File: protect_ctrl.cc

package info (click to toggle)
bochs 2.3-2etch1
  • links: PTS
  • area: main
  • in suites: etch
  • size: 14,116 kB
  • ctags: 16,927
  • sloc: cpp: 130,524; ansic: 18,822; sh: 7,922; makefile: 3,836; yacc: 1,056; asm: 463; perl: 381; lex: 280; csh: 3
file content (829 lines) | stat: -rw-r--r-- 22,112 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
/////////////////////////////////////////////////////////////////////////
// $Id: protect_ctrl.cc,v 1.49 2006/08/22 19:06:03 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2001  MandrakeSoft S.A.
//
//    MandrakeSoft S.A.
//    43, rue d'Aboukir
//    75002 Paris - France
//    http://www.linux-mandrake.com/
//    http://www.mandrakesoft.com/
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA


#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR

#if BX_CPU_LEVEL >= 2

void BX_CPU_C::ARPL_EwGw(bxInstruction_c *i)
{
  Bit16u op2_16, op1_16;

  if (protected_mode()) {
    /* op1_16 is a register or memory reference */
    if (i->modC0()) {
      op1_16 = BX_READ_16BIT_REG(i->rm());
    }
    else {
      /* pointer, segment address pair */
      read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
    }

    op2_16 = BX_READ_16BIT_REG(i->nnn());

    if ((op1_16 & 0x03) < (op2_16 & 0x03)) {
      op1_16 = (op1_16 & 0xfffc) | (op2_16 & 0x03);
      /* now write back to destination */
      if (i->modC0()) {
        if (i->os32L()) {
          // if 32bit opsize, then 0xff3f is or'd into
          // upper 16bits of register
          Bit32u op1_32 = BX_READ_32BIT_REG(i->rm());
          op1_32 = (op1_32 & 0xffff0000) | op1_16;
          op1_32 |= 0xff3f0000;
          BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
        }
        else {
          BX_WRITE_16BIT_REG(i->rm(), op1_16);
        }
      }
      else {
        write_RMW_virtual_word(op1_16);
      }
      set_ZF(1);
    }
    else {
      set_ZF(0);
    }
  }
  else {
    BX_DEBUG(("ARPL: not recognized in real or virtual-8086 mode"));
    UndefinedOpcode(i);
  }
}

#endif

void BX_CPU_C::LAR_GvEw(bxInstruction_c *i)
{
  /* for 16 bit operand size mode */
  Bit16u raw_selector;
  bx_descriptor_t descriptor;
  bx_selector_t selector;
  Bit32u dword1, dword2;

  if (real_mode() || v8086_mode()) {
    BX_INFO(("LAR: not recognized in real or virtual-8086 mode"));
    UndefinedOpcode(i);
    return;
  }

  if (i->modC0()) {
    raw_selector = BX_READ_16BIT_REG(i->rm());
  }
  else {
    /* pointer, segment address pair */
    read_virtual_word(i->seg(), RMAddr(i), &raw_selector);
  }

  /* if selector null, clear ZF and done */
  if ((raw_selector & 0xfffc) == 0) {
    clear_ZF();
    return;
  }

  parse_selector(raw_selector, &selector);

  if (!fetch_raw_descriptor2(&selector, &dword1, &dword2)) {
    /* not within descriptor table */
    clear_ZF();
    return;
  }

  parse_descriptor(dword1, dword2, &descriptor);

  if (descriptor.valid==0) {
    clear_ZF();
    return;
  }

  /* if source selector is visible at CPL & RPL,
   * within the descriptor table, and of type accepted by LAR instruction,
   * then load register with segment limit and set ZF
   */

  if (descriptor.segment) { /* normal segment */
    if (IS_CODE_SEGMENT(descriptor.type) && IS_CODE_SEGMENT_CONFORMING(descriptor.type)) {
      /* ignore DPL for conforming segments */
    }
    else {
      if ((descriptor.dpl<CPL) || (descriptor.dpl<selector.rpl)) {
        clear_ZF();
        return;
      }
    }
    assert_ZF();
    if (i->os32L()) {
      /* masked by 00FxFF00, where x is undefined */
      BX_WRITE_32BIT_REGZ(i->nnn(), dword2 & 0x00ffff00);
    }
    else {
      BX_WRITE_16BIT_REG(i->nnn(), dword2 & 0xff00);
    }
    return;
  }
  else { /* system or gate segment */
    switch (descriptor.type) {
      case BX_SYS_SEGMENT_AVAIL_286_TSS:
      case BX_SYS_SEGMENT_LDT:
      case BX_SYS_SEGMENT_BUSY_286_TSS:
      case BX_286_CALL_GATE:
      case BX_TASK_GATE:
#if BX_CPU_LEVEL >= 3
      case BX_SYS_SEGMENT_AVAIL_386_TSS:
      case BX_SYS_SEGMENT_BUSY_386_TSS:
      case BX_386_CALL_GATE:
#endif
        break;
      default: /* rest not accepted types to LAR */
        BX_DEBUG(("lar(): not accepted type"));
        clear_ZF();
        return;
    }

    if ((descriptor.dpl<CPL) || (descriptor.dpl<selector.rpl)) {
      clear_ZF();
      return;
    }
    assert_ZF();
    if (i->os32L()) {
      /* masked by 00FxFF00, where x is undefined ? */
      BX_WRITE_32BIT_REGZ(i->nnn(), dword2 & 0x00ffff00);
    }
    else {
      BX_WRITE_16BIT_REG(i->nnn(), dword2 & 0xff00);
    }
  }
}

void BX_CPU_C::LSL_GvEw(bxInstruction_c *i)
{
  /* for 16 bit operand size mode */
  Bit16u raw_selector;
  Bit32u limit32;
  bx_selector_t selector;
  Bit32u dword1, dword2;
  Bit32u descriptor_dpl;

  if (real_mode() || v8086_mode()) {
    BX_INFO(("LSL: not recognized in real or virtual-8086 mode"));
    UndefinedOpcode(i);
  }

  if (i->modC0()) {
    raw_selector = BX_READ_16BIT_REG(i->rm());
  }
  else {
    /* pointer, segment address pair */
    read_virtual_word(i->seg(), RMAddr(i), &raw_selector);
  }

  /* if selector null, clear ZF and done */
  if ((raw_selector & 0xfffc) == 0) {
    clear_ZF();
    return;
  }

  parse_selector(raw_selector, &selector);

  if (!fetch_raw_descriptor2(&selector, &dword1, &dword2)) {
    /* not within descriptor table */
    clear_ZF();
    return;
  }

  descriptor_dpl = (dword2 >> 13) & 0x03;

  if ((dword2 & 0x00001000) == 0) { // system segment
    Bit32u type = (dword2 >> 8) & 0x0000000f;
    switch (type) {
      case BX_SYS_SEGMENT_AVAIL_286_TSS:
      case BX_SYS_SEGMENT_BUSY_286_TSS:
      case BX_SYS_SEGMENT_LDT:
      case BX_SYS_SEGMENT_AVAIL_386_TSS:
      case BX_SYS_SEGMENT_BUSY_386_TSS:
        limit32 = (dword1 & 0x0000ffff) | (dword2 & 0x000f0000);
        if (dword2 & 0x00800000)
          limit32 = (limit32 << 12) | 0x00000fff;
        if ((descriptor_dpl<CPL) || (descriptor_dpl<selector.rpl)) {
          clear_ZF();
          return;
        }
        goto lsl_ok;
        break;
      default:
        clear_ZF();
        return;
    }
  }
  else { // data & code segment
    limit32 = (dword1 & 0x0000ffff) | (dword2 & 0x000f0000);
    if (dword2 & 0x00800000)
      limit32 = (limit32 << 12) | 0x00000fff;
    if ((dword2 & 0x00000c00) == 0x00000c00) {
      // conforming code segment, no check done
      goto lsl_ok;
    }

    if ((descriptor_dpl<CPL) || (descriptor_dpl<selector.rpl)) {
      clear_ZF();
      return;
    }
    goto lsl_ok;
  }

lsl_ok:
  /* all checks pass, limit32 is now byte granular, write to op1 */
  assert_ZF();

  if (i->os32L())
    BX_WRITE_32BIT_REGZ(i->nnn(), limit32)
  else
    // chop off upper 16 bits
    BX_WRITE_16BIT_REG(i->nnn(), (Bit16u) limit32)
}

#if BX_CPU_LEVEL >= 2

void BX_CPU_C::SLDT_Ew(bxInstruction_c *i)
{
  if (real_mode() || v8086_mode()) {
    BX_INFO(("SLDT: not recognized in real or virtual-8086 mode"));
    UndefinedOpcode(i);
  }

  Bit16u val16 = BX_CPU_THIS_PTR ldtr.selector.value;
  if (i->modC0()) {
    BX_WRITE_16BIT_REG(i->rm(), val16);
  }
  else {
    write_virtual_word(i->seg(), RMAddr(i), &val16);
  }
}

#endif

void BX_CPU_C::STR_Ew(bxInstruction_c *i)
{
  if (real_mode() || v8086_mode()) {
    BX_INFO(("STR: not recognized in real or virtual-8086 mode"));
    UndefinedOpcode(i);
  }

  Bit16u val16 = BX_CPU_THIS_PTR tr.selector.value;
  if (i->modC0()) {
    BX_WRITE_16BIT_REG(i->rm(), val16);
  }
  else {
    write_virtual_word(i->seg(), RMAddr(i), &val16);
  }
}

#if BX_CPU_LEVEL >= 2

void BX_CPU_C::LLDT_Ew(bxInstruction_c *i)
{
  /* protected mode */
  bx_descriptor_t  descriptor;
  bx_selector_t    selector;
  Bit16u raw_selector;
  Bit32u dword1, dword2;
#if BX_SUPPORT_X86_64
  Bit32u dword3;
#endif

  if (real_mode() || v8086_mode()) {
    BX_INFO(("LTR: not recognized in real or virtual-8086 mode"));
    UndefinedOpcode(i);
  }

  invalidate_prefetch_q();

  /* #GP(0) if the current privilege level is not 0 */
  if (CPL != 0) {
    BX_INFO(("LLDT: The current priveledge level is not 0"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  if (i->modC0()) {
    raw_selector = BX_READ_16BIT_REG(i->rm());
  }
  else {
    read_virtual_word(i->seg(), RMAddr(i), &raw_selector);
  }

  /* if selector is NULL, invalidate and done */
  if ((raw_selector & 0xfffc) == 0) {
    BX_CPU_THIS_PTR ldtr.selector.value = raw_selector;
    BX_CPU_THIS_PTR ldtr.cache.valid = 0;
    return;
  }

  /* parse fields in selector */
  parse_selector(raw_selector, &selector);

  // #GP(selector) if the selector operand does not point into GDT
  if (selector.ti != 0) {
    BX_ERROR(("LLDT: selector.ti != 0"));
    exception(BX_GP_EXCEPTION, raw_selector & 0xfffc, 0);
  }

  /* fetch 2 dwords of descriptor; call handles out of limits checks */
  fetch_raw_descriptor(&selector, &dword1, &dword2, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &descriptor);

#if BX_SUPPORT_X86_64
  if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
    // set upper 32 bits of tss base
    access_linear(BX_CPU_THIS_PTR gdtr.base + selector.index*8 + 8, 4, 0, BX_READ, &dword3);
    descriptor.u.ldt.base |= ((Bit64u)dword3 << 32);
    BX_INFO(("64 bit LDT base = 0x%08x%08x",
       (Bit32u)(descriptor.u.ldt.base >> 32),
       (Bit32u) descriptor.u.ldt.base));
  }
#endif

  /* if selector doesn't point to an LDT descriptor #GP(selector) */
  if (descriptor.valid == 0 || descriptor.segment ||
         descriptor.type != BX_SYS_SEGMENT_LDT) 
  {
    BX_ERROR(("LLDT: doesn't point to an LDT descriptor!"));
    exception(BX_GP_EXCEPTION, raw_selector & 0xfffc, 0);
  }

  /* #NP(selector) if LDT descriptor is not present */
  if (! IS_PRESENT(descriptor)) {
    BX_ERROR(("LLDT: LDT descriptor not present!"));
    exception(BX_NP_EXCEPTION, raw_selector & 0xfffc, 0);
  }

  BX_CPU_THIS_PTR ldtr.selector = selector;
  BX_CPU_THIS_PTR ldtr.cache = descriptor;
  BX_CPU_THIS_PTR ldtr.cache.valid = 1;
}

void BX_CPU_C::LTR_Ew(bxInstruction_c *i)
{
  bx_descriptor_t descriptor;
  bx_selector_t selector;
  Bit16u raw_selector;
  Bit32u dword1, dword2;
#if BX_SUPPORT_X86_64
  Bit32u dword3;
#endif

  if (real_mode() || v8086_mode()) {
    BX_INFO(("LTR: not recognized in real or virtual-8086 mode"));
    UndefinedOpcode(i);
  }

  invalidate_prefetch_q();

  /* #GP(0) if the current privilege level is not 0 */
  if (CPL != 0) {
    BX_ERROR(("LTR: The current priveledge level is not 0"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  if (i->modC0()) {
    raw_selector = BX_READ_16BIT_REG(i->rm());
  }
  else {
    read_virtual_word(i->seg(), RMAddr(i), &raw_selector);
  }

  /* if selector is NULL, invalidate and done */
  if ((raw_selector & BX_SELECTOR_RPL_MASK) == 0) {
    BX_ERROR(("LTR: loading with NULL selector!"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  /* parse fields in selector, then check for null selector */
  parse_selector(raw_selector, &selector);

  if (selector.ti) {
    BX_ERROR(("LTR: selector.ti != 0"));
    exception(BX_GP_EXCEPTION, raw_selector & 0xfffc, 0);
  }

  /* fetch 2 dwords of descriptor; call handles out of limits checks */
  fetch_raw_descriptor(&selector, &dword1, &dword2, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &descriptor);

#if BX_SUPPORT_X86_64
  if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
    // set upper 32 bits of tss base
    access_linear(BX_CPU_THIS_PTR gdtr.base + selector.index*8 + 8, 4, 0, BX_READ, &dword3);
    descriptor.u.tss.base |= ((Bit64u)dword3 << 32);
    BX_INFO(("64 bit tss base = 0x%08x%08x",
       (Bit32u)(descriptor.u.tss.base >> 32),
       (Bit32u) descriptor.u.tss.base));
  }
#endif

  /* #GP(selector) if object is not a TSS or is already busy */
  if (descriptor.valid==0 || descriptor.segment ||
         (descriptor.type!=BX_SYS_SEGMENT_AVAIL_286_TSS && 
          descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS)) 
  {
    BX_ERROR(("LTR: doesn't point to an available TSS descriptor!"));
    exception(BX_GP_EXCEPTION, raw_selector & 0xfffc, 0);
  }

  /* #NP(selector) if TSS descriptor is not present */
  if (! IS_PRESENT(descriptor)) {
    BX_ERROR(("LTR: LDT descriptor not present!"));
    exception(BX_NP_EXCEPTION, raw_selector & 0xfffc, 0);
  }

  BX_CPU_THIS_PTR tr.selector = selector;
  BX_CPU_THIS_PTR tr.cache    = descriptor;
  BX_CPU_THIS_PTR tr.cache.valid = 1;
  // tr.cache.type should not have busy bit, or it would not get 
  // through the conditions above.
  BX_ASSERT((BX_CPU_THIS_PTR tr.cache.type & 2) == 0);

  /* mark as busy */
  dword2 |= 0x00000200; /* set busy bit */
  access_linear(BX_CPU_THIS_PTR gdtr.base + selector.index*8 + 4, 4, 0,
      BX_WRITE, &dword2);
}

#endif

void BX_CPU_C::VERR_Ew(bxInstruction_c *i)
{
  /* for 16 bit operand size mode */
  Bit16u raw_selector;
  bx_descriptor_t descriptor;
  bx_selector_t selector;
  Bit32u dword1, dword2;

  if (real_mode() || v8086_mode()) {
    BX_INFO(("VERR: not recognized in real or virtual-8086 mode"));
    UndefinedOpcode(i);
  }

  if (i->modC0()) {
    raw_selector = BX_READ_16BIT_REG(i->rm());
  }
  else {
    /* pointer, segment address pair */
    read_virtual_word(i->seg(), RMAddr(i), &raw_selector);
  }

  /* if selector null, clear ZF and done */
  if ((raw_selector & 0xfffc) == 0) {
    BX_DEBUG(("VERR: null selector"));
    clear_ZF();
    return;
  }

  /* if source selector is visible at CPL & RPL,
   * within the descriptor table, and of type accepted by VERR instruction,
   * then load register with segment limit and set ZF */
  parse_selector(raw_selector, &selector);

  if (!fetch_raw_descriptor2(&selector, &dword1, &dword2)) {
    /* not within descriptor table */
    BX_DEBUG(("VERR: not within descriptor table"));
    clear_ZF();
    return;
  }

  parse_descriptor(dword1, dword2, &descriptor);

  if (descriptor.segment==0) { /* system or gate descriptor */
    BX_DEBUG(("VERR: system descriptor"));
    clear_ZF();  /* inaccessible */
    return;
  }

  if (descriptor.valid==0) {
    BX_DEBUG(("VERR: valid bit cleared"));
    clear_ZF();  /* inaccessible */
    return;
  }

  /* normal data/code segment */
  if (IS_CODE_SEGMENT(descriptor.type)) { /* code segment */
    /* ignore DPL for readable conforming segments */
    if (IS_CODE_SEGMENT_CONFORMING(descriptor.type) &&
        IS_CODE_SEGMENT_READABLE(descriptor.type))
    {
      BX_DEBUG(("VERR: conforming code, OK"));
      assert_ZF(); /* accessible */
      return;
    }
    if (!IS_CODE_SEGMENT_READABLE(descriptor.type)) {
      BX_DEBUG(("VERR: code not readable"));
      clear_ZF();  /* inaccessible */
      return;
    }
    /* readable, non-conforming code segment */
    if ((descriptor.dpl<CPL) || (descriptor.dpl<selector.rpl)) {
      BX_DEBUG(("VERR: non-conforming code not withing priv level"));
      clear_ZF();  /* inaccessible */
      return;
    }

    assert_ZF(); /* accessible */
  }
  else { /* data segment */
    if ((descriptor.dpl<CPL) || (descriptor.dpl<selector.rpl)) {
      BX_DEBUG(("VERR: data seg not withing priv level"));
      clear_ZF(); /* not accessible */
      return;
    }
    assert_ZF(); /* accessible */
  }
}

void BX_CPU_C::VERW_Ew(bxInstruction_c *i)
{
  /* for 16 bit operand size mode */
  Bit16u raw_selector;
  bx_descriptor_t descriptor;
  bx_selector_t selector;
  Bit32u dword1, dword2;

  if (real_mode() || v8086_mode()) {
    BX_INFO(("VERW: not recognized in real or virtual-8086 mode"));
    UndefinedOpcode(i);
  }

  if (i->modC0()) {
    raw_selector = BX_READ_16BIT_REG(i->rm());
  }
  else {
    /* pointer, segment address pair */
    read_virtual_word(i->seg(), RMAddr(i), &raw_selector);
  }

  /* if selector null, clear ZF and done */
  if ((raw_selector & 0xfffc) == 0) {
    BX_DEBUG(("VERW: null selector"));
    clear_ZF();
    return;
  }

  /* if source selector is visible at CPL & RPL,
   * within the descriptor table, and of type accepted by VERW instruction,
   * then load register with segment limit and set ZF */
  parse_selector(raw_selector, &selector);

  if (!fetch_raw_descriptor2(&selector, &dword1, &dword2)) {
    /* not within descriptor table */
    BX_DEBUG(("VERW: not within descriptor table"));
    clear_ZF();
    return;
  }

  parse_descriptor(dword1, dword2, &descriptor);

  /* rule out system segments & code segments */
  if (descriptor.segment==0 || IS_CODE_SEGMENT(descriptor.type)) {
    BX_DEBUG(("VERW: system seg or code"));
    clear_ZF();
    return;
  }

  if (descriptor.valid==0) {
    BX_DEBUG(("VERW: valid bit cleared"));
    clear_ZF();
    return;
  }

  /* data segment */
  if (IS_DATA_SEGMENT_WRITEABLE(descriptor.type)) { /* writable */
    if ((descriptor.dpl<CPL) || (descriptor.dpl<selector.rpl)) {
      BX_DEBUG(("VERW: writable data seg not within priv level"));
      clear_ZF(); /* not accessible */
      return;
    }
    assert_ZF();  /* accessible */
    return;
  }

  BX_DEBUG(("VERW: data seg not writable"));
  clear_ZF(); /* not accessible */
}

#if BX_CPU_LEVEL >= 2

void BX_CPU_C::SGDT_Ms(bxInstruction_c *i)
{
  /* op1 is a register or memory reference */
  if (i->modC0()) {
    BX_INFO(("SGDT_Ms: use of register is undefined opcode"));
    UndefinedOpcode(i);
  }

#if BX_SUPPORT_X86_64
  if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
  {
    Bit16u limit_16 = BX_CPU_THIS_PTR gdtr.limit;
    Bit64u base_64  = BX_CPU_THIS_PTR gdtr.base;

    write_virtual_word(i->seg(), RMAddr(i), &limit_16);
    write_virtual_qword(i->seg(), RMAddr(i)+2, &base_64);
  }
  else
#endif
  {
    Bit16u limit_16 = BX_CPU_THIS_PTR gdtr.limit;
    Bit32u base_32  = BX_CPU_THIS_PTR gdtr.base;
#if BX_CPU_LEVEL == 2
    base_32 |= 0xff000000; /* ??? */
#else /* 386+ */
    /* 32bit processors always write 32bits of base */
#endif
    write_virtual_word(i->seg(), RMAddr(i), &limit_16);
    write_virtual_dword(i->seg(), RMAddr(i)+2, &base_32);
  }
#endif
}

void BX_CPU_C::SIDT_Ms(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 2
  BX_PANIC(("SIDT_Ms: not supported on 8086!"));
  UndefinedOpcode(i);
#else

  /* op1 is a register or memory reference */
  if (i->modC0()) {
    BX_INFO(("SIDT: use of register is undefined opcode"));
    UndefinedOpcode(i);
  }

#if BX_SUPPORT_X86_64
  if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
  {
    Bit16u limit_16 = BX_CPU_THIS_PTR idtr.limit;
    Bit64u base_64  = BX_CPU_THIS_PTR idtr.base;

    write_virtual_word(i->seg(), RMAddr(i), &limit_16);
    write_virtual_qword(i->seg(), RMAddr(i)+2, &base_64);
  }
  else
#endif
  {
    Bit16u limit_16 = BX_CPU_THIS_PTR idtr.limit;
    Bit32u base_32  = BX_CPU_THIS_PTR idtr.base;

#if BX_CPU_LEVEL == 2
    base_32 |= 0xff000000;
#else /* 386+ */
    /* regardless of operand size, all 32bits of base are stored */
#endif

    write_virtual_word(i->seg(), RMAddr(i), &limit_16);
    write_virtual_dword(i->seg(), RMAddr(i)+2, &base_32);
  }
}

void BX_CPU_C::LGDT_Ms(bxInstruction_c *i)
{
  if (v8086_mode()) {
    BX_INFO(("LGDT: not recognized in virtual-8086 mode"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  invalidate_prefetch_q();

  if (!real_mode() && CPL!=0) {
    BX_INFO(("LGDT: CPL!=0 in protected mode"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  /* operand might be a register or memory reference */
  if (i->modC0()) {
    BX_INFO(("LGDT: must be memory reference"));
    UndefinedOpcode(i);
  }

#if BX_CPU_LEVEL >= 3
#if BX_SUPPORT_X86_64
  if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
  {
    Bit16u limit_16;
    Bit64u base_64;

    read_virtual_word(i->seg(), RMAddr(i), &limit_16);
    read_virtual_qword(i->seg(), RMAddr(i) + 2, &base_64);

    BX_CPU_THIS_PTR gdtr.limit = limit_16;
    BX_CPU_THIS_PTR gdtr.base = base_64;
  }
  else
#endif
  if (i->os32L()) {
    Bit16u limit_16;
    Bit32u base0_31;

    read_virtual_word(i->seg(), RMAddr(i), &limit_16);
    read_virtual_dword(i->seg(), RMAddr(i) + 2, &base0_31);

    BX_CPU_THIS_PTR gdtr.limit = limit_16;
    BX_CPU_THIS_PTR gdtr.base = base0_31;
  }
  else
#endif
  {
    Bit16u limit_16, base0_15;
    Bit8u base16_23;

    read_virtual_word(i->seg(), RMAddr(i), &limit_16);
    read_virtual_word(i->seg(), RMAddr(i) + 2, &base0_15);
    read_virtual_byte(i->seg(), RMAddr(i) + 4, &base16_23);

    /* ignore high 8 bits */
    BX_CPU_THIS_PTR gdtr.limit = limit_16;
    BX_CPU_THIS_PTR gdtr.base = (base16_23 << 16) | base0_15;
  }
}

void BX_CPU_C::LIDT_Ms(bxInstruction_c *i)
{
  Bit16u limit_16;
  Bit32u base_32;

  if (v8086_mode()) {
    BX_INFO(("LIDT: not recognized in virtual-8086 mode"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  invalidate_prefetch_q();

  if (!real_mode() && CPL!=0) {
    BX_ERROR(("LIDT: CPL!=0 in protected mode"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  /* operand might be a register or memory reference */
  if (i->modC0()) {
    BX_INFO(("LIDT: must be memory reference"));
    UndefinedOpcode(i);
  }

#if BX_CPU_LEVEL >= 3
#if BX_SUPPORT_X86_64
  if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
  {
    Bit64u base_64;

    read_virtual_word(i->seg(), RMAddr(i), &limit_16);
    read_virtual_qword(i->seg(), RMAddr(i) + 2, &base_64);

    BX_CPU_THIS_PTR idtr.limit = limit_16;
    BX_CPU_THIS_PTR idtr.base = base_64;
  }
  else 
#endif
  if (i->os32L()) {
    read_virtual_word(i->seg(), RMAddr(i), &limit_16);
    read_virtual_dword(i->seg(), RMAddr(i) + 2, &base_32);

    BX_CPU_THIS_PTR idtr.limit = limit_16;
    BX_CPU_THIS_PTR idtr.base = base_32;
  }
  else
#endif
  {
    read_virtual_word(i->seg(), RMAddr(i), &limit_16);
    read_virtual_dword(i->seg(), RMAddr(i) + 2, &base_32);

    BX_CPU_THIS_PTR idtr.limit = limit_16;
    BX_CPU_THIS_PTR idtr.base = base_32 & 0x00ffffff; /* ignore upper 8 bits */
  }
}

#endif