1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
|
/////////////////////////////////////////////////////////////////////////
// $Id: tasking.cc,v 1.9 2001/11/11 04:57:05 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_TASKING
#if BX_CPU_LEVEL >= 2
// Notes:
// ======
// Step 2: TSS descriptor is not busy TS (for IRET); GP (for JMP, CALL, INT)
// returns error code (Task's backlink TSS)???
// * TSS selector must map to GDT
// * TSS is stored in linear address space
// * what to do with I/O Map Base
// * what to do with T flag
// * where to set CR3 and flush paging cache
// * what happens when fault occurs, with some seg regs having valid bit cleared?
// * should check validity of current TR(TSS) before writing into it
//
// ======================
// 286 Task State Segment
// ======================
// dynamic item | hex dec offset
// 0 task LDT selector | 2a 42
// 1 DS selector | 28 40
// 1 SS selector | 26 38
// 1 CS selector | 24 36
// 1 ES selector | 22 34
// 1 DI | 20 32
// 1 SI | 1e 30
// 1 BP | 1c 28
// 1 SP | 1a 26
// 1 BX | 18 24
// 1 DX | 16 22
// 1 CX | 14 20
// 1 AX | 12 18
// 1 flag word | 10 16
// 1 IP (entry point) | 0e 14
// 0 SS for CPL 2 | 0c 12
// 0 SP for CPL 2 | 0a 10
// 0 SS for CPL 1 | 08 08
// 0 SP for CPL 1 | 06 06
// 0 SS for CPL 0 | 04 04
// 0 SP for CPL 0 | 02 02
// back link selector to TSS | 00 00
// ======================
// 386 Task State Segment
// ======================
// |31 16|15 0|
// |I/O Map Base |000000000000000000000|T| 64 static
// |0000000000000000| LDT | 60 static
// |0000000000000000| GS selector | 5c dynamic
// |0000000000000000| FS selector | 58 dynamic
// |0000000000000000| DS selector | 54 dynamic
// |0000000000000000| SS selector | 50 dynamic
// |0000000000000000| CS selector | 4c dynamic
// |0000000000000000| ES selector | 48 dynamic
// | EDI | 44 dynamic
// | ESI | 40 dynamic
// | EBP | 3c dynamic
// | ESP | 38 dynamic
// | EBX | 34 dynamic
// | EDX | 30 dynamic
// | ECX | 2c dynamic
// | EAX | 28 dynamic
// | EFLAGS | 24 dynamic
// | EIP (entry point) | 20 dynamic
// | CR3 (PDPR) | 1c static
// |000000000000000 | SS for CPL 2 | 18 static
// | ESP for CPL 2 | 14 static
// |000000000000000 | SS for CPL 1 | 10 static
// | ESP for CPL 1 | 0c static
// |000000000000000 | SS for CPL 0 | 08 static
// | ESP for CPL 0 | 04 static
// |000000000000000 | back link to prev TSS | 00 dynamic (updated only when return expected)
// ==================================================
// Effect of task switch on Busy, NT, and Link Fields
// ==================================================
// Field jump call/interrupt iret
// ------------------------------------------------------
// new busy bit Set Set No change
// old busy bit Cleared No change Cleared
// new NT flag No change Set No change
// old NT flag No change No change Cleared
// new link No change old TSS selector No change
// old link No change No change No change
// CR0.TS Set Set Set
// Note: I checked 386, 486, and Pentium, and they all exhibited
// exactly the same behaviour as above. There seems to
// be some misprints in the Intel docs.
void
BX_CPU_C::task_switch(bx_selector_t *tss_selector,
bx_descriptor_t *tss_descriptor, unsigned source,
Bit32u dword1, Bit32u dword2)
{
Bit32u obase32; // base address of old TSS
Bit32u nbase32; // base address of new TSS
Bit32u temp32, newCR3;
Bit16u raw_cs_selector, raw_ss_selector, raw_ds_selector, raw_es_selector,
raw_fs_selector, raw_gs_selector, raw_ldt_selector;
Bit16u temp16, trap_word;
bx_selector_t cs_selector, ss_selector, ds_selector, es_selector,
fs_selector, gs_selector, ldt_selector;
bx_descriptor_t cs_descriptor, ss_descriptor, ds_descriptor, es_descriptor,
fs_descriptor, gs_descriptor, ldt_descriptor;
Bit32u old_TSS_max, new_TSS_max, old_TSS_limit, new_TSS_limit;
Bit32u newEAX, newECX, newEDX, newEBX;
Bit32u newESP, newEBP, newESI, newEDI;
Bit32u newEFLAGS, oldEFLAGS, newEIP;
unsigned exception_no;
Bit16u error_code;
//BX_DEBUG(( "TASKING: ENTER" ));
invalidate_prefetch_q();
// Discard any traps and inhibits for new context; traps will
// resume upon return.
BX_CPU_THIS_PTR debug_trap = 0;
BX_CPU_THIS_PTR inhibit_mask = 0;
// The following checks are made before calling task_switch(), for
// JMP & CALL only. These checks are NOT made for exceptions, interrupts, & IRET
//
// 1) TSS DPL must be >= CPL
// 2) TSS DPL must be >= TSS selector RPL
// 3) TSS descriptor is not busy. TS(for IRET); GP(for JMP, CALL, INT)
// Privilege and busy checks done in CALL, JUMP, INT, IRET
exception_no = 256; // no exception
error_code = 0;
oldEFLAGS = read_eflags();
// Gather info about old TSS
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
// sanity check type: cannot have busy bit
BX_ASSERT ((BX_CPU_THIS_PTR tr.cache.type & 2) == 0);
obase32 = BX_CPU_THIS_PTR tr.cache.u.tss286.base;
old_TSS_max = 43;
old_TSS_limit = BX_CPU_THIS_PTR tr.cache.u.tss286.limit;
}
else {
obase32 = BX_CPU_THIS_PTR tr.cache.u.tss386.base;
old_TSS_max = 103;
old_TSS_limit = BX_CPU_THIS_PTR tr.cache.u.tss386.limit_scaled;
}
// Gather info about new TSS
if (tss_descriptor->type <= 3) { // {1,3}
nbase32 = tss_descriptor->u.tss286.base; // new TSS.base
new_TSS_max = 43;
new_TSS_limit = tss_descriptor->u.tss286.limit;
}
else { // tss_descriptor->type = {9,11}
nbase32 = tss_descriptor->u.tss386.base; // new TSS.base
new_TSS_max = 103;
new_TSS_limit = tss_descriptor->u.tss386.limit_scaled;
}
// Task State Seg must be present, else #NP(TSS selector)
if (tss_descriptor->p==0) {
BX_INFO(("task_switch: TSS.p == 0"));
exception(BX_NP_EXCEPTION, tss_selector->value & 0xfffc, 0);
}
// TSS must have valid limit, else #TS(TSS selector)
if (tss_selector->ti ||
tss_descriptor->valid==0 ||
new_TSS_limit < new_TSS_max) {
BX_PANIC(("task_switch(): TR not valid"));
exception(BX_TS_EXCEPTION, tss_selector->value & 0xfffc, 0);
}
#if BX_SUPPORT_PAGING
// Check that old TSS, new TSS, and all segment descriptors
// used in the task switch are paged in.
if (BX_CPU_THIS_PTR cr0.pg) {
//BX_RW, BX_READ, BX_WRITE
// Old TSS
(void) dtranslate_linear(obase32, 0, /*rw*/ BX_WRITE);
(void) dtranslate_linear(obase32+old_TSS_max, 0, /*rw*/ BX_WRITE);
// New TSS
(void) dtranslate_linear(nbase32, 0, /*rw*/ 0);
(void) dtranslate_linear(nbase32+new_TSS_max, 0, /*rw*/ 0);
// ??? fix RW above
// ??? touch old/new TSS descriptors here when necessary.
}
#endif // BX_SUPPORT_PAGING
// Need to fetch all new registers and temporarily store them.
if (tss_descriptor->type <= 3) {
access_linear(nbase32 + 14, 2, 0, BX_READ, &temp16);
newEIP = temp16; // zero out upper word
access_linear(nbase32 + 16, 2, 0, BX_READ, &temp16);
newEFLAGS = temp16;
// incoming TSS is 16bit:
// - upper word of general registers is set to 0xFFFF
// - upper word of eflags is zero'd
// - FS, GS are zero'd
// - upper word of eIP is zero'd
access_linear(nbase32 + 18, 2, 0, BX_READ, &temp16);
newEAX = 0xffff0000 | temp16;
access_linear(nbase32 + 20, 2, 0, BX_READ, &temp16);
newECX = 0xffff0000 | temp16;
access_linear(nbase32 + 22, 2, 0, BX_READ, &temp16);
newEDX = 0xffff0000 | temp16;
access_linear(nbase32 + 24, 2, 0, BX_READ, &temp16);
newEBX = 0xffff0000 | temp16;
access_linear(nbase32 + 26, 2, 0, BX_READ, &temp16);
newESP = 0xffff0000 | temp16;
access_linear(nbase32 + 28, 2, 0, BX_READ, &temp16);
newEBP = 0xffff0000 | temp16;
access_linear(nbase32 + 30, 2, 0, BX_READ, &temp16);
newESI = 0xffff0000 | temp16;
access_linear(nbase32 + 32, 2, 0, BX_READ, &temp16);
newEDI = 0xffff0000 | temp16;
access_linear(nbase32 + 34, 2, 0, BX_READ, &raw_es_selector);
access_linear(nbase32 + 36, 2, 0, BX_READ, &raw_cs_selector);
access_linear(nbase32 + 38, 2, 0, BX_READ, &raw_ss_selector);
access_linear(nbase32 + 40, 2, 0, BX_READ, &raw_ds_selector);
access_linear(nbase32 + 42, 2, 0, BX_READ, &raw_ldt_selector);
raw_fs_selector = 0; // use a NULL selector
raw_gs_selector = 0; // use a NULL selector
// No CR3 change for 286 task switch
newCR3 = 0; // keep compiler happy (not used)
trap_word = 0; // keep compiler happy (not used)
}
else {
access_linear(nbase32 + 0x1c, 4, 0, BX_READ, &newCR3);
access_linear(nbase32 + 0x20, 4, 0, BX_READ, &newEIP);
access_linear(nbase32 + 0x24, 4, 0, BX_READ, &newEFLAGS);
access_linear(nbase32 + 0x28, 4, 0, BX_READ, &newEAX);
access_linear(nbase32 + 0x2c, 4, 0, BX_READ, &newECX);
access_linear(nbase32 + 0x30, 4, 0, BX_READ, &newEDX);
access_linear(nbase32 + 0x34, 4, 0, BX_READ, &newEBX);
access_linear(nbase32 + 0x38, 4, 0, BX_READ, &newESP);
access_linear(nbase32 + 0x3c, 4, 0, BX_READ, &newEBP);
access_linear(nbase32 + 0x40, 4, 0, BX_READ, &newESI);
access_linear(nbase32 + 0x44, 4, 0, BX_READ, &newEDI);
access_linear(nbase32 + 0x48, 2, 0, BX_READ, &raw_es_selector);
access_linear(nbase32 + 0x4c, 2, 0, BX_READ, &raw_cs_selector);
access_linear(nbase32 + 0x50, 2, 0, BX_READ, &raw_ss_selector);
access_linear(nbase32 + 0x54, 2, 0, BX_READ, &raw_ds_selector);
access_linear(nbase32 + 0x58, 2, 0, BX_READ, &raw_fs_selector);
access_linear(nbase32 + 0x5c, 2, 0, BX_READ, &raw_gs_selector);
access_linear(nbase32 + 0x60, 2, 0, BX_READ, &raw_ldt_selector);
access_linear(nbase32 + 0x64, 2, 0, BX_READ, &trap_word);
// I/O Map Base Address ???
}
#if 0
if (ss_descriptor.u.segment.d_b && (tss_descriptor->type<9)) {
BX_DEBUG(( "++++++++++++++++++++++++++" ));
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
exception(BX_SS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
//exception(BX_TS_EXCEPTION, tss_selector->value & 0xfffc, 0);
}
#endif
//
// Step 6: If JMP or IRET, clear busy bit in old task TSS descriptor,
// otherwise leave set.
//
// effect on Busy bit of old task
if ( (source==BX_TASK_FROM_JUMP) || (source==BX_TASK_FROM_IRET) ) {
// Bit is cleared
access_linear(BX_CPU_THIS_PTR gdtr.base +
BX_CPU_THIS_PTR tr.selector.index*8 + 4,
4, 0, BX_READ, &temp32);
temp32 &= ~0x00000200;
access_linear(BX_CPU_THIS_PTR gdtr.base +
BX_CPU_THIS_PTR tr.selector.index*8 + 4,
4, 0, BX_WRITE, &temp32);
}
//
// Step 7: If IRET, clear NT flag in temp image of EFLAGS, otherwise
// leave alone.
//
if (source == BX_TASK_FROM_IRET) {
// NT flags in old task is cleared with an IRET
oldEFLAGS &= ~0x00004000;
}
//
// Step 8: Save dynamic state of old task.
//
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
// sanity check: tr.cache.type cannot have busy bit
BX_ASSERT ((BX_CPU_THIS_PTR tr.cache.type & 2) == 0);
temp16 = IP; access_linear(obase32 + 14, 2, 0, BX_WRITE, &temp16);
temp16 = oldEFLAGS; access_linear(obase32 + 16, 2, 0, BX_WRITE, &temp16);
temp16 = AX; access_linear(obase32 + 18, 2, 0, BX_WRITE, &temp16);
temp16 = CX; access_linear(obase32 + 20, 2, 0, BX_WRITE, &temp16);
temp16 = DX; access_linear(obase32 + 22, 2, 0, BX_WRITE, &temp16);
temp16 = BX; access_linear(obase32 + 24, 2, 0, BX_WRITE, &temp16);
temp16 = SP; access_linear(obase32 + 26, 2, 0, BX_WRITE, &temp16);
temp16 = BP; access_linear(obase32 + 28, 2, 0, BX_WRITE, &temp16);
temp16 = SI; access_linear(obase32 + 30, 2, 0, BX_WRITE, &temp16);
temp16 = DI; access_linear(obase32 + 32, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
access_linear(obase32 + 34, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
access_linear(obase32 + 36, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
access_linear(obase32 + 38, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
access_linear(obase32 + 40, 2, 0, BX_WRITE, &temp16);
}
else {
temp32 = EIP; access_linear(obase32 + 0x20, 4, 0, BX_WRITE, &temp32);
temp32 = oldEFLAGS; access_linear(obase32 + 0x24, 4, 0, BX_WRITE, &temp32);
temp32 = EAX; access_linear(obase32 + 0x28, 4, 0, BX_WRITE, &temp32);
temp32 = ECX; access_linear(obase32 + 0x2c, 4, 0, BX_WRITE, &temp32);
temp32 = EDX; access_linear(obase32 + 0x30, 4, 0, BX_WRITE, &temp32);
temp32 = EBX; access_linear(obase32 + 0x34, 4, 0, BX_WRITE, &temp32);
temp32 = ESP; access_linear(obase32 + 0x38, 4, 0, BX_WRITE, &temp32);
temp32 = EBP; access_linear(obase32 + 0x3c, 4, 0, BX_WRITE, &temp32);
temp32 = ESI; access_linear(obase32 + 0x40, 4, 0, BX_WRITE, &temp32);
temp32 = EDI; access_linear(obase32 + 0x44, 4, 0, BX_WRITE, &temp32);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
access_linear(obase32 + 0x48, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
access_linear(obase32 + 0x4c, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
access_linear(obase32 + 0x50, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
access_linear(obase32 + 0x54, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value;
access_linear(obase32 + 0x58, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value;
access_linear(obase32 + 0x5c, 2, 0, BX_WRITE, &temp16);
}
//
// Commit point. At this point, we commit to the new
// context. If an unrecoverable error occurs in further
// processing, we complete the task switch without performing
// additional access and segment availablility checks and
// generate the appropriate exception prior to beginning
// execution of the new task.
//
// Task switch clears LE/L3/L2/L1/L0 in DR7
BX_CPU_THIS_PTR dr7 &= ~0x00000155;
// effect on link field of new task
if ( source==BX_TASK_FROM_CALL_OR_INT ) {
// set to selector of old task's TSS
temp16 = BX_CPU_THIS_PTR tr.selector.value;
access_linear(nbase32 + 0, 2, 0, BX_WRITE, &temp16);
}
//
// Step 9: If call or interrupt, set the NT flag in the eflags
// image stored in new task's TSS. If IRET or JMP,
// NT is restored from new TSS eflags image. (no change)
//
// effect on NT flag of new task
if ( source==BX_TASK_FROM_CALL_OR_INT ) {
newEFLAGS |= 0x4000; // flag is set
}
//
// Step 10: If CALL, interrupt, or JMP, set busy flag in new task's
// TSS descriptor. If IRET, leave set.
//
if ( (source==BX_TASK_FROM_JUMP) || (source==BX_TASK_FROM_CALL_OR_INT) ) {
// set the new task's busy bit
access_linear(BX_CPU_THIS_PTR gdtr.base + tss_selector->index*8 + 4,
4, 0, BX_READ, &dword2);
dword2 |= 0x00000200;
access_linear(BX_CPU_THIS_PTR gdtr.base + tss_selector->index*8 + 4,
4, 0, BX_WRITE, &dword2);
}
//
// Step 11: Set TS flag in the CR0 image stored in the new task TSS.
//
// set TS bit in CR0 register
BX_CPU_THIS_PTR cr0.ts = 1;
BX_CPU_THIS_PTR cr0.val32 |= 0x00000008;
//
// Step 12: Load the task register with the segment selector and
// descriptor for the new task TSS.
//
BX_CPU_THIS_PTR tr.selector = *tss_selector;
BX_CPU_THIS_PTR tr.cache = *tss_descriptor;
// Reset the busy-flag, because all functions expect non-busy types in
// tr.cache. From Peter Lammich <peterl@sourceforge.net>.
BX_CPU_THIS_PTR tr.cache.type &= ~2;
//
// Step 13: Load the new task (dynamic) state from new TSS.
// Any errors associated with loading and qualification of
// segment descriptors in this step occur in the new task's
// context. State loaded here includes LDTR, CR3,
// EFLAGS, EIP, general purpose registers, and segment
// descriptor parts of the segment registers.
//
if (tss_descriptor->type >= 9) {
CR3_change(newCR3); // Tell paging unit about new cr3 value
BX_DEBUG (("task_switch changing CR3 to 0x%08x\n", newCR3));
BX_INSTR_TLB_CNTRL(BX_INSTR_TASKSWITCH, newCR3);
}
BX_CPU_THIS_PTR prev_eip = EIP = newEIP;
write_eflags(newEFLAGS, 1,1,1,1);
EAX = newEAX;
ECX = newECX;
EDX = newEDX;
EBX = newEBX;
ESP = newESP;
EBP = newEBP;
ESI = newESI;
EDI = newEDI;
// Fill in selectors for all segment registers. If errors
// occur later, the selectors will at least be loaded.
parse_selector(raw_es_selector, &es_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector = es_selector;
parse_selector(raw_cs_selector, &cs_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector = cs_selector;
parse_selector(raw_ss_selector, &ss_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = ss_selector;
parse_selector(raw_ds_selector, &ds_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector = ds_selector;
parse_selector(raw_fs_selector, &fs_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector = fs_selector;
parse_selector(raw_gs_selector, &gs_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector = gs_selector;
parse_selector(raw_ldt_selector, &ldt_selector);
BX_CPU_THIS_PTR ldtr.selector = ldt_selector;
// Start out with invalid descriptor caches, fill in
// with values only as they are validated.
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0;
// need to test valid bit in fetch_raw_descriptor?()
// or set limit to 0 instead when LDT is loaded with
// null. ??? +++
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = 0;
// LDTR
if (ldt_selector.ti) {
// LDT selector must be in GDT
BX_INFO(("task_switch: bad LDT selector TI=1"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ldt_selector & 0xfffc;
goto post_exception;
}
// ??? is LDT loaded in v8086 mode
if ( (raw_ldt_selector & 0xfffc) != 0 ) {
Boolean good;
good = fetch_raw_descriptor2(&ldt_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad LDT fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ldt_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &ldt_descriptor);
// LDT selector of new task is valid, else #TS(new task's LDT)
if (ldt_descriptor.valid==0 ||
ldt_descriptor.type!=2 ||
ldt_descriptor.segment ||
ldt_descriptor.u.ldt.limit<7) {
BX_INFO(("task_switch: bad LDT segment"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ldt_selector & 0xfffc;
goto post_exception;
}
// LDT of new task is present in memory, else #TS(new tasks's LDT)
else if (ldt_descriptor.p==0) {
exception_no = BX_TS_EXCEPTION;
error_code = raw_ldt_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in LDTR shadow cache
BX_CPU_THIS_PTR ldtr.cache = ldt_descriptor;
}
else {
// NULL LDT selector is OK, leave cache invalid
}
if (v8086_mode()) {
// load seg regs as 8086 registers
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], raw_cs_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], raw_ss_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], raw_ds_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], raw_es_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], raw_fs_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], raw_gs_selector);
}
else {
// CS
if ( (raw_cs_selector & 0xfffc) != 0 ) {
Boolean good;
good = fetch_raw_descriptor2(&cs_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad CS fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &cs_descriptor);
// CS descriptor AR byte must indicate code segment else #TS(CS)
if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
cs_descriptor.u.segment.executable==0) {
BX_PANIC(("task_switch: CS not valid executable seg"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// if non-conforming then DPL must equal selector RPL else #TS(CS)
else if (cs_descriptor.u.segment.c_ed==0 &&
cs_descriptor.dpl!=cs_selector.rpl) {
BX_INFO(("task_switch: non-conforming: CS.dpl!=CS.RPL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// if conforming then DPL must be <= selector RPL else #TS(CS)
else if (cs_descriptor.u.segment.c_ed &&
cs_descriptor.dpl>cs_selector.rpl) {
BX_INFO(("task_switch: conforming: CS.dpl>RPL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// Code segment is present in memory, else #NP(new code segment)
else if (cs_descriptor.p==0) {
BX_PANIC(("task_switch: CS.p==0"));
exception_no = BX_NP_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache = cs_descriptor;
}
else {
// If new cs selector is null #TS(CS)
BX_PANIC(("task_switch: CS NULL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// SS
if ( (raw_ss_selector & 0xfffc) != 0 ) {
Boolean good;
good = fetch_raw_descriptor2(&ss_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad SS fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &ss_descriptor);
// SS selector must be within its descriptor table limits else #TS(SS)
// SS descriptor AR byte must must indicate writable data segment,
// else #TS(SS)
if (ss_descriptor.valid==0 ||
ss_descriptor.segment==0 ||
ss_descriptor.u.segment.executable ||
ss_descriptor.u.segment.r_w==0) {
BX_INFO(("task_switch: SS not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
//
// Stack segment is present in memory, else #SF(new stack segment)
//
else if (ss_descriptor.p==0) {
BX_PANIC(("task_switch: SS not present"));
exception_no = BX_SS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
// Stack segment DPL matches CS.RPL, else #TS(new stack segment)
else if (ss_descriptor.dpl != cs_selector.rpl) {
BX_PANIC(("task_switch: SS.rpl != CS.RPL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
// Stack segment DPL matches selector RPL, else #TS(new stack segment)
else if (ss_descriptor.dpl != ss_selector.rpl) {
BX_PANIC(("task_switch: SS.dpl != SS.rpl"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
#if 0
// +++
else if (ss_descriptor.u.segment.d_b && (tss_descriptor->type<9)) {
BX_DEBUG(( "++++++++++++++++++++++++++" ));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
#endif
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = ss_descriptor;
}
else {
// SS selector is valid, else #TS(new stack segment)
BX_PANIC(("task_switch: SS NULL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
// if new selector is not null then perform following checks:
// index must be within its descriptor table limits else #TS(selector)
// AR byte must indicate data or readable code else #TS(selector)
// if data or non-conforming code then:
// DPL must be >= CPL else #TS(selector)
// DPL must be >= RPL else #TS(selector)
// AR byte must indicate PRESENT else #NP(selector)
// load cache with new segment descriptor and set valid bit
// DS
if ( (raw_ds_selector & 0xfffc) != 0 ) {
Boolean good;
good = fetch_raw_descriptor2(&ds_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad DS fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ds_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &ds_descriptor);
if (ds_descriptor.valid==0 || ds_descriptor.segment==0 ||
(ds_descriptor.u.segment.executable &&
ds_descriptor.u.segment.r_w==0)) {
BX_PANIC(("task_switch: DS not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ds_selector & 0xfffc;
goto post_exception;
}
// if data or non-conforming code
else if (ds_descriptor.type<12 &&
(ds_descriptor.dpl<cs_selector.rpl ||
ds_descriptor.dpl<ds_selector.rpl)) {
BX_PANIC(("task_switch: DS.dpl not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ds_selector & 0xfffc;
goto post_exception;
}
else if (ds_descriptor.p==0) {
BX_PANIC(("task_switch: DS.p==0"));
exception_no = BX_NP_EXCEPTION;
error_code = raw_ds_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache = ds_descriptor;
}
else {
// NULL DS selector is OK, leave cache invalid
}
// ES
if ( (raw_es_selector & 0xfffc) != 0 ) {
Boolean good;
good = fetch_raw_descriptor2(&es_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad ES fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_es_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &es_descriptor);
if (es_descriptor.valid==0 || es_descriptor.segment==0 ||
(es_descriptor.u.segment.executable &&
es_descriptor.u.segment.r_w==0)) {
BX_PANIC(("task_switch: ES not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_es_selector & 0xfffc;
goto post_exception;
}
// if data or non-conforming code
else if (es_descriptor.type<12 &&
(es_descriptor.dpl<cs_selector.rpl ||
es_descriptor.dpl<es_selector.rpl)) {
BX_PANIC(("task_switch: ES.dpl not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_es_selector & 0xfffc;
goto post_exception;
}
else if (es_descriptor.p==0) {
BX_PANIC(("task_switch: ES.p==0"));
exception_no = BX_NP_EXCEPTION;
error_code = raw_es_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache = es_descriptor;
}
else {
// NULL ES selector is OK, leave cache invalid
}
// FS
if ( (raw_fs_selector & 0xfffc) != 0 ) { // not NULL
Boolean good;
good = fetch_raw_descriptor2(&fs_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad FS fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_fs_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &fs_descriptor);
if (fs_descriptor.valid==0 || fs_descriptor.segment==0 ||
(fs_descriptor.u.segment.executable &&
fs_descriptor.u.segment.r_w==0)) {
BX_PANIC(("task_switch: FS not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_fs_selector & 0xfffc;
goto post_exception;
}
// if data or non-conforming code
else if (fs_descriptor.type<12 &&
(fs_descriptor.dpl<cs_selector.rpl ||
fs_descriptor.dpl<fs_selector.rpl)) {
BX_PANIC(("task_switch: FS.dpl not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_fs_selector & 0xfffc;
goto post_exception;
}
else if (fs_descriptor.p==0) {
BX_PANIC(("task_switch: FS.p==0"));
exception_no = BX_NP_EXCEPTION;
error_code = raw_fs_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache = fs_descriptor;
}
else {
// NULL FS selector is OK, leave cache invalid
}
// GS
if ( (raw_gs_selector & 0xfffc) != 0 ) {
Boolean good;
good = fetch_raw_descriptor2(&gs_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad GS fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_gs_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &gs_descriptor);
if (gs_descriptor.valid==0 || gs_descriptor.segment==0 ||
(gs_descriptor.u.segment.executable &&
gs_descriptor.u.segment.r_w==0)) {
BX_PANIC(("task_switch: GS not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_gs_selector & 0xfffc;
goto post_exception;
}
// if data or non-conforming code
else if (gs_descriptor.type<12 &&
(gs_descriptor.dpl<cs_selector.rpl ||
gs_descriptor.dpl<gs_selector.rpl)) {
BX_PANIC(("task_switch: GS.dpl not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_gs_selector & 0xfffc;
goto post_exception;
}
else if (gs_descriptor.p==0) {
BX_PANIC(("task_switch: GS.p==0"));
//exception(BX_NP_EXCEPTION, raw_gs_selector & 0xfffc, 0);
exception_no = BX_NP_EXCEPTION;
error_code = raw_gs_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache = gs_descriptor;
}
else {
// NULL GS selector is OK, leave cache invalid
}
}
if ((tss_descriptor->type>=9) && (trap_word & 0x0001)) {
BX_CPU_THIS_PTR debug_trap |= 0x00008000; // BT flag in DR6
BX_CPU_THIS_PTR async_event = 1; // so processor knows to check
BX_INFO(("task_switch: T bit set in new TSS."));
}
//
// Step 14: Begin execution of new task.
//
//BX_DEBUG(( "TASKING: LEAVE" ));
return;
post_exception:
BX_CPU_THIS_PTR debug_trap = 0;
BX_CPU_THIS_PTR inhibit_mask = 0;
BX_INFO(("task switch: posting exception %u after commit point",
exception_no));
exception(exception_no, error_code, 0);
return;
}
void
BX_CPU_C::get_SS_ESP_from_TSS(unsigned pl, Bit16u *ss, Bit32u *esp)
{
if (BX_CPU_THIS_PTR tr.cache.valid==0)
BX_PANIC(("get_SS_ESP_from_TSS: TR.cache invalid"));
if (BX_CPU_THIS_PTR tr.cache.type==9) {
// 32-bit TSS
Bit32u TSSstackaddr;
TSSstackaddr = 8*pl + 4;
if ( (TSSstackaddr+7) >
BX_CPU_THIS_PTR tr.cache.u.tss386.limit_scaled )
exception(BX_TS_EXCEPTION,
BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss386.base +
TSSstackaddr+4, 2, 0, BX_READ, ss);
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss386.base +
TSSstackaddr, 4, 0, BX_READ, esp);
}
else if (BX_CPU_THIS_PTR tr.cache.type==1) {
// 16-bit TSS
Bit16u temp16;
Bit32u TSSstackaddr;
TSSstackaddr = 4*pl + 2;
if ( (TSSstackaddr+4) > BX_CPU_THIS_PTR tr.cache.u.tss286.limit )
exception(BX_TS_EXCEPTION,
BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss286.base +
TSSstackaddr+2, 2, 0, BX_READ, ss);
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss286.base +
TSSstackaddr, 2, 0, BX_READ, &temp16);
*esp = temp16; // truncate
}
else {
BX_PANIC(("get_SS_ESP_from_TSS: TR is bogus type (%u)",
(unsigned) BX_CPU_THIS_PTR tr.cache.type));
}
}
#endif
#else // BX_SUPPORT_TASKING
// for non-support of hardware tasking
#if BX_CPU_LEVEL >= 2
/* corresponds to SWITCH_TASKS algorithm in Intel documentation */
void
BX_CPU_C::task_switch(bx_selector_t *selector,
bx_descriptor_t *descriptor, unsigned source,
Bit32u dword1, Bit32u dword2)
{
UNUSED(selector);
UNUSED(descriptor);
UNUSED(source);
UNUSED(dword1);
UNUSED(dword2);
BX_INFO(("task_switch(): not complete"));
}
#endif
#endif // BX_SUPPORT_TASKING
|