1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
|
/////////////////////////////////////////////////////////////////////////
// $Id: access.cc,v 1.66 2006/06/09 22:29:06 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64
#define LPFOf(laddr) ((laddr) & BX_CONST64(0xfffffffffffff000))
#else
#define LPFOf(laddr) ((laddr) & 0xfffff000)
#endif
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_checks(bx_segment_reg_t *seg, bx_address offset,
unsigned length)
{
Bit32u upper_limit;
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
// do canonical checks
if (!IsCanonical(offset)) {
BX_ERROR(("Canonical Address Failure %08x%08x",(Bit32u)(offset >> 32),(Bit32u)(offset & 0xffffffff)));
exception(BX_GP_EXCEPTION, 0, 0);
}
seg->cache.valid |= SegAccessWOK;
return;
}
#endif
if (protected_mode()) {
if (seg->cache.valid==0) {
BX_DEBUG(("write_virtual_checks(): segment descriptor not valid"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
if (seg->cache.p == 0) { /* not present */
BX_ERROR(("write_virtual_checks(): segment not present"));
exception(int_number(seg), 0, 0);
return;
}
switch (seg->cache.type) {
case 0: case 1: // read only
case 4: case 5: // read only, expand down
case 8: case 9: // execute only
case 10: case 11: // execute/read
case 12: case 13: // execute only, conforming
case 14: case 15: // execute/read-only, conforming
BX_ERROR(("write_virtual_checks(): no write access to seg"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
case 2: case 3: /* read/write */
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|| (length-1 > seg->cache.u.segment.limit_scaled))
{
BX_ERROR(("write_virtual_checks(): write beyond limit, r/w"));
exception(int_number(seg), 0, 0);
return;
}
if (seg->cache.u.segment.limit_scaled >= 7) {
// Mark cache as being OK type for succeeding writes. The limit
// checks still needs to be done though, but is more simple. We
// could probably also optimize that out with a flag for the case
// when limit is the maximum 32bit value. Limit should accomodate
// at least a dword, since we subtract from it in the simple
// limit check in other functions, and we don't want the value to roll.
// Only normal segments (not expand down) are handled this way.
seg->cache.valid |= SegAccessWOK;
}
break;
case 6: case 7: /* read write, expand down */
if (seg->cache.u.segment.d_b)
upper_limit = 0xffffffff;
else
upper_limit = 0x0000ffff;
if ((offset <= seg->cache.u.segment.limit_scaled) ||
(offset > upper_limit) ||
((upper_limit - offset) < (length - 1)))
{
BX_ERROR(("write_virtual_checks(): write beyond limit, r/w ED"));
exception(int_number(seg), 0, 0);
return;
}
break;
}
return;
}
else { /* real mode */
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|| (length-1 > seg->cache.u.segment.limit_scaled))
{
BX_DEBUG(("write_virtual_checks(): write beyond limit (real mode)"));
exception(int_number(seg), 0, 0);
}
if (seg->cache.u.segment.limit_scaled >= 7) {
// Mark cache as being OK type for succeeding writes. See notes above.
seg->cache.valid |= SegAccessWOK;
}
}
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_virtual_checks(bx_segment_reg_t *seg, bx_address offset,
unsigned length)
{
Bit32u upper_limit;
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
// do canonical checks
if (!IsCanonical(offset)) {
BX_ERROR(("Canonical Address Failure %08x%08x",(Bit32u)(offset >> 32),(Bit32u)(offset & 0xffffffff)));
exception(BX_GP_EXCEPTION, 0, 0);
}
seg->cache.valid |= SegAccessROK;
return;
}
#endif
if (protected_mode()) {
if (seg->cache.valid==0) {
BX_DEBUG(("read_virtual_checks(): segment descriptor not valid"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
if (seg->cache.p == 0) { /* not present */
BX_ERROR(("read_virtual_checks(): segment not present"));
exception(int_number(seg), 0, 0);
return;
}
switch (seg->cache.type) {
case 0: case 1: /* read only */
case 10: case 11: /* execute/read */
case 14: case 15: /* execute/read-only, conforming */
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|| (length-1 > seg->cache.u.segment.limit_scaled))
{
BX_ERROR(("read_virtual_checks(): read beyond limit"));
exception(int_number(seg), 0, 0);
return;
}
if (seg->cache.u.segment.limit_scaled >= 7) {
// Mark cache as being OK type for succeeding reads. See notes for
// write checks; similar code.
seg->cache.valid |= SegAccessROK;
}
break;
case 2: case 3: /* read/write */
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|| (length-1 > seg->cache.u.segment.limit_scaled))
{
BX_ERROR(("read_virtual_checks(): read beyond limit"));
exception(int_number(seg), 0, 0);
return;
}
if (seg->cache.u.segment.limit_scaled >= 7)
{
// Mark cache as being OK type for succeeding reads. See notes for
// write checks; similar code.
seg->cache.valid |= SegAccessROK;
}
break;
case 4: case 5: /* read only, expand down */
if (seg->cache.u.segment.d_b)
upper_limit = 0xffffffff;
else
upper_limit = 0x0000ffff;
if ((offset <= seg->cache.u.segment.limit_scaled) ||
(offset > upper_limit) || ((upper_limit - offset) < (length - 1)))
{
BX_ERROR(("read_virtual_checks(): read beyond limit"));
exception(int_number(seg), 0, 0);
return;
}
break;
case 6: case 7: /* read write, expand down */
if (seg->cache.u.segment.d_b)
upper_limit = 0xffffffff;
else
upper_limit = 0x0000ffff;
if ((offset <= seg->cache.u.segment.limit_scaled) ||
(offset > upper_limit) || ((upper_limit - offset) < (length - 1)))
{
BX_ERROR(("read_virtual_checks(): read beyond limit"));
exception(int_number(seg), 0, 0);
return;
}
break;
case 8: case 9: /* execute only */
case 12: case 13: /* execute only, conforming */
/* can't read or write an execute-only segment */
BX_ERROR(("read_virtual_checks(): execute only"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
return;
}
else { /* real mode */
if (offset > (seg->cache.u.segment.limit_scaled - length + 1)
|| (length-1 > seg->cache.u.segment.limit_scaled))
{
BX_DEBUG(("read_virtual_checks(): read beyond limit (real mode)"));
exception(int_number(seg), 0, 0);
}
if (seg->cache.u.segment.limit_scaled >= 7) {
// Mark cache as being OK type for succeeding reads. See notes for
// write checks; similar code.
seg->cache.valid |= SegAccessROK;
}
}
}
char * BX_CPP_AttrRegparmN(1)
BX_CPU_C::strseg(bx_segment_reg_t *seg)
{
if (seg == &BX_CPU_THIS_PTR sregs[0]) return("ES");
else if (seg == &BX_CPU_THIS_PTR sregs[1]) return("CS");
else if (seg == &BX_CPU_THIS_PTR sregs[2]) return("SS");
else if (seg == &BX_CPU_THIS_PTR sregs[3]) return("DS");
else if (seg == &BX_CPU_THIS_PTR sregs[4]) return("FS");
else if (seg == &BX_CPU_THIS_PTR sregs[5]) return("GS");
else {
BX_PANIC(("undefined segment passed to strseg()!"));
return("??");
}
}
int BX_CPU_C::int_number(bx_segment_reg_t *seg)
{
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS])
return(BX_SS_EXCEPTION);
else
return(BX_GP_EXCEPTION);
}
#if BX_SupportGuest2HostTLB
Bit8u* BX_CPP_AttrRegparmN(2)
BX_CPU_C::v2h_read_byte(bx_address laddr, unsigned pl)
{
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
Bit32u accessBits = tlbEntry->accessBits;
if (accessBits & (1<<pl)) { // Read this pl OK.
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = laddr & 0xfff;
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
return hostAddr;
}
}
return 0;
}
Bit8u* BX_CPP_AttrRegparmN(2)
BX_CPU_C::v2h_write_byte(bx_address laddr, unsigned pl)
{
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf))
{
// See if the TLB entry privilege level allows us write access
// from this CPL.
Bit32u accessBits = tlbEntry->accessBits;
if (accessBits & (0x04 << pl)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = laddr & 0xfff;
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
#if BX_SUPPORT_ICACHE
pageWriteStampTable.decWriteStamp(tlbEntry->ppf);
#endif
return hostAddr;
}
}
return 0;
}
Bit16u* BX_CPP_AttrRegparmN(2)
BX_CPU_C::v2h_read_word(bx_address laddr, unsigned pl)
{
Bit32u pageOffset = laddr & 0xfff;
if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages.
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
Bit32u accessBits = tlbEntry->accessBits;
if (accessBits & (1<<pl)) { // Read this pl OK.
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
return hostAddr;
}
}
}
return 0;
}
Bit16u* BX_CPP_AttrRegparmN(2)
BX_CPU_C::v2h_write_word(bx_address laddr, unsigned pl)
{
Bit32u pageOffset = laddr & 0xfff;
if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages.
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf))
{
// See if the TLB entry privilege level allows us write access
// from this CPL.
Bit32u accessBits = tlbEntry->accessBits;
if (accessBits & (0x04 << pl)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
#if BX_SUPPORT_ICACHE
pageWriteStampTable.decWriteStamp(tlbEntry->ppf);
#endif
return hostAddr;
}
}
}
return 0;
}
Bit32u* BX_CPP_AttrRegparmN(2)
BX_CPU_C::v2h_read_dword(bx_address laddr, unsigned pl)
{
Bit32u pageOffset = laddr & 0xfff;
if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages.
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
Bit32u accessBits = tlbEntry->accessBits;
if (accessBits & (1<<pl)) { // Read this pl OK.
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
return hostAddr;
}
}
}
return 0;
}
Bit32u* BX_CPP_AttrRegparmN(2)
BX_CPU_C::v2h_write_dword(bx_address laddr, unsigned pl)
{
Bit32u pageOffset = laddr & 0xfff;
if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages.
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf))
{
// See if the TLB entry privilege level allows us write access
// from this CPL.
Bit32u accessBits = tlbEntry->accessBits;
if (accessBits & (0x04 << pl)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
#if BX_SUPPORT_ICACHE
pageWriteStampTable.decWriteStamp(tlbEntry->ppf);
#endif
return hostAddr;
}
}
}
return 0;
}
Bit64u* BX_CPP_AttrRegparmN(2)
BX_CPU_C::v2h_read_qword(bx_address laddr, unsigned pl)
{
Bit32u pageOffset = laddr & 0xfff;
if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages.
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
Bit32u accessBits = tlbEntry->accessBits;
if (accessBits & (1<<pl)) { // Read this pl OK.
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
return hostAddr;
}
}
}
return 0;
}
Bit64u* BX_CPP_AttrRegparmN(2)
BX_CPU_C::v2h_write_qword(bx_address laddr, unsigned pl)
{
Bit32u pageOffset = laddr & 0xfff;
if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages.
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf))
{
// See if the TLB entry privilege level allows us write access
// from this CPL.
Bit32u accessBits = tlbEntry->accessBits;
if (accessBits & (0x04 << pl)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
#if BX_SUPPORT_ICACHE
pageWriteStampTable.decWriteStamp(tlbEntry->ppf);
#endif
return hostAddr;
}
}
}
return 0;
}
#endif // BX_SupportGuest2HostTLB
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_byte(unsigned s, bx_address offset, Bit8u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ((Is64BitMode() && IsCanonical(offset))
|| (offset <= seg->cache.u.segment.limit_scaled)) {
unsigned pl;
accessOK:
laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset;
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 1, BX_WRITE);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
Bit8u *hostAddr = v2h_write_byte(laddr, pl);
if (hostAddr) {
*hostAddr = *data;
return;
}
#endif
access_linear(laddr, 1, pl, BX_WRITE, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 1);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_word(unsigned s, bx_address offset, Bit16u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ((Is64BitMode() && IsCanonical(offset))
|| (offset < seg->cache.u.segment.limit_scaled)) {
unsigned pl;
accessOK:
laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset;
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 2, BX_WRITE);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
Bit16u *hostAddr = v2h_write_word(laddr, pl);
if (hostAddr) {
// Current write access has privilege.
WriteHostWordToLittleEndian(hostAddr, *data);
return;
}
#endif
access_linear(laddr, 2, pl, BX_WRITE, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 2);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_dword(unsigned s, bx_address offset, Bit32u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ((Is64BitMode() && IsCanonical(offset))
|| (offset < (seg->cache.u.segment.limit_scaled-2))) {
unsigned pl;
accessOK:
laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset;
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 4, BX_WRITE);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
Bit32u *hostAddr = v2h_write_dword(laddr, pl);
if (hostAddr) {
// Current write access has privilege.
WriteHostDWordToLittleEndian(hostAddr, *data);
return;
}
#endif
access_linear(laddr, 4, pl, BX_WRITE, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 4);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_qword(unsigned s, bx_address offset, Bit64u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ((Is64BitMode() && IsCanonical(offset))
|| (offset <= (seg->cache.u.segment.limit_scaled-7))) {
unsigned pl;
accessOK:
laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset;
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 8, BX_WRITE);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
Bit64u *hostAddr = v2h_write_qword(laddr, pl);
if (hostAddr) {
// Current write access has privilege.
WriteHostQWordToLittleEndian(hostAddr, *data);
return;
}
#endif
access_linear(laddr, 8, pl, BX_WRITE, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 8);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_virtual_byte(unsigned s, bx_address offset, Bit8u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessROK) {
if ((Is64BitMode() && IsCanonical(offset))
|| (offset <= seg->cache.u.segment.limit_scaled)) {
unsigned pl;
accessOK:
laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset;
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 1, BX_READ);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
Bit8u *hostAddr = v2h_read_byte(laddr, pl);
if (hostAddr) {
*data = *hostAddr;
return;
}
#endif
access_linear(laddr, 1, pl, BX_READ, (void *) data);
return;
}
}
read_virtual_checks(seg, offset, 1);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_virtual_word(unsigned s, bx_address offset, Bit16u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessROK) {
if ((Is64BitMode() && IsCanonical(offset))
|| (offset < seg->cache.u.segment.limit_scaled)) {
unsigned pl;
accessOK:
laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset;
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 2, BX_READ);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
Bit16u *hostAddr = v2h_read_word(laddr, pl);
if (hostAddr) {
ReadHostWordFromLittleEndian(hostAddr, *data);
return;
}
#endif
access_linear(laddr, 2, pl, BX_READ, (void *) data);
return;
}
}
read_virtual_checks(seg, offset, 2);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_virtual_dword(unsigned s, bx_address offset, Bit32u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessROK) {
if ((Is64BitMode() && IsCanonical(offset))
|| (offset < (seg->cache.u.segment.limit_scaled-2))) {
unsigned pl;
accessOK:
laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset;
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 4, BX_READ);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
Bit32u *hostAddr = v2h_read_dword(laddr, pl);
if (hostAddr) {
ReadHostDWordFromLittleEndian(hostAddr, *data);
return;
}
#endif
access_linear(laddr, 4, pl, BX_READ, (void *) data);
return;
}
}
read_virtual_checks(seg, offset, 4);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_virtual_qword(unsigned s, bx_address offset, Bit64u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessROK) {
if ((Is64BitMode() && IsCanonical(offset))
|| (offset <= (seg->cache.u.segment.limit_scaled-7))) {
unsigned pl;
accessOK:
laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset;
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 8, BX_READ);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
Bit64u *hostAddr = v2h_read_qword(laddr, pl);
if (hostAddr) {
ReadHostQWordFromLittleEndian(hostAddr, *data);
return;
}
#endif
access_linear(laddr, 8, pl, BX_READ, (void *) data);
return;
}
}
read_virtual_checks(seg, offset, 8);
goto accessOK;
}
//////////////////////////////////////////////////////////////
// special Read-Modify-Write operations //
// address translation info is kept across read/write calls //
//////////////////////////////////////////////////////////////
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_RMW_virtual_byte(unsigned s, bx_address offset, Bit8u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ((Is64BitMode() && IsCanonical(offset))
|| (offset <= seg->cache.u.segment.limit_scaled)) {
unsigned pl;
accessOK:
laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset;
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 1, BX_RW);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
Bit8u *hostAddr = v2h_write_byte(laddr, pl);
if (hostAddr) {
// Current write access has privilege.
*data = *hostAddr;
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
return;
}
#endif
// Accelerated attempt falls through to long path. Do it the
// old fashioned way...
access_linear(laddr, 1, pl, BX_RW, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 1);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_RMW_virtual_word(unsigned s, bx_address offset, Bit16u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ((Is64BitMode() && IsCanonical(offset))
|| (offset < seg->cache.u.segment.limit_scaled)) {
unsigned pl;
accessOK:
laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset;
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 2, BX_RW);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
Bit16u *hostAddr = v2h_write_word(laddr, pl);
if (hostAddr) {
// Current write access has privilege.
ReadHostWordFromLittleEndian(hostAddr, *data);
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
return;
}
#endif
access_linear(laddr, 2, pl, BX_RW, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 2);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_RMW_virtual_dword(unsigned s, bx_address offset, Bit32u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ((Is64BitMode() && IsCanonical(offset))
|| (offset < (seg->cache.u.segment.limit_scaled-2))) {
unsigned pl;
accessOK:
laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset;
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 4, BX_RW);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
Bit32u *hostAddr = v2h_write_dword(laddr, pl);
if (hostAddr) {
// Current write access has privilege.
ReadHostDWordFromLittleEndian(hostAddr, *data);
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
return;
}
#endif
access_linear(laddr, 4, pl, BX_RW, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 4);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_RMW_virtual_qword(unsigned s, bx_address offset, Bit64u *data)
{
bx_address laddr;
bx_segment_reg_t *seg;
seg = &BX_CPU_THIS_PTR sregs[s];
if (seg->cache.valid & SegAccessWOK) {
if ((Is64BitMode() && IsCanonical(offset))
|| (offset <= (seg->cache.u.segment.limit_scaled-7))) {
unsigned pl;
accessOK:
laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset;
BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 8, BX_RW);
pl = (CPL==3);
#if BX_SupportGuest2HostTLB
Bit64u *hostAddr = v2h_write_qword(laddr, pl);
if (hostAddr) {
// Current write access has privilege.
ReadHostQWordFromLittleEndian(hostAddr, *data);
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
return;
}
#endif
access_linear(laddr, 8, pl, BX_RW, (void *) data);
return;
}
}
write_virtual_checks(seg, offset, 8);
goto accessOK;
}
void BX_CPP_AttrRegparmN(1)
BX_CPU_C::write_RMW_virtual_byte(Bit8u val8)
{
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access.
Bit8u *hostAddr = (Bit8u *) BX_CPU_THIS_PTR address_xlation.pages;
*hostAddr = val8;
}
else {
// address_xlation.pages must be 1
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val8);
}
}
void BX_CPP_AttrRegparmN(1)
BX_CPU_C::write_RMW_virtual_word(Bit16u val16)
{
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access.
Bit16u *hostAddr = (Bit16u *) BX_CPU_THIS_PTR address_xlation.pages;
WriteHostWordToLittleEndian(hostAddr, val16);
}
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1, 2, &val16);
}
else {
#ifdef BX_LITTLE_ENDIAN
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val16);
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress2, 1, ((Bit8u *) &val16) + 1);
#else
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1, 1, ((Bit8u *) &val16) + 1);
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress2, 1, &val16);
#endif
}
}
void BX_CPP_AttrRegparmN(1)
BX_CPU_C::write_RMW_virtual_dword(Bit32u val32)
{
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access.
Bit32u *hostAddr = (Bit32u *) BX_CPU_THIS_PTR address_xlation.pages;
WriteHostDWordToLittleEndian(hostAddr, val32);
}
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1, 4, &val32);
}
else {
#ifdef BX_LITTLE_ENDIAN
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
&val32);
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1);
#else
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1));
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
&val32);
#endif
}
}
void BX_CPP_AttrRegparmN(1)
BX_CPU_C::write_RMW_virtual_qword(Bit64u val64)
{
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access.
Bit64u *hostAddr = (Bit64u *) BX_CPU_THIS_PTR address_xlation.pages;
WriteHostQWordToLittleEndian(hostAddr, val64);
}
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1, 8, &val64);
}
else {
#ifdef BX_LITTLE_ENDIAN
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
&val64);
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1);
#else
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1));
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
&val64);
#endif
}
}
//
// Some macro defs to make things cleaner for endian-ness issues.
// The following routines access a double qword, ie 16-bytes.
// For the moment, I redirect these to use the single qword routines
// by splitting one access into two.
//
// Endian Host byte order Guest (x86) byte order
// ======================================================
// Little 0..7 8..15 0..7 8..15
// Big 15..8 7...0 0..7 8..15
//
// Below are the host memory offsets to each of 2 single quadwords, which
// are different across big an little endian machines. The memory
// accessing routines take care of the access endian issues when accessing
// the physical memory image.
//
#ifdef BX_LITTLE_ENDIAN
# define Host1stDWordOffset 0
# define Host2ndDWordOffset 8
#else
# define Host1stDWordOffset 8
# define Host2ndDWordOffset 0
#endif
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_virtual_dqword(unsigned s, bx_address offset, Bit8u *data)
{
// Read Double Quadword.
Bit64u *qwords = (Bit64u*) data;
read_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]);
read_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]);
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_virtual_dqword_aligned(unsigned s, bx_address offset, Bit8u *data)
{
// If double quadword access is unaligned, #GP(0).
if (offset & 0xf) {
BX_DEBUG(("read_virtual_dqword_aligned: access not aligned to 16-byte"));
exception(BX_GP_EXCEPTION, 0, 0);
}
read_virtual_dqword(s, offset, data);
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_dqword(unsigned s, bx_address offset, Bit8u *data)
{
// Write Double Quadword.
Bit64u *qwords = (Bit64u*) data;
write_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]);
write_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]);
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_dqword_aligned(unsigned s, bx_address offset, Bit8u *data)
{
// If double quadword access is unaligned, #GP(0).
if (offset & 0xf) {
BX_DEBUG(("write_virtual_dqword_aligned: access not aligned to 16-byte"));
exception(BX_GP_EXCEPTION, 0, 0);
}
write_virtual_dqword(s, offset, data);
}
#if BX_SUPPORT_FPU
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_virtual_tword(unsigned s, bx_address offset, floatx80 *data)
{
// read floating point register
read_virtual_qword(s, offset+0, &data->fraction);
read_virtual_word (s, offset+8, &data->exp);
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_tword(unsigned s, bx_address offset, floatx80 *data)
{
// store floating point register
write_virtual_qword(s, offset+0, &data->fraction);
write_virtual_word (s, offset+8, &data->exp);
}
#endif
|