1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
|
/////////////////////////////////////////////////////////////////////////
// $Id: proc_ctrl.cc,v 1.17 2001/11/18 16:32:40 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_USE_CPU_SMF
#define this (BX_CPU(0))
#endif
void
BX_CPU_C::UndefinedOpcode(BxInstruction_t *i)
{
BX_DEBUG(("UndefinedOpcode: %02x causes exception 6",
(unsigned) i->b1));
exception(BX_UD_EXCEPTION, 0, 0);
}
void
BX_CPU_C::NOP(BxInstruction_t *i)
{
}
void
BX_CPU_C::HLT(BxInstruction_t *i)
{
// hack to panic if HLT comes from BIOS
if ( BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value == 0xf000 )
BX_PANIC(("HALT instruction encountered in the BIOS ROM"));
if (CPL!=0) {
BX_INFO(("HLT(): CPL!=0"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
if ( ! BX_CPU_THIS_PTR eflags.if_ ) {
BX_INFO(("WARNING: HLT instruction with IF=0!"));
}
// stops instruction execution and places the processor in a
// HALT state. An enabled interrupt, NMI, or reset will resume
// execution. If interrupt (including NMI) is used to resume
// execution after HLT, the saved CS:eIP points to instruction
// following HLT.
// artificial trap bit, why use another variable.
BX_CPU_THIS_PTR debug_trap |= 0x80000000; // artificial trap
BX_CPU_THIS_PTR async_event = 1; // so processor knows to check
// Execution of this instruction completes. The processor
// will remain in a halt state until one of the above conditions
// is met.
#if BX_USE_IDLE_HACK
bx_gui.sim_is_idle ();
#endif /* BX_USE_IDLE_HACK */
}
void
BX_CPU_C::CLTS(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
BX_PANIC(("CLTS: not implemented for < 286"));
#else
if (v8086_mode()) BX_PANIC(("clts: v8086 mode unsupported"));
/* read errata file */
// does CLTS also clear NT flag???
// #GP(0) if CPL is not 0
if (CPL!=0) {
BX_INFO(("CLTS(): CPL!=0"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
BX_CPU_THIS_PTR cr0.ts = 0;
BX_CPU_THIS_PTR cr0.val32 &= ~0x08;
#endif
}
void
BX_CPU_C::INVD(BxInstruction_t *i)
{
BX_INFO(("---------------"));
BX_INFO(("- INVD called -"));
BX_INFO(("---------------"));
#if BX_CPU_LEVEL >= 4
invalidate_prefetch_q();
if (BX_CPU_THIS_PTR cr0.pe) {
if (CPL!=0) {
BX_INFO(("INVD: CPL!=0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
BX_INSTR_CACHE_CNTRL(BX_INSTR_INVD);
#else
UndefinedOpcode(i);
#endif
}
void
BX_CPU_C::WBINVD(BxInstruction_t *i)
{
BX_INFO(("WBINVD: (ignoring)"));
#if BX_CPU_LEVEL >= 4
invalidate_prefetch_q();
if (BX_CPU_THIS_PTR cr0.pe) {
if (CPL!=0) {
BX_INFO(("WBINVD: CPL!=0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
BX_INSTR_CACHE_CNTRL(BX_INSTR_WBINVD);
#else
UndefinedOpcode(i);
#endif
}
void
BX_CPU_C::MOV_DdRd(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOV_DdRd: not supported on < 386"));
#else
Bit32u val_32;
if (v8086_mode()) BX_PANIC(("MOV_DdRd: v8086 mode unsupported"));
/* NOTES:
* 32bit operands always used
* r/m field specifies general register
* mod field should always be 11 binary
* reg field specifies which special register
*/
if (i->mod != 0xc0) {
BX_PANIC(("MOV_DdRd(): rm field not a register!"));
}
invalidate_prefetch_q();
if (protected_mode() && CPL!=0) {
BX_PANIC(("MOV_DdRd: CPL!=0"));
/* #GP(0) if CPL is not 0 */
exception(BX_GP_EXCEPTION, 0, 0);
}
val_32 = BX_READ_32BIT_REG(i->rm);
if (bx_dbg.dreg)
BX_INFO(("MOV_DdRd: DR[%u]=%08xh unhandled",
(unsigned) i->nnn, (unsigned) val_32));
switch (i->nnn) {
case 0: // DR0
BX_CPU_THIS_PTR dr0 = val_32;
break;
case 1: // DR1
BX_CPU_THIS_PTR dr1 = val_32;
break;
case 2: // DR2
BX_CPU_THIS_PTR dr2 = val_32;
break;
case 3: // DR3
BX_CPU_THIS_PTR dr3 = val_32;
break;
case 4: // DR4
case 6: // DR6
// DR4 aliased to DR6 by default. With Debug Extensions on,
// access to DR4 causes #UD
#if BX_CPU_LEVEL >= 4
if ( (i->nnn == 4) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) {
// Debug extensions on
BX_INFO(("MOV_DdRd: access to DR4 causes #UD"));
UndefinedOpcode(i);
}
#endif
#if BX_CPU_LEVEL <= 4
// On 386/486 bit12 is settable
BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) |
(val_32 & 0x0000f00f);
#else
// On Pentium+, bit12 is always zero
BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) |
(val_32 & 0x0000e00f);
#endif
break;
case 5: // DR5
case 7: // DR7
// Note: 486+ ignore GE and LE flags. On the 386, exact
// data breakpoint matching does not occur unless it is enabled
// by setting the LE and/or GE flags.
// DR5 aliased to DR7 by default. With Debug Extensions on,
// access to DR5 causes #UD
#if BX_CPU_LEVEL >= 4
if ( (i->nnn == 5) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) {
// Debug extensions (CR4.DE) on
BX_INFO(("MOV_DdRd: access to DR5 causes #UD"));
UndefinedOpcode(i);
}
#endif
// Some sanity checks...
if ( val_32 & 0x00002000 ) {
BX_PANIC(("MOV_DdRd: GD bit not supported yet"));
// Note: processor clears GD upon entering debug exception
// handler, to allow access to the debug registers
}
if ( (((val_32>>16) & 3)==2) ||
(((val_32>>20) & 3)==2) ||
(((val_32>>24) & 3)==2) ||
(((val_32>>28) & 3)==2) ) {
// IO breakpoints (10b) are not yet supported.
BX_PANIC(("MOV_DdRd: write of %08x contains IO breakpoint",
val_32));
}
if ( (((val_32>>18) & 3)==2) ||
(((val_32>>22) & 3)==2) ||
(((val_32>>26) & 3)==2) ||
(((val_32>>30) & 3)==2) ) {
// LEN0..3 contains undefined length specifier (10b)
BX_PANIC(("MOV_DdRd: write of %08x contains undefined LENx",
val_32));
}
if ( ((((val_32>>16) & 3)==0) && (((val_32>>18) & 3)!=0)) ||
((((val_32>>20) & 3)==0) && (((val_32>>22) & 3)!=0)) ||
((((val_32>>24) & 3)==0) && (((val_32>>26) & 3)!=0)) ||
((((val_32>>28) & 3)==0) && (((val_32>>30) & 3)!=0)) ) {
// Instruction breakpoint with LENx not 00b (1-byte length)
BX_PANIC(("MOV_DdRd: write of %08x, R/W=00b LEN!=00b",
val_32));
}
#if BX_CPU_LEVEL <= 4
// 386/486: you can play with all the bits except b10 is always 1
BX_CPU_THIS_PTR dr7 = val_32 | 0x00000400;
#else
// Pentium+: bits15,14,12 are hardwired to 0, rest are settable.
// Even bits 11,10 are changeable though reserved.
BX_CPU_THIS_PTR dr7 = (val_32 & 0xffff2fff) | 0x00000400;
#endif
break;
default:
BX_PANIC(("MOV_DdRd: control register index out of range"));
break;
}
#endif
}
void
BX_CPU_C::MOV_RdDd(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOV_RdDd: not supported on < 386"));
#else
Bit32u val_32;
if (v8086_mode()) {
BX_INFO(("MOV_RdDd: v8086 mode causes #GP"));
exception(BX_GP_EXCEPTION, 0, 0);
}
if (i->mod != 0xc0) {
BX_PANIC(("MOV_RdDd(): rm field not a register!"));
UndefinedOpcode(i);
}
if (protected_mode() && (CPL!=0)) {
BX_INFO(("MOV_RdDd: CPL!=0 causes #GP"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
if (bx_dbg.dreg)
BX_INFO(("MOV_RdDd: DR%u not implemented yet", i->nnn));
switch (i->nnn) {
case 0: // DR0
val_32 = BX_CPU_THIS_PTR dr0;
break;
case 1: // DR1
val_32 = BX_CPU_THIS_PTR dr1;
break;
case 2: // DR2
val_32 = BX_CPU_THIS_PTR dr2;
break;
case 3: // DR3
val_32 = BX_CPU_THIS_PTR dr3;
break;
case 4: // DR4
case 6: // DR6
// DR4 aliased to DR6 by default. With Debug Extensions on,
// access to DR4 causes #UD
#if BX_CPU_LEVEL >= 4
if ( (i->nnn == 4) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) {
// Debug extensions on
BX_INFO(("MOV_RdDd: access to DR4 causes #UD"));
UndefinedOpcode(i);
}
#endif
val_32 = BX_CPU_THIS_PTR dr6;
break;
case 5: // DR5
case 7: // DR7
// DR5 aliased to DR7 by default. With Debug Extensions on,
// access to DR5 causes #UD
#if BX_CPU_LEVEL >= 4
if ( (i->nnn == 5) && (BX_CPU_THIS_PTR cr4 & 0x00000008) ) {
// Debug extensions on
BX_INFO(("MOV_RdDd: access to DR5 causes #UD"));
UndefinedOpcode(i);
}
#endif
val_32 = BX_CPU_THIS_PTR dr7;
break;
default:
BX_PANIC(("MOV_RdDd: control register index out of range"));
val_32 = 0;
}
BX_WRITE_32BIT_REG(i->rm, val_32);
#endif
}
void
BX_CPU_C::LMSW_Ew(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
BX_PANIC(("LMSW_Ew(): not supported on 8086!"));
#else
Bit16u msw;
Bit32u cr0;
if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported"));
if ( protected_mode() ) {
if ( CPL != 0 ) {
BX_INFO(("LMSW: CPL != 0, CPL=%u", (unsigned) CPL));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
}
if (i->mod == 0xc0) {
msw = BX_READ_16BIT_REG(i->rm);
}
else {
read_virtual_word(i->seg, i->rm_addr, &msw);
}
// LMSW does not affect PG,CD,NW,AM,WP,NE,ET bits, and cannot clear PE
// LMSW cannot clear PE
if ( ((msw & 0x0001)==0) && BX_CPU_THIS_PTR cr0.pe ) {
msw |= 0x0001; // adjust PE bit to current value of 1
}
msw &= 0x000f; // LMSW only affects last 4 flags
cr0 = (BX_CPU_THIS_PTR cr0.val32 & 0xfffffff0) | msw;
SetCR0(cr0);
#endif /* BX_CPU_LEVEL < 2 */
}
void
BX_CPU_C::SMSW_Ew(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
BX_PANIC(("SMSW_Ew: not supported yet!"));
#else
Bit16u msw;
#if BX_CPU_LEVEL == 2
msw = 0xfff0; /* 80286 init value */
msw |= (BX_CPU_THIS_PTR cr0.ts << 3) |
(BX_CPU_THIS_PTR cr0.em << 2) |
(BX_CPU_THIS_PTR cr0.mp << 1) |
BX_CPU_THIS_PTR cr0.pe;
#else /* 386+ */
/* reserved bits 0 ??? */
/* should NE bit be included here ??? */
// should ET bit be included here (AW)
msw = (BX_CPU_THIS_PTR cr0.ts << 3) |
(BX_CPU_THIS_PTR cr0.em << 2) |
(BX_CPU_THIS_PTR cr0.mp << 1) |
BX_CPU_THIS_PTR cr0.pe;
#endif
if (i->mod == 0xc0) {
if (i->os_32) {
BX_WRITE_32BIT_REG(i->rm, msw); // zeros out high 16bits
}
else {
BX_WRITE_16BIT_REG(i->rm, msw);
}
}
else {
write_virtual_word(i->seg, i->rm_addr, &msw);
}
#endif
}
void
BX_CPU_C::MOV_CdRd(BxInstruction_t *i)
{
// mov general register data to control register
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOV_CdRd: not supported on < 386"));
#else
Bit32u val_32;
if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported"));
/* NOTES:
* 32bit operands always used
* r/m field specifies general register
* mod field should always be 11 binary
* reg field specifies which special register
*/
if (i->mod != 0xc0) {
BX_PANIC(("MOV_CdRd(): rm field not a register!"));
}
invalidate_prefetch_q();
if (protected_mode() && CPL!=0) {
BX_PANIC(("MOV_CdRd: CPL!=0"));
/* #GP(0) if CPL is not 0 */
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
val_32 = BX_READ_32BIT_REG(i->rm);
switch (i->nnn) {
case 0: // CR0 (MSW)
// BX_INFO(("MOV_CdRd:CR0: R32 = %08x\n @CS:EIP %04x:%04x ",
// (unsigned) val_32,
// (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
// (unsigned) BX_CPU_THIS_PTR eip));
SetCR0(val_32);
break;
case 1: /* CR1 */
BX_PANIC(("MOV_CdRd: CR1 not implemented yet"));
break;
case 2: /* CR2 */
BX_DEBUG(("MOV_CdRd: CR2 not implemented yet"));
BX_DEBUG(("MOV_CdRd: CR2 = reg"));
BX_CPU_THIS_PTR cr2 = val_32;
break;
case 3: // CR3
if (bx_dbg.creg)
BX_INFO(("MOV_CdRd:CR3 = %08x", (unsigned) val_32));
// Reserved bits take on value of MOV instruction
CR3_change(val_32);
BX_INSTR_TLB_CNTRL(BX_INSTR_MOV_CR3, val_32);
break;
case 4: // CR4
#if BX_CPU_LEVEL == 3
BX_PANIC(("MOV_CdRd: write to CR4 of 0x%08x on 386",
val_32));
UndefinedOpcode(i);
#else
// Protected mode: #GP(0) if attempt to write a 1 to
// any reserved bit of CR4
BX_INFO(("MOV_CdRd: ignoring write to CR4 of 0x%08x",
val_32));
if (val_32) {
BX_INFO(("MOV_CdRd: (CR4) write of 0x%08x not supported!",
val_32));
}
// Only allow writes of 0 to CR4 for now.
// Writes to bits in CR4 should not be 1s as CPUID
// returns not-supported for all of these features.
BX_CPU_THIS_PTR cr4 = 0;
#endif
break;
default:
BX_PANIC(("MOV_CdRd: control register index out of range"));
break;
}
#endif
}
void
BX_CPU_C::MOV_RdCd(BxInstruction_t *i)
{
// mov control register data to register
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOV_RdCd: not supported on < 386"));
#else
Bit32u val_32;
if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported"));
/* NOTES:
* 32bit operands always used
* r/m field specifies general register
* mod field should always be 11 binary
* reg field specifies which special register
*/
if (i->mod != 0xc0) {
BX_PANIC(("MOV_RdCd(): rm field not a register!"));
}
if (protected_mode() && CPL!=0) {
BX_PANIC(("MOV_RdCd: CPL!=0"));
/* #GP(0) if CPL is not 0 */
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
switch (i->nnn) {
case 0: // CR0 (MSW)
val_32 = BX_CPU_THIS_PTR cr0.val32;
#if 0
BX_INFO(("MOV_RdCd:CR0: R32 = %08x\n @CS:EIP %04x:%04x",
(unsigned) val_32,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
(unsigned) BX_CPU_THIS_PTR eip));
#endif
break;
case 1: /* CR1 */
BX_PANIC(("MOV_RdCd: CR1 not implemented yet"));
val_32 = 0;
break;
case 2: /* CR2 */
if (bx_dbg.creg)
BX_INFO(("MOV_RdCd: CR2"));
val_32 = BX_CPU_THIS_PTR cr2;
break;
case 3: // CR3
if (bx_dbg.creg)
BX_INFO(("MOV_RdCd: reading CR3"));
val_32 = BX_CPU_THIS_PTR cr3;
break;
case 4: // CR4
#if BX_CPU_LEVEL == 3
val_32 = 0;
BX_INFO(("MOV_RdCd: read of CR4 causes #UD"));
UndefinedOpcode(i);
#else
BX_INFO(("MOV_RdCd: read of CR4"));
val_32 = BX_CPU_THIS_PTR cr4;
#endif
break;
default:
BX_PANIC(("MOV_RdCd: control register index out of range"));
val_32 = 0;
}
BX_WRITE_32BIT_REG(i->rm, val_32);
#endif
}
void
BX_CPU_C::MOV_TdRd(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOV_TdRd:"));
#elif BX_CPU_LEVEL <= 4
BX_PANIC(("MOV_TdRd:"));
#else
// Pentium+ does not have TRx. They were redesigned using the MSRs.
BX_INFO(("MOV_TdRd: causes #UD"));
UndefinedOpcode(i);
#endif
}
void
BX_CPU_C::MOV_RdTd(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOV_RdTd:"));
#elif BX_CPU_LEVEL <= 4
BX_PANIC(("MOV_RdTd:"));
#else
// Pentium+ does not have TRx. They were redesigned using the MSRs.
BX_INFO(("MOV_RdTd: causes #UD"));
UndefinedOpcode(i);
#endif
}
void
BX_CPU_C::LOADALL(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 2
BX_PANIC(("undocumented LOADALL instruction not supported on 8086"));
#else
Bit16u msw, tr, flags, ip, ldtr;
Bit16u ds_raw, ss_raw, cs_raw, es_raw;
Bit16u di, si, bp, sp, bx, dx, cx, ax;
Bit16u base_15_0, limit;
Bit8u base_23_16, access;
if (v8086_mode()) BX_PANIC(("proc_ctrl: v8086 mode unsupported"));
#if BX_CPU_LEVEL > 2
BX_PANIC(("loadall: not implemented for 386"));
/* ??? need to set G and other bits, and compute .limit_scaled also */
/* for all segments CS,DS,SS,... */
#endif
if (BX_CPU_THIS_PTR cr0.pe) {
BX_PANIC((
"LOADALL not yet supported for protected mode"));
}
BX_PANIC(("LOADALL: handle CR0.val32"));
/* MSW */
BX_CPU_THIS_PTR mem->read_physical(this, 0x806, 2, &msw);
BX_CPU_THIS_PTR cr0.pe = (msw & 0x01); msw >>= 1;
BX_CPU_THIS_PTR cr0.mp = (msw & 0x01); msw >>= 1;
BX_CPU_THIS_PTR cr0.em = (msw & 0x01); msw >>= 1;
BX_CPU_THIS_PTR cr0.ts = (msw & 0x01);
//BX_INFO(("LOADALL: pe=%u, mp=%u, em=%u, ts=%u",
// (unsigned) BX_CPU_THIS_PTR cr0.pe, (unsigned) BX_CPU_THIS_PTR cr0.mp,
// (unsigned) BX_CPU_THIS_PTR cr0.em, (unsigned) BX_CPU_THIS_PTR cr0.ts));
if (BX_CPU_THIS_PTR cr0.pe || BX_CPU_THIS_PTR cr0.mp || BX_CPU_THIS_PTR cr0.em || BX_CPU_THIS_PTR cr0.ts)
BX_PANIC(("LOADALL set PE, MP, EM or TS bits in MSW!"));
/* TR */
BX_CPU_THIS_PTR mem->read_physical(this, 0x816, 2, &tr);
BX_CPU_THIS_PTR tr.selector.value = tr;
BX_CPU_THIS_PTR tr.selector.rpl = (tr & 0x03); tr >>= 2;
BX_CPU_THIS_PTR tr.selector.ti = (tr & 0x01); tr >>= 1;
BX_CPU_THIS_PTR tr.selector.index = tr;
BX_CPU_THIS_PTR mem->read_physical(this, 0x860, 2, &base_15_0);
BX_CPU_THIS_PTR mem->read_physical(this, 0x862, 1, &base_23_16);
BX_CPU_THIS_PTR mem->read_physical(this, 0x863, 1, &access);
BX_CPU_THIS_PTR mem->read_physical(this, 0x864, 2, &limit);
BX_CPU_THIS_PTR tr.cache.valid =
BX_CPU_THIS_PTR tr.cache.p = (access & 0x80) >> 7;
BX_CPU_THIS_PTR tr.cache.dpl = (access & 0x60) >> 5;
BX_CPU_THIS_PTR tr.cache.segment = (access & 0x10) >> 4;
// don't allow busy bit in tr.cache.type, so bit 2 is masked away too.
BX_CPU_THIS_PTR tr.cache.type = (access & 0x0d);
BX_CPU_THIS_PTR tr.cache.u.tss286.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR tr.cache.u.tss286.limit = limit;
if ( (BX_CPU_THIS_PTR tr.selector.value & 0xfffc) == 0 ) {
BX_CPU_THIS_PTR tr.cache.valid = 0;
}
if ( BX_CPU_THIS_PTR tr.cache.valid == 0 ) {
}
if ( BX_CPU_THIS_PTR tr.cache.u.tss286.limit < 43 ) {
BX_CPU_THIS_PTR tr.cache.valid = 0;
}
if ( BX_CPU_THIS_PTR tr.cache.type != 1 ) {
BX_CPU_THIS_PTR tr.cache.valid = 0;
}
if ( BX_CPU_THIS_PTR tr.cache.segment ) {
BX_CPU_THIS_PTR tr.cache.valid = 0;
}
if (BX_CPU_THIS_PTR tr.cache.valid==0) {
BX_CPU_THIS_PTR tr.cache.u.tss286.base = 0;
BX_CPU_THIS_PTR tr.cache.u.tss286.limit = 0;
BX_CPU_THIS_PTR tr.cache.p = 0;
BX_CPU_THIS_PTR tr.selector.value = 0;
BX_CPU_THIS_PTR tr.selector.index = 0;
BX_CPU_THIS_PTR tr.selector.ti = 0;
BX_CPU_THIS_PTR tr.selector.rpl = 0;
}
/* FLAGS */
BX_CPU_THIS_PTR mem->read_physical(this, 0x818, 2, &flags);
write_flags(flags, 1, 1);
/* IP */
BX_CPU_THIS_PTR mem->read_physical(this, 0x81a, 2, &ip);
IP = ip;
/* LDTR */
BX_CPU_THIS_PTR mem->read_physical(this, 0x81c, 2, &ldtr);
BX_CPU_THIS_PTR ldtr.selector.value = ldtr;
BX_CPU_THIS_PTR ldtr.selector.rpl = (ldtr & 0x03); ldtr >>= 2;
BX_CPU_THIS_PTR ldtr.selector.ti = (ldtr & 0x01); ldtr >>= 1;
BX_CPU_THIS_PTR ldtr.selector.index = ldtr;
if ( (BX_CPU_THIS_PTR ldtr.selector.value & 0xfffc) == 0 ) {
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
BX_CPU_THIS_PTR ldtr.cache.p = 0;
BX_CPU_THIS_PTR ldtr.cache.segment = 0;
BX_CPU_THIS_PTR ldtr.cache.type = 0;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = 0;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = 0;
BX_CPU_THIS_PTR ldtr.selector.value = 0;
BX_CPU_THIS_PTR ldtr.selector.index = 0;
BX_CPU_THIS_PTR ldtr.selector.ti = 0;
}
else {
BX_CPU_THIS_PTR mem->read_physical(this, 0x854, 2, &base_15_0);
BX_CPU_THIS_PTR mem->read_physical(this, 0x856, 1, &base_23_16);
BX_CPU_THIS_PTR mem->read_physical(this, 0x857, 1, &access);
BX_CPU_THIS_PTR mem->read_physical(this, 0x858, 2, &limit);
BX_CPU_THIS_PTR ldtr.cache.valid =
BX_CPU_THIS_PTR ldtr.cache.p = access >> 7;
BX_CPU_THIS_PTR ldtr.cache.dpl = (access >> 5) & 0x03;
BX_CPU_THIS_PTR ldtr.cache.segment = (access >> 4) & 0x01;
BX_CPU_THIS_PTR ldtr.cache.type = (access & 0x0f);
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = limit;
if (access == 0) {
BX_PANIC(("loadall: LDTR case access byte=0."));
}
if ( BX_CPU_THIS_PTR ldtr.cache.valid==0 ) {
BX_PANIC(("loadall: ldtr.valid=0"));
}
if (BX_CPU_THIS_PTR ldtr.cache.segment) { /* not a system segment */
BX_INFO((" AR byte = %02x", (unsigned) access));
BX_PANIC(("loadall: LDTR descriptor cache loaded with non system segment"));
}
if ( BX_CPU_THIS_PTR ldtr.cache.type != 2 ) {
BX_PANIC(("loadall: LDTR.type(%u) != 2", (unsigned) (access & 0x0f)));
}
}
/* DS */
BX_CPU_THIS_PTR mem->read_physical(this, 0x81e, 2, &ds_raw);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = ds_raw;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl = (ds_raw & 0x03); ds_raw >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti = (ds_raw & 0x01); ds_raw >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index = ds_raw;
BX_CPU_THIS_PTR mem->read_physical(this, 0x848, 2, &base_15_0);
BX_CPU_THIS_PTR mem->read_physical(this, 0x84a, 1, &base_23_16);
BX_CPU_THIS_PTR mem->read_physical(this, 0x84b, 1, &access);
BX_CPU_THIS_PTR mem->read_physical(this, 0x84c, 2, &limit);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = limit;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = (access & 0x03); access >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = (access & 0x01);
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value & 0xfffc) == 0 ) {
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid==0 ||
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment==0) {
BX_PANIC(("loadall: DS invalid"));
}
/* SS */
BX_CPU_THIS_PTR mem->read_physical(this, 0x820, 2, &ss_raw);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = ss_raw;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = (ss_raw & 0x03); ss_raw >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = (ss_raw & 0x01); ss_raw >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = ss_raw;
BX_CPU_THIS_PTR mem->read_physical(this, 0x842, 2, &base_15_0);
BX_CPU_THIS_PTR mem->read_physical(this, 0x844, 1, &base_23_16);
BX_CPU_THIS_PTR mem->read_physical(this, 0x845, 1, &access);
BX_CPU_THIS_PTR mem->read_physical(this, 0x846, 2, &limit);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = limit;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl = (access & 0x03); access >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p = (access & 0x01);
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value & 0xfffc) == 0 ) {
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid==0 ||
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment==0) {
BX_PANIC(("loadall: SS invalid"));
}
/* CS */
BX_CPU_THIS_PTR mem->read_physical(this, 0x822, 2, &cs_raw);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = cs_raw;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = (cs_raw & 0x03); cs_raw >>= 2;
//BX_INFO(("LOADALL: setting cs.selector.rpl to %u",
// (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl));
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = (cs_raw & 0x01); cs_raw >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = cs_raw;
BX_CPU_THIS_PTR mem->read_physical(this, 0x83c, 2, &base_15_0);
BX_CPU_THIS_PTR mem->read_physical(this, 0x83e, 1, &base_23_16);
BX_CPU_THIS_PTR mem->read_physical(this, 0x83f, 1, &access);
BX_CPU_THIS_PTR mem->read_physical(this, 0x840, 2, &limit);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = limit;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = (access & 0x03); access >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = (access & 0x01);
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value & 0xfffc) == 0 ) {
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid==0 ||
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment==0) {
BX_PANIC(("loadall: CS invalid"));
}
/* ES */
BX_CPU_THIS_PTR mem->read_physical(this, 0x824, 2, &es_raw);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = es_raw;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl = (es_raw & 0x03); es_raw >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti = (es_raw & 0x01); es_raw >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index = es_raw;
BX_CPU_THIS_PTR mem->read_physical(this, 0x836, 2, &base_15_0);
BX_CPU_THIS_PTR mem->read_physical(this, 0x838, 1, &base_23_16);
BX_CPU_THIS_PTR mem->read_physical(this, 0x839, 1, &access);
BX_CPU_THIS_PTR mem->read_physical(this, 0x83a, 2, &limit);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit = limit;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.a = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.r_w = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.executable = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl = (access & 0x03); access >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p = (access & 0x01);
#if 0
BX_INFO(("cs.dpl = %02x", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl));
BX_INFO(("ss.dpl = %02x", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl));
BX_INFO(("BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].dpl = %02x", (unsigned) BX_CPU_THIS_PTR ds.cache.dpl));
BX_INFO(("BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].dpl = %02x", (unsigned) BX_CPU_THIS_PTR es.cache.dpl));
BX_INFO(("LOADALL: setting cs.selector.rpl to %u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl));
BX_INFO(("LOADALL: setting ss.selector.rpl to %u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl));
BX_INFO(("LOADALL: setting ds.selector.rpl to %u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl));
BX_INFO(("LOADALL: setting es.selector.rpl to %u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl));
#endif
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value & 0xfffc) == 0 ) {
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid==0 ||
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment==0) {
BX_PANIC(("loadall: ES invalid"));
}
/* DI */
BX_CPU_THIS_PTR mem->read_physical(this, 0x826, 2, &di);
DI = di;
/* SI */
BX_CPU_THIS_PTR mem->read_physical(this, 0x828, 2, &si);
SI = si;
/* BP */
BX_CPU_THIS_PTR mem->read_physical(this, 0x82a, 2, &bp);
BP = bp;
/* SP */
BX_CPU_THIS_PTR mem->read_physical(this, 0x82c, 2, &sp);
SP = sp;
/* BX */
BX_CPU_THIS_PTR mem->read_physical(this, 0x82e, 2, &bx);
BX = bx;
/* DX */
BX_CPU_THIS_PTR mem->read_physical(this, 0x830, 2, &dx);
DX = dx;
/* CX */
BX_CPU_THIS_PTR mem->read_physical(this, 0x832, 2, &cx);
CX = cx;
/* AX */
BX_CPU_THIS_PTR mem->read_physical(this, 0x834, 2, &ax);
AX = ax;
/* GDTR */
BX_CPU_THIS_PTR mem->read_physical(this, 0x84e, 2, &base_15_0);
BX_CPU_THIS_PTR mem->read_physical(this, 0x850, 1, &base_23_16);
BX_CPU_THIS_PTR mem->read_physical(this, 0x851, 1, &access);
BX_CPU_THIS_PTR mem->read_physical(this, 0x852, 2, &limit);
BX_CPU_THIS_PTR gdtr.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR gdtr.limit = limit;
#if 0
if (access)
BX_INFO(("LOADALL: GDTR access bits not 0 (%02x).",
(unsigned) access));
#endif
/* IDTR */
BX_CPU_THIS_PTR mem->read_physical(this, 0x85a, 2, &base_15_0);
BX_CPU_THIS_PTR mem->read_physical(this, 0x85c, 1, &base_23_16);
BX_CPU_THIS_PTR mem->read_physical(this, 0x85d, 1, &access);
BX_CPU_THIS_PTR mem->read_physical(this, 0x85e, 2, &limit);
BX_CPU_THIS_PTR idtr.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR idtr.limit = limit;
#endif
}
void
BX_CPU_C::CPUID(BxInstruction_t *i)
{
#if BX_CPU_LEVEL >= 4
unsigned type, family, model, stepping, features;
#endif
invalidate_prefetch_q();
#if BX_CPU_LEVEL >= 4
switch (EAX) {
case 0:
// EAX: highest input value understood by CPUID
// EBX: vendor ID string
// EDX: vendor ID string
// ECX: vendor ID string
EAX = 1; // 486 or pentium
EBX = 0x756e6547; // "Genu"
EDX = 0x49656e69; // "ineI"
ECX = 0x6c65746e; // "ntel"
break;
case 1:
// EAX[3:0] Stepping ID
// EAX[7:4] Model: starts at 1
// EAX[11:8] Family: 4=486, 5=Pentium, 6=PPro
// EAX[13:12] Type: 0=OEM,1=overdrive,2=dual cpu,3=reserved
// EAX[31:14] Reserved
// EBX: Reserved (0)
// ECX: Reserved (0)
// EDX: Feature Flags
// [0:0] FPU on chip
// [1:1] VME: Virtual-8086 Mode enhancements
// [2:2] DE: Debug Extensions (I/O breakpoints)
// [3:3] PSE: Page Size Extensions
// [4:4] TSC: Time Stamp Counter
// [5:5] MSR: RDMSR and WRMSR support
// [6:6] PAE: Physical Address Extensions
// [7:7] MCE: Machine Check Exception
// [8:8] CXS: CMPXCHG8B instruction
// [9:9] APIC: APIC on Chip
// [11:10] Reserved
// [12:12] MTRR: Memory Type Range Reg
// [13:13] PGE/PTE Global Bit
// [14:14] MCA: Machine Check Architecture
// [15:15] CMOV: Cond Mov/Cmp Instructions
// [22:16] Reserved
// [23:23] MMX Technology
// [31:24] Reserved
features = 0; // start with none
type = 0; // OEM
#if BX_CPU_LEVEL == 4
family = 4;
# if BX_SUPPORT_FPU
// 486dx
model = 1;
stepping = 3;
features |= 0x01;
# else
// 486sx
model = 2;
stepping = 3;
# endif
#elif BX_CPU_LEVEL == 5
family = 5;
model = 1; // Pentium (60,66)
stepping = 3; // ???
features |= (1<<4); // implement TSC
# if BX_SUPPORT_FPU
features |= 0x01;
# endif
#elif BX_CPU_LEVEL == 6
family = 6;
model = 1; // Pentium Pro
stepping = 3; // ???
features |= (1<<4); // implement TSC
# if BX_SUPPORT_APIC
features |= (1<<9); // APIC on chip
# endif
# if BX_SUPPORT_FPU
features |= 0x01; // has FPU
# endif
#else
BX_PANIC(("CPUID: not implemented for > 6"));
#endif
EAX = (family <<8) | (model<<4) | stepping;
EBX = ECX = 0; // reserved
EDX = features;
break;
default:
EAX = EBX = ECX = EDX = 0; // Reserved, undefined
break;
}
#else
BX_PANIC(("CPUID: not available on < late 486"));
#endif
}
void
BX_CPU_C::SetCR0(Bit32u val_32)
{
// from either MOV_CdRd() or debug functions
// protection checks made already or forcing from debug
Boolean prev_pe, prev_pg;
prev_pe = BX_CPU_THIS_PTR cr0.pe;
prev_pg = BX_CPU_THIS_PTR cr0.pg;
BX_CPU_THIS_PTR cr0.pe = val_32 & 0x01;
BX_CPU_THIS_PTR cr0.mp = (val_32 >> 1) & 0x01;
BX_CPU_THIS_PTR cr0.em = (val_32 >> 2) & 0x01;
BX_CPU_THIS_PTR cr0.ts = (val_32 >> 3) & 0x01;
// cr0.et is hardwired to 1
#if BX_CPU_LEVEL >= 4
BX_CPU_THIS_PTR cr0.ne = (val_32 >> 5) & 0x01;
BX_CPU_THIS_PTR cr0.wp = (val_32 >> 16) & 0x01;
BX_CPU_THIS_PTR cr0.am = (val_32 >> 18) & 0x01;
BX_CPU_THIS_PTR cr0.nw = (val_32 >> 29) & 0x01;
BX_CPU_THIS_PTR cr0.cd = (val_32 >> 30) & 0x01;
#endif
BX_CPU_THIS_PTR cr0.pg = (val_32 >> 31) & 0x01;
// handle reserved bits behaviour
#if BX_CPU_LEVEL == 3
BX_CPU_THIS_PTR cr0.val32 = val_32 | 0x7ffffff0;
#elif BX_CPU_LEVEL == 4
BX_CPU_THIS_PTR cr0.val32 = (val_32 | 0x00000010) & 0xe005003f;
#elif BX_CPU_LEVEL == 5
BX_CPU_THIS_PTR cr0.val32 = val_32 | 0x00000010;
#elif BX_CPU_LEVEL == 6
BX_CPU_THIS_PTR cr0.val32 = (val_32 | 0x00000010) & 0xe005003f;
#else
#error "MOV_CdRd: implement reserved bits behaviour for this CPU_LEVEL"
#endif
//if (BX_CPU_THIS_PTR cr0.ts)
// BX_INFO(("MOV_CdRd:CR0.TS set 0x%x", (unsigned) val_32));
if (prev_pe==0 && BX_CPU_THIS_PTR cr0.pe) {
enter_protected_mode();
}
else if (prev_pe==1 && BX_CPU_THIS_PTR cr0.pe==0) {
enter_real_mode();
}
if (prev_pg==0 && BX_CPU_THIS_PTR cr0.pg)
enable_paging();
else if (prev_pg==1 && BX_CPU_THIS_PTR cr0.pg==0)
disable_paging();
}
void
BX_CPU_C::RSM(BxInstruction_t *i)
{
#if BX_CPU_LEVEL >= 4
invalidate_prefetch_q();
BX_PANIC(("RSM: System Management Mode not implemented yet"));
#else
UndefinedOpcode(i);
#endif
}
void
BX_CPU_C::RDTSC(BxInstruction_t *i)
{
#if BX_CPU_LEVEL >= 5
Boolean tsd = (BX_CPU_THIS_PTR cr4 & 4)? 1 : 0;
Boolean cpl = CPL;
if ((tsd==0) || (tsd==1 && cpl==0)) {
// return ticks
Bit64u ticks = bx_pc_system.time_ticks ();
EAX = (Bit32u) (ticks & 0xffffffff);
EDX = (Bit32u) ((ticks >> 32) & 0xffffffff);
//BX_INFO(("RDTSC: returning EDX:EAX = %08x:%08x", EDX, EAX));
} else {
// not allowed to use RDTSC!
exception (BX_GP_EXCEPTION, 0, 0);
}
#else
UndefinedOpcode(i);
#endif
}
void
BX_CPU_C::RDMSR(BxInstruction_t *i)
{
#if BX_CPU_LEVEL >= 5
BX_ERROR(("RDMSR: not implemented yet"));
UndefinedOpcode(i);
#else
UndefinedOpcode(i);
#endif
}
void
BX_CPU_C::WRMSR(BxInstruction_t *i)
{
#if BX_CPU_LEVEL >= 5
invalidate_prefetch_q();
BX_PANIC(( "WRMSR: not implemented yet"));
#else
UndefinedOpcode(i);
#endif
}
#if BX_X86_DEBUGGER
Bit32u
BX_CPU_C::hwdebug_compare(Bit32u laddr_0, unsigned size,
unsigned opa, unsigned opb)
{
// Support x86 hardware debug facilities (DR0..DR7)
Bit32u dr7 = BX_CPU_THIS_PTR dr7;
Boolean ibpoint_found = 0;
Bit32u laddr_n = laddr_0 + (size - 1);
Bit32u dr0, dr1, dr2, dr3;
Bit32u dr0_n, dr1_n, dr2_n, dr3_n;
Bit32u len0, len1, len2, len3;
static unsigned alignment_mask[4] =
// 00b=1 01b=2 10b=undef 11b=4
{ 0xffffffff, 0xfffffffe, 0xffffffff, 0xfffffffc };
Bit32u dr0_op, dr1_op, dr2_op, dr3_op;
len0 = (dr7>>18) & 3;
len1 = (dr7>>22) & 3;
len2 = (dr7>>26) & 3;
len3 = (dr7>>30) & 3;
dr0 = BX_CPU_THIS_PTR dr0 & alignment_mask[len0];
dr1 = BX_CPU_THIS_PTR dr1 & alignment_mask[len1];
dr2 = BX_CPU_THIS_PTR dr2 & alignment_mask[len2];
dr3 = BX_CPU_THIS_PTR dr3 & alignment_mask[len3];
dr0_n = dr0 + len0;
dr1_n = dr1 + len1;
dr2_n = dr2 + len2;
dr3_n = dr3 + len3;
dr0_op = (dr7>>16) & 3;
dr1_op = (dr7>>20) & 3;
dr2_op = (dr7>>24) & 3;
dr3_op = (dr7>>28) & 3;
// See if this instruction address matches any breakpoints
if ( (dr7 & 0x00000003) ) {
if ( (dr0_op==opa || dr0_op==opb) &&
(laddr_0 <= dr0_n) &&
(laddr_n >= dr0) )
ibpoint_found = 1;
}
if ( (dr7 & 0x0000000c) ) {
if ( (dr1_op==opa || dr1_op==opb) &&
(laddr_0 <= dr1_n) &&
(laddr_n >= dr1) )
ibpoint_found = 1;
}
if ( (dr7 & 0x00000030) ) {
if ( (dr2_op==opa || dr2_op==opb) &&
(laddr_0 <= dr2_n) &&
(laddr_n >= dr2) )
ibpoint_found = 1;
}
if ( (dr7 & 0x000000c0) ) {
if ( (dr3_op==opa || dr3_op==opb) &&
(laddr_0 <= dr3_n) &&
(laddr_n >= dr3) )
ibpoint_found = 1;
}
// If *any* enabled breakpoints matched, then we need to
// set status bits for *all* breakpoints, even disabled ones,
// as long as they meet the other breakpoint criteria.
// This code is similar to that above, only without the
// breakpoint enabled check. Seems weird to duplicate effort,
// but its more efficient to do it this way.
if (ibpoint_found) {
// dr6_mask is the return value. These bits represent the bits to
// be OR'd into DR6 as a result of the debug event.
Bit32u dr6_mask=0;
if ( (dr0_op==opa || dr0_op==opb) &&
(laddr_0 <= dr0_n) &&
(laddr_n >= dr0) )
dr6_mask |= 0x01;
if ( (dr1_op==opa || dr1_op==opb) &&
(laddr_0 <= dr1_n) &&
(laddr_n >= dr1) )
dr6_mask |= 0x02;
if ( (dr2_op==opa || dr2_op==opb) &&
(laddr_0 <= dr2_n) &&
(laddr_n >= dr2) )
dr6_mask |= 0x04;
if ( (dr3_op==opa || dr3_op==opb) &&
(laddr_0 <= dr3_n) &&
(laddr_n >= dr3) )
dr6_mask |= 0x08;
return(dr6_mask);
}
return(0);
}
#endif
|