File: proc_ctrl.cc

package info (click to toggle)
bochs 1.4pre2-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 7,656 kB
  • ctags: 10,322
  • sloc: cpp: 66,880; ansic: 19,674; sh: 2,951; makefile: 2,183; asm: 2,110; yacc: 723; lex: 171; csh: 147; perl: 35
file content (1263 lines) | stat: -rw-r--r-- 39,806 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
/////////////////////////////////////////////////////////////////////////
// $Id: proc_ctrl.cc,v 1.17 2001/11/18 16:32:40 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2001  MandrakeSoft S.A.
//
//    MandrakeSoft S.A.
//    43, rue d'Aboukir
//    75002 Paris - France
//    http://www.linux-mandrake.com/
//    http://www.mandrakesoft.com/
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA


#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR

#if BX_USE_CPU_SMF
#define this (BX_CPU(0))
#endif

  void
BX_CPU_C::UndefinedOpcode(BxInstruction_t *i)
{
  BX_DEBUG(("UndefinedOpcode: %02x causes exception 6",
              (unsigned) i->b1));
  exception(BX_UD_EXCEPTION, 0, 0);
}

  void
BX_CPU_C::NOP(BxInstruction_t *i)
{
}

  void
BX_CPU_C::HLT(BxInstruction_t *i)
{
  // hack to panic if HLT comes from BIOS
  if ( BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value == 0xf000 )
    BX_PANIC(("HALT instruction encountered in the BIOS ROM"));

  if (CPL!=0) {
    BX_INFO(("HLT(): CPL!=0"));
    exception(BX_GP_EXCEPTION, 0, 0);
    return;
    }

  if ( ! BX_CPU_THIS_PTR eflags.if_ ) {
    BX_INFO(("WARNING: HLT instruction with IF=0!"));
    }

  // stops instruction execution and places the processor in a
  // HALT state.  An enabled interrupt, NMI, or reset will resume
  // execution.  If interrupt (including NMI) is used to resume
  // execution after HLT, the saved CS:eIP points to instruction
  // following HLT.

  // artificial trap bit, why use another variable.
  BX_CPU_THIS_PTR debug_trap |= 0x80000000; // artificial trap
  BX_CPU_THIS_PTR async_event = 1; // so processor knows to check
  // Execution of this instruction completes.  The processor
  // will remain in a halt state until one of the above conditions
  // is met.

#if BX_USE_IDLE_HACK  
  bx_gui.sim_is_idle ();
#endif /* BX_USE_IDLE_HACK */  
}


  void
BX_CPU_C::CLTS(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
  BX_PANIC(("CLTS: not implemented for < 286"));
#else

  if (v8086_mode()) BX_PANIC(("clts: v8086 mode unsupported"));

  /* read errata file */
  // does CLTS also clear NT flag???

  // #GP(0) if CPL is not 0
  if (CPL!=0) {
    BX_INFO(("CLTS(): CPL!=0"));
    exception(BX_GP_EXCEPTION, 0, 0);
    return;
    }

  BX_CPU_THIS_PTR cr0.ts = 0;
  BX_CPU_THIS_PTR cr0.val32 &= ~0x08;
#endif
}

  void
BX_CPU_C::INVD(BxInstruction_t *i)
{
  BX_INFO(("---------------"));
  BX_INFO(("- INVD called -"));
  BX_INFO(("---------------"));

#if BX_CPU_LEVEL >= 4
  invalidate_prefetch_q();

  if (BX_CPU_THIS_PTR cr0.pe) {
    if (CPL!=0) {
      BX_INFO(("INVD: CPL!=0"));
      exception(BX_GP_EXCEPTION, 0, 0);
      }
    }
  BX_INSTR_CACHE_CNTRL(BX_INSTR_INVD);
#else
  UndefinedOpcode(i);
#endif
}

  void
BX_CPU_C::WBINVD(BxInstruction_t *i)
{
  BX_INFO(("WBINVD: (ignoring)"));

#if BX_CPU_LEVEL >= 4
  invalidate_prefetch_q();

  if (BX_CPU_THIS_PTR cr0.pe) {
    if (CPL!=0) {
      BX_INFO(("WBINVD: CPL!=0"));
      exception(BX_GP_EXCEPTION, 0, 0);
      }
    }
  BX_INSTR_CACHE_CNTRL(BX_INSTR_WBINVD);
#else
  UndefinedOpcode(i);
#endif
}

  void
BX_CPU_C::MOV_DdRd(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
  BX_PANIC(("MOV_DdRd: not supported on < 386"));
#else
  Bit32u val_32;

  if (v8086_mode()) BX_PANIC(("MOV_DdRd: v8086 mode unsupported"));

  /* NOTES:
   *   32bit operands always used
   *   r/m field specifies general register
   *   mod field should always be 11 binary
   *   reg field specifies which special register
   */

  if (i->mod != 0xc0) {
    BX_PANIC(("MOV_DdRd(): rm field not a register!"));
    }

  invalidate_prefetch_q();

  if (protected_mode() && CPL!=0) {
    BX_PANIC(("MOV_DdRd: CPL!=0"));
    /* #GP(0) if CPL is not 0 */
    exception(BX_GP_EXCEPTION, 0, 0);
    }

  val_32 = BX_READ_32BIT_REG(i->rm);
  if (bx_dbg.dreg)
    BX_INFO(("MOV_DdRd: DR[%u]=%08xh unhandled",
      (unsigned) i->nnn, (unsigned) val_32));

  switch (i->nnn) {
    case 0: // DR0
      BX_CPU_THIS_PTR dr0 = val_32;
      break;
    case 1: // DR1
      BX_CPU_THIS_PTR dr1 = val_32;
      break;
    case 2: // DR2
      BX_CPU_THIS_PTR dr2 = val_32;
      break;
    case 3: // DR3
      BX_CPU_THIS_PTR dr3 = val_32;
      break;

    case 4: // DR4
    case 6: // DR6
      // DR4 aliased to DR6 by default.  With Debug Extensions on,
      // access to DR4 causes #UD
#if BX_CPU_LEVEL >= 4
      if ( (i->nnn == 4) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) {
        // Debug extensions on
        BX_INFO(("MOV_DdRd: access to DR4 causes #UD"));
        UndefinedOpcode(i);
        }
#endif
#if BX_CPU_LEVEL <= 4
      // On 386/486 bit12 is settable
      BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) |
                            (val_32 & 0x0000f00f);
#else
      // On Pentium+, bit12 is always zero
      BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) |
                            (val_32 & 0x0000e00f);
#endif
      break;

    case 5: // DR5
    case 7: // DR7
      // Note: 486+ ignore GE and LE flags.  On the 386, exact
      // data breakpoint matching does not occur unless it is enabled
      // by setting the LE and/or GE flags.

      // DR5 aliased to DR7 by default.  With Debug Extensions on,
      // access to DR5 causes #UD
#if BX_CPU_LEVEL >= 4
      if ( (i->nnn == 5) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) {
        // Debug extensions (CR4.DE) on
        BX_INFO(("MOV_DdRd: access to DR5 causes #UD"));
        UndefinedOpcode(i);
        }
#endif
      // Some sanity checks...
      if ( val_32 & 0x00002000 ) {
        BX_PANIC(("MOV_DdRd: GD bit not supported yet"));
        // Note: processor clears GD upon entering debug exception
        // handler, to allow access to the debug registers
        }
      if ( (((val_32>>16) & 3)==2) ||
           (((val_32>>20) & 3)==2) ||
           (((val_32>>24) & 3)==2) ||
           (((val_32>>28) & 3)==2) ) {
        // IO breakpoints (10b) are not yet supported.
        BX_PANIC(("MOV_DdRd: write of %08x contains IO breakpoint",
          val_32));
        }
      if ( (((val_32>>18) & 3)==2) ||
           (((val_32>>22) & 3)==2) ||
           (((val_32>>26) & 3)==2) ||
           (((val_32>>30) & 3)==2) ) {
        // LEN0..3 contains undefined length specifier (10b)
        BX_PANIC(("MOV_DdRd: write of %08x contains undefined LENx",
          val_32));
        }
      if ( ((((val_32>>16) & 3)==0) && (((val_32>>18) & 3)!=0)) ||
           ((((val_32>>20) & 3)==0) && (((val_32>>22) & 3)!=0)) ||
           ((((val_32>>24) & 3)==0) && (((val_32>>26) & 3)!=0)) ||
           ((((val_32>>28) & 3)==0) && (((val_32>>30) & 3)!=0)) ) {
        // Instruction breakpoint with LENx not 00b (1-byte length)
        BX_PANIC(("MOV_DdRd: write of %08x, R/W=00b LEN!=00b",
          val_32));
        }
#if BX_CPU_LEVEL <= 4
      // 386/486: you can play with all the bits except b10 is always 1
      BX_CPU_THIS_PTR dr7 = val_32 | 0x00000400;
#else
      // Pentium+: bits15,14,12 are hardwired to 0, rest are settable.
      // Even bits 11,10 are changeable though reserved.
      BX_CPU_THIS_PTR dr7 = (val_32 & 0xffff2fff) | 0x00000400;
#endif
      break;
    default:
      BX_PANIC(("MOV_DdRd: control register index out of range"));
      break;
    }
#endif
}

  void
BX_CPU_C::MOV_RdDd(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
  BX_PANIC(("MOV_RdDd: not supported on < 386"));
#else
  Bit32u val_32;

  if (v8086_mode()) {
    BX_INFO(("MOV_RdDd: v8086 mode causes #GP"));
    exception(BX_GP_EXCEPTION, 0, 0);
    }

  if (i->mod != 0xc0) {
    BX_PANIC(("MOV_RdDd(): rm field not a register!"));
    UndefinedOpcode(i);
    }

  if (protected_mode() && (CPL!=0)) {
    BX_INFO(("MOV_RdDd: CPL!=0 causes #GP"));
    exception(BX_GP_EXCEPTION, 0, 0);
    return;
    }

  if (bx_dbg.dreg)
    BX_INFO(("MOV_RdDd: DR%u not implemented yet", i->nnn));

  switch (i->nnn) {
    case 0: // DR0
      val_32 = BX_CPU_THIS_PTR dr0;
      break;
    case 1: // DR1
      val_32 = BX_CPU_THIS_PTR dr1;
      break;
    case 2: // DR2
      val_32 = BX_CPU_THIS_PTR dr2;
      break;
    case 3: // DR3
      val_32 = BX_CPU_THIS_PTR dr3;
      break;

    case 4: // DR4
    case 6: // DR6
      // DR4 aliased to DR6 by default.  With Debug Extensions on,
      // access to DR4 causes #UD
#if BX_CPU_LEVEL >= 4
      if ( (i->nnn == 4) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) {
        // Debug extensions on
        BX_INFO(("MOV_RdDd: access to DR4 causes #UD"));
        UndefinedOpcode(i);
        }
#endif
      val_32 = BX_CPU_THIS_PTR dr6;
      break;

    case 5: // DR5
    case 7: // DR7
      // DR5 aliased to DR7 by default.  With Debug Extensions on,
      // access to DR5 causes #UD
#if BX_CPU_LEVEL >= 4
      if ( (i->nnn == 5) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) {
        // Debug extensions on
        BX_INFO(("MOV_RdDd: access to DR5 causes #UD"));
        UndefinedOpcode(i);
        }
#endif
      val_32 = BX_CPU_THIS_PTR dr7;
      break;

    default:
      BX_PANIC(("MOV_RdDd: control register index out of range"));
      val_32 = 0;
    }
  BX_WRITE_32BIT_REG(i->rm, val_32);
#endif
}


  void
BX_CPU_C::LMSW_Ew(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
  BX_PANIC(("LMSW_Ew(): not supported on 8086!"));
#else
  Bit16u msw;
  Bit32u cr0;

  if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported"));

  if ( protected_mode() ) {
    if ( CPL != 0 ) {
      BX_INFO(("LMSW: CPL != 0, CPL=%u", (unsigned) CPL));
      exception(BX_GP_EXCEPTION, 0, 0);
      return;
      }
    }

  if (i->mod == 0xc0) {
    msw = BX_READ_16BIT_REG(i->rm);
    }
  else {
    read_virtual_word(i->seg, i->rm_addr, &msw);
    }

  // LMSW does not affect PG,CD,NW,AM,WP,NE,ET bits, and cannot clear PE

  // LMSW cannot clear PE
  if ( ((msw & 0x0001)==0) && BX_CPU_THIS_PTR cr0.pe ) {
    msw |= 0x0001; // adjust PE bit to current value of 1
    }

  msw &= 0x000f; // LMSW only affects last 4 flags
  cr0 = (BX_CPU_THIS_PTR cr0.val32 & 0xfffffff0) | msw;
  SetCR0(cr0);
#endif /* BX_CPU_LEVEL < 2 */
}

  void
BX_CPU_C::SMSW_Ew(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
  BX_PANIC(("SMSW_Ew: not supported yet!"));
#else
  Bit16u msw;


#if BX_CPU_LEVEL == 2
  msw = 0xfff0; /* 80286 init value */
  msw |= (BX_CPU_THIS_PTR cr0.ts << 3) |
         (BX_CPU_THIS_PTR cr0.em << 2) |
         (BX_CPU_THIS_PTR cr0.mp << 1) |
         BX_CPU_THIS_PTR cr0.pe;
#else /* 386+ */
  /* reserved bits 0 ??? */
  /* should NE bit be included here ??? */
  // should ET bit be included here (AW)
  msw =  (BX_CPU_THIS_PTR cr0.ts << 3) |
         (BX_CPU_THIS_PTR cr0.em << 2) |
         (BX_CPU_THIS_PTR cr0.mp << 1) |
         BX_CPU_THIS_PTR cr0.pe;
#endif


  if (i->mod == 0xc0) {
    if (i->os_32) {
      BX_WRITE_32BIT_REG(i->rm, msw);  // zeros out high 16bits
      }
    else {
      BX_WRITE_16BIT_REG(i->rm, msw);
      }
    }
  else {
    write_virtual_word(i->seg, i->rm_addr, &msw);
    }

#endif
}


  void
BX_CPU_C::MOV_CdRd(BxInstruction_t *i)
{
  // mov general register data to control register
#if BX_CPU_LEVEL < 3
  BX_PANIC(("MOV_CdRd: not supported on < 386"));
#else
  Bit32u val_32;


  if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported"));

  /* NOTES:
   *   32bit operands always used
   *   r/m field specifies general register
   *   mod field should always be 11 binary
   *   reg field specifies which special register
   */

  if (i->mod != 0xc0) {
    BX_PANIC(("MOV_CdRd(): rm field not a register!"));
    }

  invalidate_prefetch_q();

  if (protected_mode() && CPL!=0) {
    BX_PANIC(("MOV_CdRd: CPL!=0"));
    /* #GP(0) if CPL is not 0 */
    exception(BX_GP_EXCEPTION, 0, 0);
    return;
    }

  val_32 = BX_READ_32BIT_REG(i->rm);

  switch (i->nnn) {
    case 0: // CR0 (MSW)
      // BX_INFO(("MOV_CdRd:CR0: R32 = %08x\n @CS:EIP %04x:%04x ",
      //   (unsigned) val_32,
      //   (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
      //   (unsigned) BX_CPU_THIS_PTR eip));
      SetCR0(val_32);
      break;

    case 1: /* CR1 */
      BX_PANIC(("MOV_CdRd: CR1 not implemented yet"));
      break;
    case 2: /* CR2 */
      BX_DEBUG(("MOV_CdRd: CR2 not implemented yet"));
	  BX_DEBUG(("MOV_CdRd: CR2 = reg"));
      BX_CPU_THIS_PTR cr2 = val_32;
      break;
    case 3: // CR3
      if (bx_dbg.creg)
        BX_INFO(("MOV_CdRd:CR3 = %08x", (unsigned) val_32));
      // Reserved bits take on value of MOV instruction
      CR3_change(val_32);
      BX_INSTR_TLB_CNTRL(BX_INSTR_MOV_CR3, val_32);
      break;
    case 4: // CR4
#if BX_CPU_LEVEL == 3
      BX_PANIC(("MOV_CdRd: write to CR4 of 0x%08x on 386",
        val_32));
      UndefinedOpcode(i);
#else
      //  Protected mode: #GP(0) if attempt to write a 1 to
      //  any reserved bit of CR4

      BX_INFO(("MOV_CdRd: ignoring write to CR4 of 0x%08x",
        val_32));
      if (val_32) {
        BX_INFO(("MOV_CdRd: (CR4) write of 0x%08x not supported!",
          val_32));
        }
      // Only allow writes of 0 to CR4 for now.
      // Writes to bits in CR4 should not be 1s as CPUID
      // returns not-supported for all of these features.
      BX_CPU_THIS_PTR cr4 = 0;
#endif
      break;
    default:
      BX_PANIC(("MOV_CdRd: control register index out of range"));
      break;
    }
#endif
}

  void
BX_CPU_C::MOV_RdCd(BxInstruction_t *i)
{
  // mov control register data to register
#if BX_CPU_LEVEL < 3
  BX_PANIC(("MOV_RdCd: not supported on < 386"));
#else
  Bit32u val_32;

  if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported"));

  /* NOTES:
   *   32bit operands always used
   *   r/m field specifies general register
   *   mod field should always be 11 binary
   *   reg field specifies which special register
   */

  if (i->mod != 0xc0) {
    BX_PANIC(("MOV_RdCd(): rm field not a register!"));
    }

  if (protected_mode() && CPL!=0) {
    BX_PANIC(("MOV_RdCd: CPL!=0"));
    /* #GP(0) if CPL is not 0 */
    exception(BX_GP_EXCEPTION, 0, 0);
    return;
    }

  switch (i->nnn) {
    case 0: // CR0 (MSW)
      val_32 = BX_CPU_THIS_PTR cr0.val32;
#if 0
      BX_INFO(("MOV_RdCd:CR0: R32 = %08x\n @CS:EIP %04x:%04x",
        (unsigned) val_32,
        (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
        (unsigned) BX_CPU_THIS_PTR eip));
#endif
      break;
    case 1: /* CR1 */
      BX_PANIC(("MOV_RdCd: CR1 not implemented yet"));
      val_32 = 0;
      break;
    case 2: /* CR2 */
      if (bx_dbg.creg)
        BX_INFO(("MOV_RdCd: CR2"));
      val_32 = BX_CPU_THIS_PTR cr2;
      break;
    case 3: // CR3
      if (bx_dbg.creg)
        BX_INFO(("MOV_RdCd: reading CR3"));
      val_32 = BX_CPU_THIS_PTR cr3;
      break;
    case 4: // CR4
#if BX_CPU_LEVEL == 3
      val_32 = 0;
      BX_INFO(("MOV_RdCd: read of CR4 causes #UD"));
      UndefinedOpcode(i);
#else
      BX_INFO(("MOV_RdCd: read of CR4"));
      val_32 = BX_CPU_THIS_PTR cr4;
#endif
      break;
    default:
      BX_PANIC(("MOV_RdCd: control register index out of range"));
      val_32 = 0;
    }
  BX_WRITE_32BIT_REG(i->rm, val_32);
#endif
}

  void
BX_CPU_C::MOV_TdRd(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
  BX_PANIC(("MOV_TdRd:"));
#elif BX_CPU_LEVEL <= 4
  BX_PANIC(("MOV_TdRd:"));
#else
  // Pentium+ does not have TRx.  They were redesigned using the MSRs.
  BX_INFO(("MOV_TdRd: causes #UD"));
  UndefinedOpcode(i);
#endif
}

  void
BX_CPU_C::MOV_RdTd(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
  BX_PANIC(("MOV_RdTd:"));
#elif BX_CPU_LEVEL <= 4
  BX_PANIC(("MOV_RdTd:"));
#else
  // Pentium+ does not have TRx.  They were redesigned using the MSRs.
  BX_INFO(("MOV_RdTd: causes #UD"));
  UndefinedOpcode(i);
#endif
}

  void
BX_CPU_C::LOADALL(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
  BX_PANIC(("undocumented LOADALL instruction not supported on 8086"));
#else
  Bit16u msw, tr, flags, ip, ldtr;
  Bit16u ds_raw, ss_raw, cs_raw, es_raw;
  Bit16u di, si, bp, sp, bx, dx, cx, ax;
  Bit16u base_15_0, limit;
  Bit8u  base_23_16, access;

  if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported"));

#if BX_CPU_LEVEL > 2
  BX_PANIC(("loadall: not implemented for 386"));
  /* ??? need to set G and other bits, and compute .limit_scaled also */
  /* for all segments CS,DS,SS,... */
#endif

  if (BX_CPU_THIS_PTR cr0.pe) {
    BX_PANIC((
      "LOADALL not yet supported for protected mode"));
    }

BX_PANIC(("LOADALL: handle CR0.val32"));
  /* MSW */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x806, 2, &msw);
  BX_CPU_THIS_PTR cr0.pe = (msw & 0x01); msw >>= 1;
  BX_CPU_THIS_PTR cr0.mp = (msw & 0x01); msw >>= 1;
  BX_CPU_THIS_PTR cr0.em = (msw & 0x01); msw >>= 1;
  BX_CPU_THIS_PTR cr0.ts = (msw & 0x01);

  //BX_INFO(("LOADALL: pe=%u, mp=%u, em=%u, ts=%u",
  //  (unsigned) BX_CPU_THIS_PTR cr0.pe, (unsigned) BX_CPU_THIS_PTR cr0.mp,
  //  (unsigned) BX_CPU_THIS_PTR cr0.em, (unsigned) BX_CPU_THIS_PTR cr0.ts));

  if (BX_CPU_THIS_PTR cr0.pe || BX_CPU_THIS_PTR cr0.mp || BX_CPU_THIS_PTR cr0.em || BX_CPU_THIS_PTR cr0.ts)
    BX_PANIC(("LOADALL set PE, MP, EM or TS bits in MSW!"));

  /* TR */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x816, 2, &tr);
  BX_CPU_THIS_PTR tr.selector.value = tr;
  BX_CPU_THIS_PTR tr.selector.rpl   = (tr & 0x03);  tr >>= 2;
  BX_CPU_THIS_PTR tr.selector.ti    = (tr & 0x01);  tr >>= 1;
  BX_CPU_THIS_PTR tr.selector.index = tr;
  BX_CPU_THIS_PTR mem->read_physical(this, 0x860, 2, &base_15_0);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x862, 1, &base_23_16);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x863, 1, &access);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x864, 2, &limit);


  BX_CPU_THIS_PTR tr.cache.valid =
  BX_CPU_THIS_PTR tr.cache.p           = (access & 0x80) >> 7;
  BX_CPU_THIS_PTR tr.cache.dpl         = (access & 0x60) >> 5;
  BX_CPU_THIS_PTR tr.cache.segment     = (access & 0x10) >> 4;
  // don't allow busy bit in tr.cache.type, so bit 2 is masked away too.
  BX_CPU_THIS_PTR tr.cache.type        = (access & 0x0d);
  BX_CPU_THIS_PTR tr.cache.u.tss286.base  = (base_23_16 << 16) | base_15_0;
  BX_CPU_THIS_PTR tr.cache.u.tss286.limit = limit;

  if ( (BX_CPU_THIS_PTR tr.selector.value & 0xfffc) == 0 ) {
    BX_CPU_THIS_PTR tr.cache.valid = 0;
    }
  if ( BX_CPU_THIS_PTR tr.cache.valid == 0 ) {
    }
  if ( BX_CPU_THIS_PTR tr.cache.u.tss286.limit < 43 ) {
    BX_CPU_THIS_PTR tr.cache.valid = 0;
    }
  if ( BX_CPU_THIS_PTR tr.cache.type != 1 ) {
    BX_CPU_THIS_PTR tr.cache.valid = 0;
    }
  if ( BX_CPU_THIS_PTR tr.cache.segment ) {
    BX_CPU_THIS_PTR tr.cache.valid = 0;
    }
  if (BX_CPU_THIS_PTR tr.cache.valid==0) {
    BX_CPU_THIS_PTR tr.cache.u.tss286.base   = 0;
    BX_CPU_THIS_PTR tr.cache.u.tss286.limit  = 0;
    BX_CPU_THIS_PTR tr.cache.p            = 0;
    BX_CPU_THIS_PTR tr.selector.value     = 0;
    BX_CPU_THIS_PTR tr.selector.index     = 0;
    BX_CPU_THIS_PTR tr.selector.ti        = 0;
    BX_CPU_THIS_PTR tr.selector.rpl       = 0;
    }


  /* FLAGS */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x818, 2, &flags);
  write_flags(flags, 1, 1);

  /* IP */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x81a, 2, &ip);
  IP = ip;

  /* LDTR */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x81c, 2, &ldtr);
  BX_CPU_THIS_PTR ldtr.selector.value = ldtr;
  BX_CPU_THIS_PTR ldtr.selector.rpl   = (ldtr & 0x03);  ldtr >>= 2;
  BX_CPU_THIS_PTR ldtr.selector.ti    = (ldtr & 0x01);  ldtr >>= 1;
  BX_CPU_THIS_PTR ldtr.selector.index = ldtr;
  if ( (BX_CPU_THIS_PTR ldtr.selector.value & 0xfffc) == 0 ) {
    BX_CPU_THIS_PTR ldtr.cache.valid   = 0;
    BX_CPU_THIS_PTR ldtr.cache.p       = 0;
    BX_CPU_THIS_PTR ldtr.cache.segment = 0;
    BX_CPU_THIS_PTR ldtr.cache.type    = 0;
    BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = 0;
    BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = 0;
    BX_CPU_THIS_PTR ldtr.selector.value = 0;
    BX_CPU_THIS_PTR ldtr.selector.index = 0;
    BX_CPU_THIS_PTR ldtr.selector.ti    = 0;
    }
  else {
    BX_CPU_THIS_PTR mem->read_physical(this, 0x854, 2, &base_15_0);
    BX_CPU_THIS_PTR mem->read_physical(this, 0x856, 1, &base_23_16);
    BX_CPU_THIS_PTR mem->read_physical(this, 0x857, 1, &access);
    BX_CPU_THIS_PTR mem->read_physical(this, 0x858, 2, &limit);
    BX_CPU_THIS_PTR ldtr.cache.valid      =
    BX_CPU_THIS_PTR ldtr.cache.p          = access >> 7;
    BX_CPU_THIS_PTR ldtr.cache.dpl        = (access >> 5) & 0x03;
    BX_CPU_THIS_PTR ldtr.cache.segment    = (access >> 4) & 0x01;
    BX_CPU_THIS_PTR ldtr.cache.type       = (access & 0x0f);
    BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = (base_23_16 << 16) | base_15_0;
    BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = limit;

    if (access == 0) {
      BX_PANIC(("loadall: LDTR case access byte=0."));
      }
    if ( BX_CPU_THIS_PTR ldtr.cache.valid==0 ) {
      BX_PANIC(("loadall: ldtr.valid=0"));
      }
    if (BX_CPU_THIS_PTR ldtr.cache.segment) { /* not a system segment */
      BX_INFO(("         AR byte = %02x", (unsigned) access));
      BX_PANIC(("loadall: LDTR descriptor cache loaded with non system segment"));
      }
    if ( BX_CPU_THIS_PTR ldtr.cache.type != 2 ) {
      BX_PANIC(("loadall: LDTR.type(%u) != 2", (unsigned) (access & 0x0f)));
      }
    }

  /* DS */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x81e, 2, &ds_raw);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = ds_raw;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl   = (ds_raw & 0x03);  ds_raw >>= 2;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti    = (ds_raw & 0x01);  ds_raw >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index = ds_raw;
  BX_CPU_THIS_PTR mem->read_physical(this, 0x848, 2, &base_15_0);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x84a, 1, &base_23_16);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x84b, 1, &access);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x84c, 2, &limit);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = limit;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a          = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w        = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed       = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment    = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl        = (access & 0x03); access >>= 2;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid      =
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p          = (access & 0x01);

  if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value & 0xfffc) == 0 ) {
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
    }
  if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid==0  ||
      BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment==0) {
    BX_PANIC(("loadall: DS invalid"));
    }

  /* SS */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x820, 2, &ss_raw);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = ss_raw;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl   = (ss_raw & 0x03); ss_raw >>= 2;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti    = (ss_raw & 0x01); ss_raw >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = ss_raw;
  BX_CPU_THIS_PTR mem->read_physical(this, 0x842, 2, &base_15_0);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x844, 1, &base_23_16);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x845, 1, &access);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x846, 2, &limit);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = limit;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a          = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w        = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed       = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment    = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl        = (access & 0x03); access >>= 2;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p          = (access & 0x01);

  if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value & 0xfffc) == 0 ) {
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
    }
  if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid==0  ||
      BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment==0) {
    BX_PANIC(("loadall: SS invalid"));
    }


  /* CS */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x822, 2, &cs_raw);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = cs_raw;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl   = (cs_raw & 0x03); cs_raw >>= 2;

  //BX_INFO(("LOADALL: setting cs.selector.rpl to %u",
  //  (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl));

  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti    = (cs_raw & 0x01); cs_raw >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = cs_raw;
  BX_CPU_THIS_PTR mem->read_physical(this, 0x83c, 2, &base_15_0);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x83e, 1, &base_23_16);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x83f, 1, &access);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x840, 2, &limit);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = limit;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a          = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w        = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed       = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment    = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl        = (access & 0x03); access >>= 2;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p          = (access & 0x01);

  if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value & 0xfffc) == 0 ) {
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0;
    }
  if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid==0  ||
      BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment==0) {
    BX_PANIC(("loadall: CS invalid"));
    }

  /* ES */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x824, 2, &es_raw);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = es_raw;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl   = (es_raw & 0x03); es_raw >>= 2;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti    = (es_raw & 0x01); es_raw >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index = es_raw;
  BX_CPU_THIS_PTR mem->read_physical(this, 0x836, 2, &base_15_0);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x838, 1, &base_23_16);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x839, 1, &access);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x83a, 2, &limit);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit = limit;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.a          = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.r_w        = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.c_ed       = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.executable = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment    = (access & 0x01); access >>= 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl        = (access & 0x03); access >>= 2;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p          = (access & 0x01);

#if 0
    BX_INFO(("cs.dpl = %02x", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl));
    BX_INFO(("ss.dpl = %02x", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl));
    BX_INFO(("BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].dpl = %02x", (unsigned) BX_CPU_THIS_PTR ds.cache.dpl));
    BX_INFO(("BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].dpl = %02x", (unsigned) BX_CPU_THIS_PTR es.cache.dpl));
    BX_INFO(("LOADALL: setting cs.selector.rpl to %u",
      (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl));
    BX_INFO(("LOADALL: setting ss.selector.rpl to %u",
      (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl));
    BX_INFO(("LOADALL: setting ds.selector.rpl to %u",
      (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl));
    BX_INFO(("LOADALL: setting es.selector.rpl to %u",
      (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl));
#endif

  if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value & 0xfffc) == 0 ) {
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
    }
  if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid==0  ||
      BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment==0) {
    BX_PANIC(("loadall: ES invalid"));
    }

  /* DI */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x826, 2, &di);
  DI = di;

  /* SI */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x828, 2, &si);
  SI = si;

  /* BP */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x82a, 2, &bp);
  BP = bp;

  /* SP */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x82c, 2, &sp);
  SP = sp;

  /* BX */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x82e, 2, &bx);
  BX = bx;

  /* DX */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x830, 2, &dx);
  DX = dx;

  /* CX */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x832, 2, &cx);
  CX = cx;

  /* AX */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x834, 2, &ax);
  AX = ax;

  /* GDTR */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x84e, 2, &base_15_0);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x850, 1, &base_23_16);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x851, 1, &access);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x852, 2, &limit);
  BX_CPU_THIS_PTR gdtr.base = (base_23_16 << 16) | base_15_0;
  BX_CPU_THIS_PTR gdtr.limit = limit;

#if 0
  if (access)
      BX_INFO(("LOADALL: GDTR access bits not 0 (%02x).",
        (unsigned) access));
#endif

  /* IDTR */
  BX_CPU_THIS_PTR mem->read_physical(this, 0x85a, 2, &base_15_0);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x85c, 1, &base_23_16);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x85d, 1, &access);
  BX_CPU_THIS_PTR mem->read_physical(this, 0x85e, 2, &limit);
  BX_CPU_THIS_PTR idtr.base = (base_23_16 << 16) | base_15_0;
  BX_CPU_THIS_PTR idtr.limit = limit;
#endif
}


  void
BX_CPU_C::CPUID(BxInstruction_t *i)
{
#if BX_CPU_LEVEL >= 4
  unsigned type, family, model, stepping, features;
#endif

  invalidate_prefetch_q();

#if BX_CPU_LEVEL >= 4
  switch (EAX) {
    case 0:
      // EAX: highest input value understood by CPUID
      // EBX: vendor ID string
      // EDX: vendor ID string
      // ECX: vendor ID string
      EAX = 1; // 486 or pentium
      EBX = 0x756e6547; // "Genu"
      EDX = 0x49656e69; // "ineI"
      ECX = 0x6c65746e; // "ntel"
      break;

    case 1:
      // EAX[3:0]   Stepping ID
      // EAX[7:4]   Model: starts at 1
      // EAX[11:8]  Family: 4=486, 5=Pentium, 6=PPro
      // EAX[13:12] Type: 0=OEM,1=overdrive,2=dual cpu,3=reserved
      // EAX[31:14] Reserved
      // EBX:       Reserved (0)
      // ECX:       Reserved (0)
      // EDX:       Feature Flags
      //   [0:0]   FPU on chip
      //   [1:1]   VME: Virtual-8086 Mode enhancements
      //   [2:2]   DE: Debug Extensions (I/O breakpoints)
      //   [3:3]   PSE: Page Size Extensions
      //   [4:4]   TSC: Time Stamp Counter
      //   [5:5]   MSR: RDMSR and WRMSR support
      //   [6:6]   PAE: Physical Address Extensions
      //   [7:7]   MCE: Machine Check Exception
      //   [8:8]   CXS: CMPXCHG8B instruction
      //   [9:9]   APIC: APIC on Chip
      //   [11:10] Reserved
      //   [12:12] MTRR: Memory Type Range Reg
      //   [13:13] PGE/PTE Global Bit
      //   [14:14] MCA: Machine Check Architecture
      //   [15:15] CMOV: Cond Mov/Cmp Instructions
      //   [22:16] Reserved
      //   [23:23] MMX Technology
      //   [31:24] Reserved

      features = 0; // start with none
      type = 0; // OEM

#if BX_CPU_LEVEL == 4
      family = 4;
#  if BX_SUPPORT_FPU
      // 486dx
      model = 1;
      stepping = 3;
      features |= 0x01;
#  else
      // 486sx
      model = 2;
      stepping = 3;
#  endif

#elif BX_CPU_LEVEL == 5
      family = 5;
      model = 1; // Pentium (60,66)
      stepping = 3; // ???
      features |= (1<<4);   // implement TSC
#  if BX_SUPPORT_FPU
      features |= 0x01;
#  endif

#elif BX_CPU_LEVEL == 6
      family = 6;
      model = 1; // Pentium Pro
      stepping = 3; // ???
      features |= (1<<4);   // implement TSC
#  if BX_SUPPORT_APIC
      features |= (1<<9);   // APIC on chip
#  endif
#  if BX_SUPPORT_FPU
      features |= 0x01;     // has FPU
#  endif
#else
      BX_PANIC(("CPUID: not implemented for > 6"));
#endif

      EAX = (family <<8) | (model<<4) | stepping;
      EBX = ECX = 0; // reserved
      EDX = features;
      break;

    default:
      EAX = EBX = ECX = EDX = 0; // Reserved, undefined
      break;
    }
#else
  BX_PANIC(("CPUID: not available on < late 486"));
#endif
}

  void
BX_CPU_C::SetCR0(Bit32u val_32)
{
  // from either MOV_CdRd() or debug functions
  // protection checks made already or forcing from debug
  Boolean prev_pe, prev_pg;

  prev_pe = BX_CPU_THIS_PTR cr0.pe;
  prev_pg = BX_CPU_THIS_PTR cr0.pg;

  BX_CPU_THIS_PTR cr0.pe = val_32 & 0x01;
  BX_CPU_THIS_PTR cr0.mp = (val_32 >> 1) & 0x01;
  BX_CPU_THIS_PTR cr0.em = (val_32 >> 2) & 0x01;
  BX_CPU_THIS_PTR cr0.ts = (val_32 >> 3) & 0x01;
  // cr0.et is hardwired to 1
#if BX_CPU_LEVEL >= 4
  BX_CPU_THIS_PTR cr0.ne = (val_32 >> 5)  & 0x01;
  BX_CPU_THIS_PTR cr0.wp = (val_32 >> 16) & 0x01;
  BX_CPU_THIS_PTR cr0.am = (val_32 >> 18) & 0x01;
  BX_CPU_THIS_PTR cr0.nw = (val_32 >> 29) & 0x01;
  BX_CPU_THIS_PTR cr0.cd = (val_32 >> 30) & 0x01;
#endif
  BX_CPU_THIS_PTR cr0.pg = (val_32 >> 31) & 0x01;

  // handle reserved bits behaviour
#if BX_CPU_LEVEL == 3
  BX_CPU_THIS_PTR cr0.val32 = val_32 | 0x7ffffff0;
#elif BX_CPU_LEVEL == 4
  BX_CPU_THIS_PTR cr0.val32 = (val_32 | 0x00000010) & 0xe005003f;
#elif BX_CPU_LEVEL == 5
  BX_CPU_THIS_PTR cr0.val32 = val_32 | 0x00000010;
#elif BX_CPU_LEVEL == 6
  BX_CPU_THIS_PTR cr0.val32 = (val_32 | 0x00000010) & 0xe005003f;
#else
#error "MOV_CdRd: implement reserved bits behaviour for this CPU_LEVEL"
#endif

  //if (BX_CPU_THIS_PTR cr0.ts)
  //  BX_INFO(("MOV_CdRd:CR0.TS set 0x%x", (unsigned) val_32));

  if (prev_pe==0 && BX_CPU_THIS_PTR cr0.pe) {
    enter_protected_mode();
    }
  else if (prev_pe==1 && BX_CPU_THIS_PTR cr0.pe==0) {
    enter_real_mode();
    }

  if (prev_pg==0 && BX_CPU_THIS_PTR cr0.pg)
    enable_paging();
  else if (prev_pg==1 && BX_CPU_THIS_PTR cr0.pg==0)
    disable_paging();
}


  void
BX_CPU_C::RSM(BxInstruction_t *i)
{
#if BX_CPU_LEVEL >= 4
  invalidate_prefetch_q();

  BX_PANIC(("RSM: System Management Mode not implemented yet"));
#else
  UndefinedOpcode(i);
#endif
}

  void
BX_CPU_C::RDTSC(BxInstruction_t *i)
{
#if BX_CPU_LEVEL >= 5
  Boolean tsd = (BX_CPU_THIS_PTR cr4 & 4)? 1 : 0;
  Boolean cpl = CPL;
  if ((tsd==0) || (tsd==1 && cpl==0)) {
    // return ticks
    Bit64u ticks = bx_pc_system.time_ticks ();
    EAX = (Bit32u) (ticks & 0xffffffff);
    EDX = (Bit32u) ((ticks >> 32) & 0xffffffff);
    //BX_INFO(("RDTSC: returning EDX:EAX = %08x:%08x", EDX, EAX));
  } else {
    // not allowed to use RDTSC!
    exception (BX_GP_EXCEPTION, 0, 0);
  }
#else
  UndefinedOpcode(i);
#endif
}

  void
BX_CPU_C::RDMSR(BxInstruction_t *i)
{
#if BX_CPU_LEVEL >= 5
  BX_ERROR(("RDMSR: not implemented yet"));
  UndefinedOpcode(i);
#else
  UndefinedOpcode(i);
#endif
}

  void
BX_CPU_C::WRMSR(BxInstruction_t *i)
{
#if BX_CPU_LEVEL >= 5
  invalidate_prefetch_q();

  BX_PANIC(( "WRMSR: not implemented yet"));
#else
  UndefinedOpcode(i);
#endif
}

#if BX_X86_DEBUGGER
  Bit32u
BX_CPU_C::hwdebug_compare(Bit32u laddr_0, unsigned size,
                          unsigned opa, unsigned opb)
{
  // Support x86 hardware debug facilities (DR0..DR7)
  Bit32u dr7 = BX_CPU_THIS_PTR dr7;

  Boolean ibpoint_found = 0;
  Bit32u  laddr_n = laddr_0 + (size - 1);
  Bit32u  dr0, dr1, dr2, dr3;
  Bit32u  dr0_n, dr1_n, dr2_n, dr3_n;
  Bit32u  len0, len1, len2, len3;
  static  unsigned alignment_mask[4] =
    //    00b=1      01b=2     10b=undef     11b=4
    { 0xffffffff, 0xfffffffe, 0xffffffff, 0xfffffffc };
  Bit32u dr0_op, dr1_op, dr2_op, dr3_op;

  len0 = (dr7>>18) & 3;
  len1 = (dr7>>22) & 3;
  len2 = (dr7>>26) & 3;
  len3 = (dr7>>30) & 3;

  dr0 = BX_CPU_THIS_PTR dr0 & alignment_mask[len0];
  dr1 = BX_CPU_THIS_PTR dr1 & alignment_mask[len1];
  dr2 = BX_CPU_THIS_PTR dr2 & alignment_mask[len2];
  dr3 = BX_CPU_THIS_PTR dr3 & alignment_mask[len3];

  dr0_n = dr0 + len0;
  dr1_n = dr1 + len1;
  dr2_n = dr2 + len2;
  dr3_n = dr3 + len3;

  dr0_op = (dr7>>16) & 3;
  dr1_op = (dr7>>20) & 3;
  dr2_op = (dr7>>24) & 3;
  dr3_op = (dr7>>28) & 3;

  // See if this instruction address matches any breakpoints
  if ( (dr7 & 0x00000003) ) {
    if ( (dr0_op==opa || dr0_op==opb) &&
         (laddr_0 <= dr0_n) &&
         (laddr_n >= dr0) )
      ibpoint_found = 1;
    }
  if ( (dr7 & 0x0000000c) ) {
    if ( (dr1_op==opa || dr1_op==opb) &&
         (laddr_0 <= dr1_n) &&
         (laddr_n >= dr1) )
      ibpoint_found = 1;
    }
  if ( (dr7 & 0x00000030) ) {
    if ( (dr2_op==opa || dr2_op==opb) &&
         (laddr_0 <= dr2_n) &&
         (laddr_n >= dr2) )
      ibpoint_found = 1;
    }
  if ( (dr7 & 0x000000c0) ) {
    if ( (dr3_op==opa || dr3_op==opb) &&
         (laddr_0 <= dr3_n) &&
         (laddr_n >= dr3) )
      ibpoint_found = 1;
    }

  // If *any* enabled breakpoints matched, then we need to
  // set status bits for *all* breakpoints, even disabled ones,
  // as long as they meet the other breakpoint criteria.
  // This code is similar to that above, only without the
  // breakpoint enabled check.  Seems weird to duplicate effort,
  // but its more efficient to do it this way.
  if (ibpoint_found) {
    // dr6_mask is the return value.  These bits represent the bits to
    // be OR'd into DR6 as a result of the debug event.
    Bit32u  dr6_mask=0;
    if ( (dr0_op==opa || dr0_op==opb) &&
         (laddr_0 <= dr0_n) &&
         (laddr_n >= dr0) )
      dr6_mask |= 0x01;
    if ( (dr1_op==opa || dr1_op==opb) &&
         (laddr_0 <= dr1_n) &&
         (laddr_n >= dr1) )
      dr6_mask |= 0x02;
    if ( (dr2_op==opa || dr2_op==opb) &&
         (laddr_0 <= dr2_n) &&
         (laddr_n >= dr2) )
      dr6_mask |= 0x04;
    if ( (dr3_op==opa || dr3_op==opb) &&
         (laddr_0 <= dr3_n) &&
         (laddr_n >= dr3) )
      dr6_mask |= 0x08;
    return(dr6_mask);
    }
  return(0);
}
#endif