dbg_xlate_linear2phy(Bit32u laddress, Bit32u *phy, Boolean *valid)
{
  Bit32u   lpf, ppf, poffset, TLB_index, paddress;
  Bit32u   pde, pde_addr;
  Bit32u   pte, pte_addr;

  if (BX_CPU_THIS_PTR cr0.pg == 0) {
    *phy = laddress;
    *valid = 1;
    return;
    }

  lpf       = laddress & 0xfffff000; // linear page frame
  poffset   = laddress & 0x00000fff; // physical offset
  TLB_index = BX_TLB_INDEX_OF(lpf);

  // see if page is in the TLB first
  if (BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf == lpf) {
    paddress        = BX_CPU_THIS_PTR TLB.entry[TLB_index].ppf | poffset;
    *phy = paddress;
    *valid = 1;
    return;
    }

  // Get page dir entry
  pde_addr = (BX_CPU_THIS_PTR cr3 & 0xfffff000) |
             ((laddress & 0xffc00000) >> 20);
  BX_CPU_THIS_PTR mem->read_physical(this, pde_addr, 4, &pde);
  if ( !(pde & 0x01) ) {
    // Page Directory Entry NOT present
    goto page_fault;
    }

  // Get page table entry
  pte_addr = (pde & 0xfffff000) |
             ((laddress & 0x003ff000) >> 10);
  BX_CPU_THIS_PTR mem->read_physical(this, pte_addr, 4, &pte);
  if ( !(pte & 0x01) ) {
    // Page Table Entry NOT present
    goto page_fault;
    }

  ppf = pte & 0xfffff000;
  paddress = ppf | poffset;

  *phy = paddress;
  *valid = 1;
  return;

page_fault:
  *phy = 0;
  *valid = 0;
  return;
}
#endif



  void
BX_CPU_C::access_linear(Bit32u laddress, unsigned length, unsigned pl,
    unsigned rw, void *data)
{
  Bit32u mod4096;
  unsigned xlate_rw;


#if BX_X86_DEBUGGER
  if ( BX_CPU_THIS_PTR dr7 & 0x000000ff ) {
    // Only compare debug registers if any breakpoints are enabled
    Bit32u dr6_bits;
    unsigned opa, opb;
    opa = BX_HWDebugMemRW; // Read or Write always compares vs 11b
    if (rw==BX_READ) // only compares vs 11b
      opb = opa;
    else // BX_WRITE or BX_RW; also compare vs 01b
      opb = BX_HWDebugMemW;
    dr6_bits = hwdebug_compare(laddress, length, opa, opb);
    if (dr6_bits) {
      BX_CPU_THIS_PTR debug_trap |= dr6_bits;
      BX_CPU_THIS_PTR async_event = 1;
      }
    }
#endif

  if (rw==BX_RW) {
    xlate_rw = BX_RW;
    rw = BX_READ;
    }
  else {
    xlate_rw = rw;
    }


  // perhaps put this check before all code which calls this function,
  // so we don't have to here

  if (BX_CPU_THIS_PTR cr0.pg) {
    /* check for reference across multiple pages */
    mod4096 = laddress & 0x00000fff;
    if ( (mod4096 + length) <= 4096 ) {
      // Bit32u paddress1;

      /* access within single page */
      BX_CPU_THIS_PTR address_xlation.paddress1 = dtranslate_linear(laddress, pl, xlate_rw);
      BX_CPU_THIS_PTR address_xlation.pages     = 1;

      if (rw == BX_READ) {
        BX_INSTR_LIN_READ(laddress, BX_CPU_THIS_PTR address_xlation.paddress1, length);
        BX_CPU_THIS_PTR mem->read_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1, length, data);
        }
      else {
        BX_INSTR_LIN_WRITE(laddress, BX_CPU_THIS_PTR address_xlation.paddress1, length);
        BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1, length, data);
        }
      return;
      }
    else {
      // access across 2 pages
      BX_CPU_THIS_PTR address_xlation.paddress1 = dtranslate_linear(laddress, pl, xlate_rw);
      BX_CPU_THIS_PTR address_xlation.len1      = 4096 - mod4096;
      BX_CPU_THIS_PTR address_xlation.len2      = length - BX_CPU_THIS_PTR address_xlation.len1;
      BX_CPU_THIS_PTR address_xlation.pages     = 2;

      BX_CPU_THIS_PTR address_xlation.paddress2 = dtranslate_linear(laddress + BX_CPU_THIS_PTR address_xlation.len1, pl, xlate_rw);

#ifdef BX_LITTLE_ENDIAN
      if (rw == BX_READ) {
        BX_INSTR_LIN_READ(laddress,
                          BX_CPU_THIS_PTR address_xlation.paddress1,
                          BX_CPU_THIS_PTR address_xlation.len1);
        BX_CPU_THIS_PTR mem->read_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1,
                             BX_CPU_THIS_PTR address_xlation.len1, data);
        BX_INSTR_LIN_READ(laddress + BX_CPU_THIS_PTR address_xlation.len1,
                          BX_CPU_THIS_PTR address_xlation.paddress2,
                          BX_CPU_THIS_PTR address_xlation.len2);
        BX_CPU_THIS_PTR mem->read_physical(this, BX_CPU_THIS_PTR address_xlation.paddress2,
                             BX_CPU_THIS_PTR address_xlation.len2,
                             ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
        }
      else {
        BX_INSTR_LIN_WRITE(laddress,
                           BX_CPU_THIS_PTR address_xlation.paddress1,
                           BX_CPU_THIS_PTR address_xlation.len1);
        BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1,
                              BX_CPU_THIS_PTR address_xlation.len1, data);
        BX_INSTR_LIN_WRITE(laddress + BX_CPU_THIS_PTR address_xlation.len1,
                          BX_CPU_THIS_PTR address_xlation.paddress2,
                          BX_CPU_THIS_PTR address_xlation.len2);
        BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress2,
                              BX_CPU_THIS_PTR address_xlation.len2,
                              ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
        }

#else // BX_BIG_ENDIAN
      if (rw == BX_READ) {
        BX_INSTR_LIN_READ(laddress,
                          BX_CPU_THIS_PTR address_xlation.paddress1,
                          BX_CPU_THIS_PTR address_xlation.len1);
        BX_CPU_THIS_PTR mem->read_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1,
                             BX_CPU_THIS_PTR address_xlation.len1,
                             ((Bit8u*)data) + (length - BX_CPU_THIS_PTR address_xlation.len1));
        BX_INSTR_LIN_READ(laddress + BX_CPU_THIS_PTR address_xlation.len1,
                          BX_CPU_THIS_PTR address_xlation.paddress2,
                          BX_CPU_THIS_PTR address_xlation.len2);
        BX_CPU_THIS_PTR mem->read_physical(this, BX_CPU_THIS_PTR address_xlation.paddress2,
                             BX_CPU_THIS_PTR address_xlation.len2, data);
        }
      else {
        BX_INSTR_LIN_WRITE(laddress,
                           BX_CPU_THIS_PTR address_xlation.paddress1,
                           BX_CPU_THIS_PTR address_xlation.len1);
        BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1,
                              BX_CPU_THIS_PTR address_xlation.len1,
                              ((Bit8u*)data) + (length - BX_CPU_THIS_PTR address_xlation.len1));
        BX_INSTR_LIN_WRITE(laddress + BX_CPU_THIS_PTR address_xlation.len1,
                          BX_CPU_THIS_PTR address_xlation.paddress2,
                          BX_CPU_THIS_PTR address_xlation.len2);
        BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress2,
                              BX_CPU_THIS_PTR address_xlation.len2, data);
        }
#endif

      return;
      }
    }
  else {
    // paging off, pass linear address thru to physical
    if (rw == BX_READ) {
      BX_INSTR_LIN_READ(laddress, laddress, length);
      BX_CPU_THIS_PTR mem->read_physical(this, laddress, length, data);
      }
    else {
      BX_INSTR_LIN_WRITE(laddress, laddress, length);
      BX_CPU_THIS_PTR mem->write_physical(this, laddress, length, data);
      }
    return;
    }
}








#else   // BX_SUPPORT_PAGING

// stub functions for non-support of paging
  void
BX_CPU_C::enable_paging(void)
{
  BX_PANIC(("enable_paging(): not implemented"));
}

  void
BX_CPU_C::disable_paging(void)
{
  BX_PANIC(("disable_paging() called"));
}

  void
BX_CPU_C::CR3_change(Bit32u value32)
{
  BX_INFO(("CR3_change(): flush TLB cache"));
  BX_INFO(("Page Directory Base %08x", (unsigned) value32));
}


  void
BX_CPU_C::access_linear(Bit32u laddress, unsigned length, unsigned pl,
    unsigned rw, void *data)
{
  /* perhaps put this check before all code which calls this function,
   * so we don't have to here
   */
  if (BX_CPU_THIS_PTR cr0.pg == 0) {
    if (rw == BX_READ)
      BX_CPU_THIS_PTR mem->read_physical(this, laddress, length, data);
    else
      BX_CPU_THIS_PTR mem->write_physical(this, laddress, length, data);
    return;
    }

  BX_PANIC(("access_linear: paging not supported"));
}

  void
BX_CPU_C::INVLPG(BxInstruction_t* i)
{}

#endif  // BX_SUPPORT_PAGING