File: tasking.cc

package info (click to toggle)
bochs 1.4pre2-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 7,656 kB
  • ctags: 10,322
  • sloc: cpp: 66,880; ansic: 19,674; sh: 2,951; makefile: 2,183; asm: 2,110; yacc: 723; lex: 171; csh: 147; perl: 35
file content (986 lines) | stat: -rw-r--r-- 35,934 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
/////////////////////////////////////////////////////////////////////////
// $Id: tasking.cc,v 1.9 2001/11/11 04:57:05 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2001  MandrakeSoft S.A.
//
//    MandrakeSoft S.A.
//    43, rue d'Aboukir
//    75002 Paris - France
//    http://www.linux-mandrake.com/
//    http://www.mandrakesoft.com/
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA



#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR





#if BX_SUPPORT_TASKING

#if BX_CPU_LEVEL >= 2

// Notes:
// ======
// Step 2: TSS descriptor is not busy TS (for IRET); GP (for JMP, CALL, INT)
//   returns error code (Task's backlink TSS)???

// *   TSS selector must map to GDT
// *   TSS is stored in linear address space
// * what to do with I/O Map Base
// * what to do with T flag
// * where to set CR3 and flush paging cache
// * what happens when fault occurs, with some seg regs having valid bit cleared?
// * should check validity of current TR(TSS) before writing into it
//

  // ======================
  // 286 Task State Segment
  // ======================
  // dynamic item                      | hex  dec  offset
  // 0       task LDT selector         | 2a   42
  // 1       DS selector               | 28   40
  // 1       SS selector               | 26   38
  // 1       CS selector               | 24   36
  // 1       ES selector               | 22   34
  // 1       DI                        | 20   32
  // 1       SI                        | 1e   30
  // 1       BP                        | 1c   28
  // 1       SP                        | 1a   26
  // 1       BX                        | 18   24
  // 1       DX                        | 16   22
  // 1       CX                        | 14   20
  // 1       AX                        | 12   18
  // 1       flag word                 | 10   16
  // 1       IP (entry point)          | 0e   14
  // 0       SS for CPL 2              | 0c   12
  // 0       SP for CPL 2              | 0a   10
  // 0       SS for CPL 1              | 08   08
  // 0       SP for CPL 1              | 06   06
  // 0       SS for CPL 0              | 04   04
  // 0       SP for CPL 0              | 02   02
  //         back link selector to TSS | 00   00


  // ======================
  // 386 Task State Segment
  // ======================
  // |31            16|15                    0|
  // |I/O Map Base    |000000000000000000000|T| 64  static
  // |0000000000000000| LDT                   | 60  static
  // |0000000000000000| GS selector           | 5c  dynamic
  // |0000000000000000| FS selector           | 58  dynamic
  // |0000000000000000| DS selector           | 54  dynamic
  // |0000000000000000| SS selector           | 50  dynamic
  // |0000000000000000| CS selector           | 4c  dynamic
  // |0000000000000000| ES selector           | 48  dynamic
  // |                EDI                     | 44  dynamic
  // |                ESI                     | 40  dynamic
  // |                EBP                     | 3c  dynamic
  // |                ESP                     | 38  dynamic
  // |                EBX                     | 34  dynamic
  // |                EDX                     | 30  dynamic
  // |                ECX                     | 2c  dynamic
  // |                EAX                     | 28  dynamic
  // |                EFLAGS                  | 24  dynamic
  // |                EIP (entry point)       | 20  dynamic
  // |           CR3 (PDPR)                   | 1c  static
  // |000000000000000 | SS for CPL 2          | 18  static
  // |           ESP for CPL 2                | 14  static
  // |000000000000000 | SS for CPL 1          | 10  static
  // |           ESP for CPL 1                | 0c  static
  // |000000000000000 | SS for CPL 0          | 08  static
  // |           ESP for CPL 0                | 04  static
  // |000000000000000 | back link to prev TSS | 00  dynamic (updated only when return expected)


  // ==================================================
  // Effect of task switch on Busy, NT, and Link Fields
  // ==================================================

  // Field         jump        call/interrupt     iret
  // ------------------------------------------------------
  // new busy bit  Set         Set                No change
  // old busy bit  Cleared     No change          Cleared
  // new NT flag   No change   Set                No change
  // old NT flag   No change   No change          Cleared
  // new link      No change   old TSS selector   No change
  // old link      No change   No change          No change
  // CR0.TS        Set         Set                Set

  // Note: I checked 386, 486, and Pentium, and they all exhibited
  //       exactly the same behaviour as above.  There seems to
  //       be some misprints in the Intel docs.


  void
BX_CPU_C::task_switch(bx_selector_t *tss_selector,
                 bx_descriptor_t *tss_descriptor, unsigned source,
                 Bit32u dword1, Bit32u dword2)
{
  Bit32u obase32; // base address of old TSS
  Bit32u nbase32; // base address of new TSS
  Bit32u temp32, newCR3;
  Bit16u raw_cs_selector, raw_ss_selector, raw_ds_selector, raw_es_selector,
         raw_fs_selector, raw_gs_selector, raw_ldt_selector;
  Bit16u temp16, trap_word;
  bx_selector_t cs_selector, ss_selector, ds_selector, es_selector,
                fs_selector, gs_selector, ldt_selector;
  bx_descriptor_t cs_descriptor, ss_descriptor, ds_descriptor, es_descriptor,
                  fs_descriptor, gs_descriptor, ldt_descriptor;
  Bit32u old_TSS_max, new_TSS_max, old_TSS_limit, new_TSS_limit;
  Bit32u newEAX, newECX, newEDX, newEBX;
  Bit32u newESP, newEBP, newESI, newEDI;
  Bit32u newEFLAGS, oldEFLAGS, newEIP;
  unsigned exception_no;
  Bit16u error_code;

//BX_DEBUG(( "TASKING: ENTER" ));

  invalidate_prefetch_q();

  // Discard any traps and inhibits for new context; traps will
  // resume upon return.
  BX_CPU_THIS_PTR debug_trap = 0;
  BX_CPU_THIS_PTR inhibit_mask = 0;




  // The following checks are made before calling task_switch(), for
  // JMP & CALL only.  These checks are NOT made for exceptions, interrupts, & IRET
  //
  //   1) TSS DPL must be >= CPL
  //   2) TSS DPL must be >= TSS selector RPL
  //   3) TSS descriptor is not busy.  TS(for IRET); GP(for JMP, CALL, INT)

  // Privilege and busy checks done in CALL, JUMP, INT, IRET

  exception_no = 256; // no exception
  error_code   = 0;
  oldEFLAGS = read_eflags();

  // Gather info about old TSS
  if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
    // sanity check type: cannot have busy bit
    BX_ASSERT ((BX_CPU_THIS_PTR tr.cache.type & 2) == 0);
    obase32 = BX_CPU_THIS_PTR tr.cache.u.tss286.base;
    old_TSS_max   = 43;
    old_TSS_limit = BX_CPU_THIS_PTR tr.cache.u.tss286.limit;
    }
  else {
    obase32 = BX_CPU_THIS_PTR tr.cache.u.tss386.base;
    old_TSS_max   = 103;
    old_TSS_limit = BX_CPU_THIS_PTR tr.cache.u.tss386.limit_scaled;
    }

  // Gather info about new TSS
  if (tss_descriptor->type <= 3) { // {1,3}
    nbase32 = tss_descriptor->u.tss286.base; // new TSS.base
    new_TSS_max   = 43;
    new_TSS_limit = tss_descriptor->u.tss286.limit;
    }
  else { // tss_descriptor->type = {9,11}
    nbase32 = tss_descriptor->u.tss386.base; // new TSS.base
    new_TSS_max   = 103;
    new_TSS_limit = tss_descriptor->u.tss386.limit_scaled;
    }

  // Task State Seg must be present, else #NP(TSS selector)
  if (tss_descriptor->p==0) {
    BX_INFO(("task_switch: TSS.p == 0"));
    exception(BX_NP_EXCEPTION, tss_selector->value & 0xfffc, 0);
    }

  // TSS must have valid limit, else #TS(TSS selector)
  if (tss_selector->ti ||
      tss_descriptor->valid==0 ||
      new_TSS_limit < new_TSS_max) {
    BX_PANIC(("task_switch(): TR not valid"));
    exception(BX_TS_EXCEPTION, tss_selector->value & 0xfffc, 0);
    }
#if BX_SUPPORT_PAGING
  // Check that old TSS, new TSS, and all segment descriptors
  // used in the task switch are paged in.
  if (BX_CPU_THIS_PTR cr0.pg) {
    //BX_RW, BX_READ, BX_WRITE
    // Old TSS
    (void) dtranslate_linear(obase32, 0, /*rw*/ BX_WRITE);
    (void) dtranslate_linear(obase32+old_TSS_max, 0, /*rw*/ BX_WRITE);

    // New TSS
    (void) dtranslate_linear(nbase32, 0, /*rw*/ 0);
    (void) dtranslate_linear(nbase32+new_TSS_max, 0, /*rw*/ 0);

    // ??? fix RW above
    // ??? touch old/new TSS descriptors here when necessary.
    }
#endif // BX_SUPPORT_PAGING

  // Need to fetch all new registers and temporarily store them.

  if (tss_descriptor->type <= 3) {
    access_linear(nbase32 + 14, 2, 0, BX_READ, &temp16);
      newEIP = temp16; // zero out upper word
    access_linear(nbase32 + 16, 2, 0, BX_READ, &temp16);
      newEFLAGS = temp16;

    // incoming TSS is 16bit:
    //   - upper word of general registers is set to 0xFFFF
    //   - upper word of eflags is zero'd
    //   - FS, GS are zero'd
    //   - upper word of eIP is zero'd
    access_linear(nbase32 + 18, 2, 0, BX_READ, &temp16);
      newEAX = 0xffff0000 | temp16;
    access_linear(nbase32 + 20, 2, 0, BX_READ, &temp16);
      newECX = 0xffff0000 | temp16;
    access_linear(nbase32 + 22, 2, 0, BX_READ, &temp16);
      newEDX = 0xffff0000 | temp16;
    access_linear(nbase32 + 24, 2, 0, BX_READ, &temp16);
      newEBX = 0xffff0000 | temp16;
    access_linear(nbase32 + 26, 2, 0, BX_READ, &temp16);
      newESP = 0xffff0000 | temp16;
    access_linear(nbase32 + 28, 2, 0, BX_READ, &temp16);
      newEBP = 0xffff0000 | temp16;
    access_linear(nbase32 + 30, 2, 0, BX_READ, &temp16);
      newESI = 0xffff0000 | temp16;
    access_linear(nbase32 + 32, 2, 0, BX_READ, &temp16);
      newEDI = 0xffff0000 | temp16;

    access_linear(nbase32 + 34, 2, 0, BX_READ, &raw_es_selector);
    access_linear(nbase32 + 36, 2, 0, BX_READ, &raw_cs_selector);
    access_linear(nbase32 + 38, 2, 0, BX_READ, &raw_ss_selector);
    access_linear(nbase32 + 40, 2, 0, BX_READ, &raw_ds_selector);
    access_linear(nbase32 + 42, 2, 0, BX_READ, &raw_ldt_selector);

    raw_fs_selector = 0; // use a NULL selector
    raw_gs_selector = 0; // use a NULL selector
    // No CR3 change for 286 task switch
    newCR3 = 0;   // keep compiler happy (not used)
    trap_word = 0; // keep compiler happy (not used)
    }
  else {
    access_linear(nbase32 + 0x1c, 4, 0, BX_READ, &newCR3);
    access_linear(nbase32 + 0x20, 4, 0, BX_READ, &newEIP);
    access_linear(nbase32 + 0x24, 4, 0, BX_READ, &newEFLAGS);
    access_linear(nbase32 + 0x28, 4, 0, BX_READ, &newEAX);
    access_linear(nbase32 + 0x2c, 4, 0, BX_READ, &newECX);
    access_linear(nbase32 + 0x30, 4, 0, BX_READ, &newEDX);
    access_linear(nbase32 + 0x34, 4, 0, BX_READ, &newEBX);
    access_linear(nbase32 + 0x38, 4, 0, BX_READ, &newESP);
    access_linear(nbase32 + 0x3c, 4, 0, BX_READ, &newEBP);
    access_linear(nbase32 + 0x40, 4, 0, BX_READ, &newESI);
    access_linear(nbase32 + 0x44, 4, 0, BX_READ, &newEDI);
    access_linear(nbase32 + 0x48, 2, 0, BX_READ, &raw_es_selector);
    access_linear(nbase32 + 0x4c, 2, 0, BX_READ, &raw_cs_selector);
    access_linear(nbase32 + 0x50, 2, 0, BX_READ, &raw_ss_selector);
    access_linear(nbase32 + 0x54, 2, 0, BX_READ, &raw_ds_selector);
    access_linear(nbase32 + 0x58, 2, 0, BX_READ, &raw_fs_selector);
    access_linear(nbase32 + 0x5c, 2, 0, BX_READ, &raw_gs_selector);
    access_linear(nbase32 + 0x60, 2, 0, BX_READ, &raw_ldt_selector);
    access_linear(nbase32 + 0x64, 2, 0, BX_READ, &trap_word);
    // I/O Map Base Address ???
    }

#if 0
if (ss_descriptor.u.segment.d_b && (tss_descriptor->type<9)) {
  BX_DEBUG(( "++++++++++++++++++++++++++" ));
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
  exception(BX_SS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
  //exception(BX_TS_EXCEPTION, tss_selector->value & 0xfffc, 0);
  }
#endif


  //
  // Step 6: If JMP or IRET, clear busy bit in old task TSS descriptor,
  //         otherwise leave set.
  //

  // effect on Busy bit of old task
  if ( (source==BX_TASK_FROM_JUMP) || (source==BX_TASK_FROM_IRET) ) {
    // Bit is cleared
    access_linear(BX_CPU_THIS_PTR gdtr.base +
                  BX_CPU_THIS_PTR tr.selector.index*8 + 4,
                  4, 0, BX_READ, &temp32);
    temp32 &= ~0x00000200;
    access_linear(BX_CPU_THIS_PTR gdtr.base +
                  BX_CPU_THIS_PTR tr.selector.index*8 + 4,
                  4, 0, BX_WRITE, &temp32);
    }


  //
  // Step 7: If IRET, clear NT flag in temp image of EFLAGS, otherwise
  //         leave alone.
  //

  if (source == BX_TASK_FROM_IRET) {
    // NT flags in old task is cleared with an IRET
    oldEFLAGS &= ~0x00004000;
    }


  //
  // Step 8: Save dynamic state of old task.
  //

  if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
    // sanity check: tr.cache.type cannot have busy bit
    BX_ASSERT ((BX_CPU_THIS_PTR tr.cache.type & 2) == 0);
    temp16 = IP; access_linear(obase32 + 14, 2, 0, BX_WRITE, &temp16);
    temp16 = oldEFLAGS; access_linear(obase32 + 16, 2, 0, BX_WRITE, &temp16);
    temp16 = AX; access_linear(obase32 + 18, 2, 0, BX_WRITE, &temp16);
    temp16 = CX; access_linear(obase32 + 20, 2, 0, BX_WRITE, &temp16);
    temp16 = DX; access_linear(obase32 + 22, 2, 0, BX_WRITE, &temp16);
    temp16 = BX; access_linear(obase32 + 24, 2, 0, BX_WRITE, &temp16);
    temp16 = SP; access_linear(obase32 + 26, 2, 0, BX_WRITE, &temp16);
    temp16 = BP; access_linear(obase32 + 28, 2, 0, BX_WRITE, &temp16);
    temp16 = SI; access_linear(obase32 + 30, 2, 0, BX_WRITE, &temp16);
    temp16 = DI; access_linear(obase32 + 32, 2, 0, BX_WRITE, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
                 access_linear(obase32 + 34, 2, 0, BX_WRITE, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
                 access_linear(obase32 + 36, 2, 0, BX_WRITE, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
                 access_linear(obase32 + 38, 2, 0, BX_WRITE, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
                 access_linear(obase32 + 40, 2, 0, BX_WRITE, &temp16);
    }
  else {
    temp32 = EIP; access_linear(obase32 + 0x20, 4, 0, BX_WRITE, &temp32);
    temp32 = oldEFLAGS; access_linear(obase32 + 0x24, 4, 0, BX_WRITE, &temp32);
    temp32 = EAX; access_linear(obase32 + 0x28, 4, 0, BX_WRITE, &temp32);
    temp32 = ECX; access_linear(obase32 + 0x2c, 4, 0, BX_WRITE, &temp32);
    temp32 = EDX; access_linear(obase32 + 0x30, 4, 0, BX_WRITE, &temp32);
    temp32 = EBX; access_linear(obase32 + 0x34, 4, 0, BX_WRITE, &temp32);
    temp32 = ESP; access_linear(obase32 + 0x38, 4, 0, BX_WRITE, &temp32);
    temp32 = EBP; access_linear(obase32 + 0x3c, 4, 0, BX_WRITE, &temp32);
    temp32 = ESI; access_linear(obase32 + 0x40, 4, 0, BX_WRITE, &temp32);
    temp32 = EDI; access_linear(obase32 + 0x44, 4, 0, BX_WRITE, &temp32);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
                  access_linear(obase32 + 0x48, 2, 0, BX_WRITE, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
                  access_linear(obase32 + 0x4c, 2, 0, BX_WRITE, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
                  access_linear(obase32 + 0x50, 2, 0, BX_WRITE, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
                  access_linear(obase32 + 0x54, 2, 0, BX_WRITE, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value;
                  access_linear(obase32 + 0x58, 2, 0, BX_WRITE, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value;
                  access_linear(obase32 + 0x5c, 2, 0, BX_WRITE, &temp16);
    }



  //
  // Commit point.  At this point, we commit to the new
  // context.  If an unrecoverable error occurs in further
  // processing, we complete the task switch without performing
  // additional access and segment availablility checks and
  // generate the appropriate exception prior to beginning
  // execution of the new task.
  //


  // Task switch clears LE/L3/L2/L1/L0 in DR7
  BX_CPU_THIS_PTR dr7 &= ~0x00000155;


// effect on link field of new task
if ( source==BX_TASK_FROM_CALL_OR_INT ) {
  // set to selector of old task's TSS
  temp16 = BX_CPU_THIS_PTR tr.selector.value;
  access_linear(nbase32 + 0, 2, 0, BX_WRITE, &temp16);
  }



  //
  // Step 9: If call or interrupt, set the NT flag in the eflags
  //         image stored in new task's TSS.  If IRET or JMP,
  //         NT is restored from new TSS eflags image. (no change)
  //

  // effect on NT flag of new task
  if ( source==BX_TASK_FROM_CALL_OR_INT ) {
    newEFLAGS |= 0x4000; // flag is set
    }


  //
  // Step 10: If CALL, interrupt, or JMP, set busy flag in new task's
  //          TSS descriptor.  If IRET, leave set.
  //

  if ( (source==BX_TASK_FROM_JUMP) || (source==BX_TASK_FROM_CALL_OR_INT) ) {
    // set the new task's busy bit
    access_linear(BX_CPU_THIS_PTR gdtr.base + tss_selector->index*8 + 4,
                  4, 0, BX_READ, &dword2);
    dword2 |= 0x00000200;
    access_linear(BX_CPU_THIS_PTR gdtr.base + tss_selector->index*8 + 4,
                  4, 0, BX_WRITE, &dword2);
    }


  //
  // Step 11: Set TS flag in the CR0 image stored in the new task TSS.
  //

  // set TS bit in CR0 register
  BX_CPU_THIS_PTR cr0.ts = 1;
  BX_CPU_THIS_PTR cr0.val32 |= 0x00000008;


  //
  // Step 12: Load the task register with the segment selector and
  //          descriptor for the new task TSS.
  //

  BX_CPU_THIS_PTR tr.selector = *tss_selector;
  BX_CPU_THIS_PTR tr.cache    = *tss_descriptor;
  // Reset the busy-flag, because all functions expect non-busy types in
  // tr.cache.  From Peter Lammich <peterl@sourceforge.net>.
  BX_CPU_THIS_PTR tr.cache.type &= ~2;


  //
  // Step 13: Load the new task (dynamic) state from new TSS.
  //          Any errors associated with loading and qualification of
  //          segment descriptors in this step occur in the new task's
  //          context.  State loaded here includes LDTR, CR3,
  //          EFLAGS, EIP, general purpose registers, and segment
  //          descriptor parts of the segment registers.
  //

  if (tss_descriptor->type >= 9) {
    CR3_change(newCR3); // Tell paging unit about new cr3 value
    BX_DEBUG (("task_switch changing CR3 to 0x%08x\n", newCR3));
    BX_INSTR_TLB_CNTRL(BX_INSTR_TASKSWITCH, newCR3);
    }

  BX_CPU_THIS_PTR prev_eip = EIP = newEIP;
  write_eflags(newEFLAGS, 1,1,1,1);
  EAX = newEAX;
  ECX = newECX;
  EDX = newEDX;
  EBX = newEBX;
  ESP = newESP;
  EBP = newEBP;
  ESI = newESI;
  EDI = newEDI;

  // Fill in selectors for all segment registers.  If errors
  // occur later, the selectors will at least be loaded.
  parse_selector(raw_es_selector, &es_selector);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector = es_selector;
  parse_selector(raw_cs_selector, &cs_selector);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector = cs_selector;
  parse_selector(raw_ss_selector, &ss_selector);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = ss_selector;
  parse_selector(raw_ds_selector, &ds_selector);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector = ds_selector;
  parse_selector(raw_fs_selector, &fs_selector);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector = fs_selector;
  parse_selector(raw_gs_selector, &gs_selector);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector = gs_selector;
  parse_selector(raw_ldt_selector, &ldt_selector);
  BX_CPU_THIS_PTR ldtr.selector                 = ldt_selector;

  // Start out with invalid descriptor caches, fill in
  // with values only as they are validated.
  BX_CPU_THIS_PTR ldtr.cache.valid = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0;


// need to test valid bit in fetch_raw_descriptor?()
// or set limit to 0 instead when LDT is loaded with
// null. ??? +++
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = 0;

  // LDTR
  if (ldt_selector.ti) {
    // LDT selector must be in GDT
    BX_INFO(("task_switch: bad LDT selector TI=1"));
    exception_no = BX_TS_EXCEPTION;
    error_code   = raw_ldt_selector & 0xfffc;
    goto post_exception;
    }

// ??? is LDT loaded in v8086 mode
  if ( (raw_ldt_selector & 0xfffc) != 0 ) {
    Boolean good;
    good = fetch_raw_descriptor2(&ldt_selector, &dword1, &dword2);
    if (!good) {
      BX_INFO(("task_switch: bad LDT fetch"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_ldt_selector & 0xfffc;
      goto post_exception;
      }

    parse_descriptor(dword1, dword2, &ldt_descriptor);

    // LDT selector of new task is valid, else #TS(new task's LDT)
    if (ldt_descriptor.valid==0 ||
        ldt_descriptor.type!=2 ||
        ldt_descriptor.segment ||
        ldt_descriptor.u.ldt.limit<7) {
      BX_INFO(("task_switch: bad LDT segment"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_ldt_selector & 0xfffc;
      goto post_exception;
      }

    // LDT of new task is present in memory, else #TS(new tasks's LDT)
    else if (ldt_descriptor.p==0) {
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_ldt_selector & 0xfffc;
      goto post_exception;
      }
    // All checks pass, fill in LDTR shadow cache
    BX_CPU_THIS_PTR ldtr.cache = ldt_descriptor;
    }
  else {
    // NULL LDT selector is OK, leave cache invalid
    }

  if (v8086_mode()) {
    // load seg regs as 8086 registers
    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], raw_cs_selector);
    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], raw_ss_selector);
    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], raw_ds_selector);
    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], raw_es_selector);
    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], raw_fs_selector);
    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], raw_gs_selector);
    }
  else {

  // CS
  if ( (raw_cs_selector & 0xfffc) != 0 ) {
    Boolean good;
    good = fetch_raw_descriptor2(&cs_selector, &dword1, &dword2);
    if (!good) {
      BX_INFO(("task_switch: bad CS fetch"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_cs_selector & 0xfffc;
      goto post_exception;
      }

    parse_descriptor(dword1, dword2, &cs_descriptor);

    // CS descriptor AR byte must indicate code segment else #TS(CS)
    if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
        cs_descriptor.u.segment.executable==0) {
      BX_PANIC(("task_switch: CS not valid executable seg"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_cs_selector & 0xfffc;
      goto post_exception;
      }
    // if non-conforming then DPL must equal selector RPL else #TS(CS)
    else if (cs_descriptor.u.segment.c_ed==0 &&
        cs_descriptor.dpl!=cs_selector.rpl) {
      BX_INFO(("task_switch: non-conforming: CS.dpl!=CS.RPL"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_cs_selector & 0xfffc;
      goto post_exception;
      }
    // if conforming then DPL must be <= selector RPL else #TS(CS)
    else if (cs_descriptor.u.segment.c_ed &&
        cs_descriptor.dpl>cs_selector.rpl) {
      BX_INFO(("task_switch: conforming: CS.dpl>RPL"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_cs_selector & 0xfffc;
      goto post_exception;
      }
    // Code segment is present in memory, else #NP(new code segment)
    else if (cs_descriptor.p==0) {
      BX_PANIC(("task_switch: CS.p==0"));
      exception_no = BX_NP_EXCEPTION;
      error_code   = raw_cs_selector & 0xfffc;
      goto post_exception;
      }
    // All checks pass, fill in shadow cache
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache    = cs_descriptor;
    }
  else {
    // If new cs selector is null #TS(CS)
    BX_PANIC(("task_switch: CS NULL"));
    exception_no = BX_TS_EXCEPTION;
    error_code   = raw_cs_selector & 0xfffc;
    goto post_exception;
    }


  // SS
  if ( (raw_ss_selector & 0xfffc) != 0 ) {
    Boolean good;
    good = fetch_raw_descriptor2(&ss_selector, &dword1, &dword2);
    if (!good) {
      BX_INFO(("task_switch: bad SS fetch"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_ss_selector & 0xfffc;
      goto post_exception;
      }

    parse_descriptor(dword1, dword2, &ss_descriptor);
    // SS selector must be within its descriptor table limits else #TS(SS)
    // SS descriptor AR byte must must indicate writable data segment,
    // else #TS(SS)
    if (ss_descriptor.valid==0 ||
        ss_descriptor.segment==0 ||
        ss_descriptor.u.segment.executable ||
        ss_descriptor.u.segment.r_w==0) {
      BX_INFO(("task_switch: SS not valid"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_ss_selector & 0xfffc;
      goto post_exception;
      }

    //
    // Stack segment is present in memory, else #SF(new stack segment)
    //
    else if (ss_descriptor.p==0) {
      BX_PANIC(("task_switch: SS not present"));
      exception_no = BX_SS_EXCEPTION;
      error_code   = raw_ss_selector & 0xfffc;
      goto post_exception;
      }

    // Stack segment DPL matches CS.RPL, else #TS(new stack segment)
    else if (ss_descriptor.dpl != cs_selector.rpl) {
      BX_PANIC(("task_switch: SS.rpl != CS.RPL"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_ss_selector & 0xfffc;
      goto post_exception;
      }

    // Stack segment DPL matches selector RPL, else #TS(new stack segment)
    else if (ss_descriptor.dpl != ss_selector.rpl) {
      BX_PANIC(("task_switch: SS.dpl != SS.rpl"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_ss_selector & 0xfffc;
      goto post_exception;
      }

#if 0
    // +++
    else if (ss_descriptor.u.segment.d_b && (tss_descriptor->type<9)) {
      BX_DEBUG(( "++++++++++++++++++++++++++" ));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_ss_selector & 0xfffc;
      goto post_exception;
      }
#endif
    // All checks pass, fill in shadow cache
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache    = ss_descriptor;
    }
  else {
    // SS selector is valid, else #TS(new stack segment)
    BX_PANIC(("task_switch: SS NULL"));
    exception_no = BX_TS_EXCEPTION;
    error_code   = raw_ss_selector & 0xfffc;
    goto post_exception;
    }


  //   if new selector is not null then perform following checks:
  //     index must be within its descriptor table limits else #TS(selector)
  //     AR byte must indicate data or readable code else #TS(selector)
  //     if data or non-conforming code then:
  //       DPL must be >= CPL else #TS(selector)
  //       DPL must be >= RPL else #TS(selector)
  //     AR byte must indicate PRESENT else #NP(selector)
  //     load cache with new segment descriptor and set valid bit



  // DS
  if ( (raw_ds_selector & 0xfffc) != 0 ) {
    Boolean good;
    good = fetch_raw_descriptor2(&ds_selector, &dword1, &dword2);
    if (!good) {
      BX_INFO(("task_switch: bad DS fetch"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_ds_selector & 0xfffc;
      goto post_exception;
      }

    parse_descriptor(dword1, dword2, &ds_descriptor);
    if (ds_descriptor.valid==0 || ds_descriptor.segment==0 ||
        (ds_descriptor.u.segment.executable &&
         ds_descriptor.u.segment.r_w==0)) {
      BX_PANIC(("task_switch: DS not valid"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_ds_selector & 0xfffc;
      goto post_exception;
      }
    // if data or non-conforming code
    else if (ds_descriptor.type<12 &&
        (ds_descriptor.dpl<cs_selector.rpl ||
         ds_descriptor.dpl<ds_selector.rpl)) {
      BX_PANIC(("task_switch: DS.dpl not valid"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_ds_selector & 0xfffc;
      goto post_exception;
      }
    else if (ds_descriptor.p==0) {
      BX_PANIC(("task_switch: DS.p==0"));
      exception_no = BX_NP_EXCEPTION;
      error_code   = raw_ds_selector & 0xfffc;
      goto post_exception;
      }
    // All checks pass, fill in shadow cache
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache    = ds_descriptor;
    }
  else {
    // NULL DS selector is OK, leave cache invalid
    }

  // ES
  if ( (raw_es_selector & 0xfffc) != 0 ) {
    Boolean good;
    good = fetch_raw_descriptor2(&es_selector, &dword1, &dword2);
    if (!good) {
      BX_INFO(("task_switch: bad ES fetch"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_es_selector & 0xfffc;
      goto post_exception;
      }

    parse_descriptor(dword1, dword2, &es_descriptor);
    if (es_descriptor.valid==0 || es_descriptor.segment==0 ||
        (es_descriptor.u.segment.executable &&
         es_descriptor.u.segment.r_w==0)) {
      BX_PANIC(("task_switch: ES not valid"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_es_selector & 0xfffc;
      goto post_exception;
      }
    // if data or non-conforming code
    else if (es_descriptor.type<12 &&
        (es_descriptor.dpl<cs_selector.rpl ||
         es_descriptor.dpl<es_selector.rpl)) {
      BX_PANIC(("task_switch: ES.dpl not valid"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_es_selector & 0xfffc;
      goto post_exception;
      }
    else if (es_descriptor.p==0) {
      BX_PANIC(("task_switch: ES.p==0"));
      exception_no = BX_NP_EXCEPTION;
      error_code   = raw_es_selector & 0xfffc;
      goto post_exception;
      }
    // All checks pass, fill in shadow cache
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache    = es_descriptor;
    }
  else {
    // NULL ES selector is OK, leave cache invalid
    }


  // FS
  if ( (raw_fs_selector & 0xfffc) != 0 ) { // not NULL
    Boolean good;
    good = fetch_raw_descriptor2(&fs_selector, &dword1, &dword2);
    if (!good) {
      BX_INFO(("task_switch: bad FS fetch"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_fs_selector & 0xfffc;
      goto post_exception;
      }

    parse_descriptor(dword1, dword2, &fs_descriptor);
    if (fs_descriptor.valid==0 || fs_descriptor.segment==0 ||
        (fs_descriptor.u.segment.executable &&
         fs_descriptor.u.segment.r_w==0)) {
      BX_PANIC(("task_switch: FS not valid"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_fs_selector & 0xfffc;
      goto post_exception;
      }
    // if data or non-conforming code
    else if (fs_descriptor.type<12 &&
        (fs_descriptor.dpl<cs_selector.rpl ||
         fs_descriptor.dpl<fs_selector.rpl)) {
      BX_PANIC(("task_switch: FS.dpl not valid"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_fs_selector & 0xfffc;
      goto post_exception;
      }
    else if (fs_descriptor.p==0) {
      BX_PANIC(("task_switch: FS.p==0"));
      exception_no = BX_NP_EXCEPTION;
      error_code   = raw_fs_selector & 0xfffc;
      goto post_exception;
      }
    // All checks pass, fill in shadow cache
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache    = fs_descriptor;
    }
  else {
    // NULL FS selector is OK, leave cache invalid
    }

  // GS
  if ( (raw_gs_selector & 0xfffc) != 0 ) {
    Boolean good;
    good = fetch_raw_descriptor2(&gs_selector, &dword1, &dword2);
    if (!good) {
      BX_INFO(("task_switch: bad GS fetch"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_gs_selector & 0xfffc;
      goto post_exception;
      }

    parse_descriptor(dword1, dword2, &gs_descriptor);
    if (gs_descriptor.valid==0 || gs_descriptor.segment==0 ||
        (gs_descriptor.u.segment.executable &&
         gs_descriptor.u.segment.r_w==0)) {
      BX_PANIC(("task_switch: GS not valid"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_gs_selector & 0xfffc;
      goto post_exception;
      }
    // if data or non-conforming code
    else if (gs_descriptor.type<12 &&
        (gs_descriptor.dpl<cs_selector.rpl ||
         gs_descriptor.dpl<gs_selector.rpl)) {
      BX_PANIC(("task_switch: GS.dpl not valid"));
      exception_no = BX_TS_EXCEPTION;
      error_code   = raw_gs_selector & 0xfffc;
      goto post_exception;
      }
    else if (gs_descriptor.p==0) {
      BX_PANIC(("task_switch: GS.p==0"));
      //exception(BX_NP_EXCEPTION, raw_gs_selector & 0xfffc, 0);
      exception_no = BX_NP_EXCEPTION;
      error_code   = raw_gs_selector & 0xfffc;
      goto post_exception;
      }
    // All checks pass, fill in shadow cache
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache    = gs_descriptor;
    }
  else {
    // NULL GS selector is OK, leave cache invalid
    }

    }


  if ((tss_descriptor->type>=9) && (trap_word & 0x0001)) {
    BX_CPU_THIS_PTR debug_trap |= 0x00008000; // BT flag in DR6
    BX_CPU_THIS_PTR async_event = 1; // so processor knows to check
    BX_INFO(("task_switch: T bit set in new TSS."));
    }



  //
  // Step 14: Begin execution of new task.
  //
//BX_DEBUG(( "TASKING: LEAVE" ));
  return;

post_exception:
  BX_CPU_THIS_PTR debug_trap = 0;
  BX_CPU_THIS_PTR inhibit_mask = 0;
  BX_INFO(("task switch: posting exception %u after commit point",
    exception_no));
  exception(exception_no, error_code, 0);
  return;
}


  void
BX_CPU_C::get_SS_ESP_from_TSS(unsigned pl, Bit16u *ss, Bit32u *esp)
{
  if (BX_CPU_THIS_PTR tr.cache.valid==0)
    BX_PANIC(("get_SS_ESP_from_TSS: TR.cache invalid"));

  if (BX_CPU_THIS_PTR tr.cache.type==9) {
    // 32-bit TSS
    Bit32u TSSstackaddr;

    TSSstackaddr = 8*pl + 4;
    if ( (TSSstackaddr+7) >
         BX_CPU_THIS_PTR tr.cache.u.tss386.limit_scaled )
      exception(BX_TS_EXCEPTION,
                BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);

    access_linear(BX_CPU_THIS_PTR tr.cache.u.tss386.base +
      TSSstackaddr+4, 2, 0, BX_READ, ss);
    access_linear(BX_CPU_THIS_PTR tr.cache.u.tss386.base +
      TSSstackaddr,   4, 0, BX_READ, esp);
    }
  else if (BX_CPU_THIS_PTR tr.cache.type==1) {
    // 16-bit TSS
    Bit16u temp16;
    Bit32u TSSstackaddr;

    TSSstackaddr = 4*pl + 2;
    if ( (TSSstackaddr+4) > BX_CPU_THIS_PTR tr.cache.u.tss286.limit )
      exception(BX_TS_EXCEPTION,
                BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);

    access_linear(BX_CPU_THIS_PTR tr.cache.u.tss286.base +
      TSSstackaddr+2, 2, 0, BX_READ, ss);
    access_linear(BX_CPU_THIS_PTR tr.cache.u.tss286.base +
      TSSstackaddr,   2, 0, BX_READ, &temp16);
    *esp = temp16; // truncate
    }
  else {
    BX_PANIC(("get_SS_ESP_from_TSS: TR is bogus type (%u)",
             (unsigned) BX_CPU_THIS_PTR tr.cache.type));
    }
}
#endif



#else  // BX_SUPPORT_TASKING


// for non-support of hardware tasking

#if BX_CPU_LEVEL >= 2
  /* corresponds to SWITCH_TASKS algorithm in Intel documentation */
  void
BX_CPU_C::task_switch(bx_selector_t *selector,
                 bx_descriptor_t *descriptor, unsigned source,
                 Bit32u dword1, Bit32u dword2)
{
  UNUSED(selector);
  UNUSED(descriptor);
  UNUSED(source);
  UNUSED(dword1);
  UNUSED(dword2);

  BX_INFO(("task_switch(): not complete"));
}
#endif

#endif // BX_SUPPORT_TASKING