File: smm.cc

package info (click to toggle)
bochs 2.3-2etch1
  • links: PTS
  • area: main
  • in suites: etch
  • size: 14,116 kB
  • ctags: 16,927
  • sloc: cpp: 130,524; ansic: 18,822; sh: 7,922; makefile: 3,836; yacc: 1,056; asm: 463; perl: 381; lex: 280; csh: 3
file content (804 lines) | stat: -rwxr-xr-x 35,629 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
/////////////////////////////////////////////////////////////////////////
// $Id: smm.cc,v 1.19 2006/06/12 16:58:27 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
//   Copyright (c) 2006 Stanislav Shwartsman
//          Written by Stanislav Shwartsman <stl at fidonet.org.il>
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
/////////////////////////////////////////////////////////////////////////


#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#include "smm.h"
#define LOG_THIS BX_CPU_THIS_PTR

#if BX_CPU_LEVEL >= 3

#if BX_SUPPORT_X86_64==0
#define RIP EIP
#endif

//
// Some of the CPU field must be saved and restored in order to continue the
// simulation correctly after the RSM instruction:
//
//      ---------------------------------------------------------------
//
// 1. General purpose registers: EAX-EDI, R8-R15
// 2. EIP, RFLAGS
// 3. Segment registers CS, DS, SS, ES, FS, GS
//    fields: valid      - not required, initialized according to selector value
//            p          - must be saved/restored
//            dpl        - must be saved/restored
//            segment    - must be 1 for seg registers, not required to save
//            type       - must be saved/restored
//            base       - must be saved/restored
//            limit      - must be saved/restored
//            g          - must be saved/restored
//            d_b        - must be saved/restored
//            l          - must be saved/restored
//            avl        - must be saved/restored
// 4. GDTR, IDTR
//     fields: base, limit
// 5. LDTR, TR
//     fields: base, limit, anything else ?
// 6. Debug Registers DR0-DR7, only DR6 and DR7 are saved
// 7. Control Registers: CR0, CR1 is always 0, CR2 is NOT saved, CR3, CR4, EFER
// 8. SMBASE
// 9. MSR/FPU/XMM/APIC are NOT saved accoring to Intel docs
//

#define SMM_SAVE_STATE_MAP_SIZE 128

void BX_CPU_C::RSM(bxInstruction_c *i)
{
  /* If we are not in System Management Mode, then #UD should be generated */
  if (! BX_CPU_THIS_PTR smm_mode()) {
    BX_INFO(("RSM not in System Management Mode !"));
    UndefinedOpcode(i);
  }

  invalidate_prefetch_q();

  BX_INFO(("RSM: Resuming from System Management Mode !"));

  BX_CPU_THIS_PTR nmi_disable = 0;
  BX_CPU_THIS_PTR in_smm = 0;

  Bit32u saved_state[SMM_SAVE_STATE_MAP_SIZE], n;
  // reset reserved bits
  for(n=0;n<SMM_SAVE_STATE_MAP_SIZE;n++) saved_state[n] = 0;

  bx_phy_address base = BX_CPU_THIS_PTR smbase + 0x10000;
  // could be optimized with reading of only non-reserved bytes
  for(n=0;n<SMM_SAVE_STATE_MAP_SIZE;n++) {
    base -= 4;
    BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, base, 4, &saved_state[n]);
  }

  // restore the CPU state from SMRAM
  if (! smram_restore_state(saved_state)) {
    BX_PANIC(("RSM: Incorrect state when restoring CPU state - shutdown !"));
    shutdown();
  }

  debug(RIP);
}

void BX_CPU_C::enter_system_management_mode(void)
{
  invalidate_prefetch_q();

  debug(BX_CPU_THIS_PTR prev_eip);

  BX_INFO(("Enter to System Management Mode !"));

  BX_CPU_THIS_PTR in_smm = 1;

  Bit32u saved_state[SMM_SAVE_STATE_MAP_SIZE], n;
  // reset reserved bits
  for(n=0;n<SMM_SAVE_STATE_MAP_SIZE;n++) saved_state[n] = 0;
  // prepare CPU state to be saved in the SMRAM
  BX_CPU_THIS_PTR smram_save_state(saved_state);

  bx_phy_address base = BX_CPU_THIS_PTR smbase + 0x10000;
  // could be optimized with reading of only non-reserved bytes
  for(n=0;n<SMM_SAVE_STATE_MAP_SIZE;n++) {
    base -= 4;
    BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, base, 4, &saved_state[n]);
  }

  BX_CPU_THIS_PTR setEFlags(0x2); // Bit1 is always set
  BX_CPU_THIS_PTR prev_eip = RIP = 0x00008000;
  BX_CPU_THIS_PTR dr7 = 0x00000400;

  // CR0 - PE, EM, TS, and PG flags set to 0; others unmodified
  BX_CPU_THIS_PTR cr0.pe = 0; // real mode (bit 0)
  BX_CPU_THIS_PTR cr0.em = 0; // emulate math coprocessor (bit 2)
  BX_CPU_THIS_PTR cr0.ts = 0; // no task switch (bit 3)
  BX_CPU_THIS_PTR cr0.pg = 0; // paging disabled (bit 31)
  BX_CPU_THIS_PTR cr0.val32 &= 0x7ffffff2;

  BX_CPU_THIS_PTR cpu_mode = BX_MODE_IA32_REAL;

  // paging mode was changed - flush TLB
  TLB_flush(1); // 1 = Flush Global entries also

#if BX_CPU_LEVEL >= 4
  BX_CPU_THIS_PTR cr4.setRegister(0);
#endif

  // EFER.LME = 0, EFER.LME = 1
#if BX_SUPPORT_X86_64
  BX_CPU_THIS_PTR msr.lme = 0;
  BX_CPU_THIS_PTR msr.lma = 0;
#endif

  parse_selector(BX_CPU_THIS_PTR smbase >> 4,
               &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector);
  
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid    = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p        = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl      = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment  = 1;  /* data/code segment */
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.type     = BX_CODE_EXEC_READ_ACCESSED;

  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base         = BX_CPU_THIS_PTR smbase;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit        = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xffffffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g   = 1; /* page granular */
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 0; /* 16bit default size */
#if BX_SUPPORT_X86_64
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.l   = 0; /* 16bit default size */
#endif

#if BX_SUPPORT_ICACHE
  BX_CPU_THIS_PTR updateFetchModeMask();
#endif

  /* DS (Data Segment) and descriptor cache */
  parse_selector(0x0000,
               &BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector);

  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid    = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p        = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl      = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment  = 1; /* data/code segment */
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.type     = BX_DATA_READ_WRITE_ACCESSED;

  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base         = 0x00000000;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit        = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled = 0xffffffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.avl = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g   = 1; /* byte granular */
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b = 0; /* 16bit default size */
#if BX_SUPPORT_X86_64
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.l   = 0; /* 16bit default size */
#endif

  // use DS segment as template for the others
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS] = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES] = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS] = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS] = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
}

#define SMRAM_TRANSLATE(addr)    (((0x8000 - (addr)) >> 2) - 1)
#define SMRAM_FIELD(state, addr) (state[SMRAM_TRANSLATE(addr)])

#if BX_SUPPORT_X86_64

BX_CPP_INLINE Bit64u SMRAM_FIELD64(const Bit32u *saved_state, unsigned hi, unsigned lo)
{
  Bit64u tmp  = ((Bit64u) SMRAM_FIELD(saved_state, hi)) << 32;
         tmp |=  (Bit64u) SMRAM_FIELD(saved_state, lo);
  return tmp;
}

void BX_CPU_C::smram_save_state(Bit32u *saved_state)
{
  // --- General Purpose Registers --- //
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RAX_HI32) = RAX >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RAX_LO32) = RAX & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RCX_HI32) = RCX >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RCX_LO32) = RCX & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RDX_HI32) = RDX >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RDX_LO32) = RDX & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RBX_HI32) = RBX >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RBX_LO32) = RBX & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RSP_HI32) = RSP >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RSP_LO32) = RSP & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RBP_HI32) = RBP >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RBP_LO32) = RBP & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RSI_HI32) = RSI >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RSI_LO32) = RSI & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RDI_HI32) = RDI >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RDI_LO32) = RDI & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R8_HI32)  =  R8 >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R8_LO32)  =  R8 & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R9_HI32)  =  R9 >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R9_LO32)  =  R9 & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R10_HI32) = R10 >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R10_LO32) = R10 & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R11_HI32) = R11 >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R11_LO32) = R11 & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R12_HI32) = R12 >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R12_LO32) = R12 & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R13_HI32) = R13 >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R13_LO32) = R13 & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R14_HI32) = R14 >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R14_LO32) = R14 & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R15_HI32) = R15 >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_R15_LO32) = R15 & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RIP_HI32) = RIP >> 32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RIP_LO32) = RIP & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_RFLAGS32) = read_eflags();

  // --- Debug and Control Registers --- //
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR6) = BX_CPU_THIS_PTR dr6;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR7) = BX_CPU_THIS_PTR dr7;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR0) = BX_CPU_THIS_PTR cr0.val32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR3) = BX_CPU_THIS_PTR cr3;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR4) = BX_CPU_THIS_PTR cr4.getRegister();
  /* base+0x7f44 to base+0x7f04 is reserved */
  SMRAM_FIELD(saved_state, SMRAM_SMBASE_OFFSET)   = BX_CPU_THIS_PTR smbase;
  SMRAM_FIELD(saved_state, SMRAM_SMM_REVISION_ID) = SMM_REVISION_ID;
  /* base+0x7ef8 to base+0x7ed8 is reserved */
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_EFER) = BX_CPU_THIS_PTR get_EFER();
  /* base+0x7ecc is reserved */
  /* base+0x7ec8 is I/O Instruction Restart, Auto-Halt Restart and NMI Mask */
  /* base+0x7ec4 is reserved */
  /* base+0x7ec0 is SMM I/O Trap */
  /* base+0x7ebc to base+0x7ea0 is reserved */

  // --- Task Register --- //
  SMRAM_FIELD(saved_state, SMRAM_TR_BASE_HI32) = BX_CPU_THIS_PTR tr.cache.u.tss.base >> 32;
  SMRAM_FIELD(saved_state, SMRAM_TR_BASE_LO32) = BX_CPU_THIS_PTR tr.cache.u.tss.base & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_TR_LIMIT) = BX_CPU_THIS_PTR tr.cache.u.tss.limit;
  SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR_AR) = BX_CPU_THIS_PTR tr.selector.value |
    (((Bit32u) get_segment_ar_data(&BX_CPU_THIS_PTR tr.cache)) << 16);

  // --- IDTR --- //
  SMRAM_FIELD(saved_state, SMRAM_IDTR_BASE_HI32) = BX_CPU_THIS_PTR idtr.base >> 32;
  SMRAM_FIELD(saved_state, SMRAM_IDTR_BASE_LO32) = BX_CPU_THIS_PTR idtr.base & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_IDTR_LIMIT) = BX_CPU_THIS_PTR idtr.limit;
  // --- LDTR --- //
  SMRAM_FIELD(saved_state, SMRAM_LDTR_BASE_HI32) = BX_CPU_THIS_PTR ldtr.cache.u.ldt.base >> 32;
  SMRAM_FIELD(saved_state, SMRAM_LDTR_BASE_LO32) = BX_CPU_THIS_PTR ldtr.cache.u.ldt.base & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_LDTR_LIMIT) = BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit;
  SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR_AR) = BX_CPU_THIS_PTR ldtr.selector.value |
    (((Bit32u) get_segment_ar_data(&BX_CPU_THIS_PTR ldtr.cache)) << 16);
  // --- GDTR --- //
  SMRAM_FIELD(saved_state, SMRAM_GDTR_BASE_HI32) = BX_CPU_THIS_PTR gdtr.base >> 32;
  SMRAM_FIELD(saved_state, SMRAM_GDTR_BASE_LO32) = BX_CPU_THIS_PTR gdtr.base & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_GDTR_LIMIT) = BX_CPU_THIS_PTR gdtr.limit;
  // --- GS selector --- //
  bx_segment_reg_t *seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS]);
  SMRAM_FIELD(saved_state, SMRAM_GS_BASE_HI32) = seg->cache.u.segment.base >> 32;
  SMRAM_FIELD(saved_state, SMRAM_GS_BASE_LO32) = seg->cache.u.segment.base & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_GS_LIMIT) = seg->cache.u.segment.limit;
  SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR_AR) = seg->selector.value |
    (((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
  // --- FS selector --- //
  seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]);
  SMRAM_FIELD(saved_state, SMRAM_FS_BASE_HI32) = seg->cache.u.segment.base >> 32;
  SMRAM_FIELD(saved_state, SMRAM_FS_BASE_LO32) = seg->cache.u.segment.base & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_FS_LIMIT) = seg->cache.u.segment.limit;
  SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR_AR) = seg->selector.value |
    (((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
  // --- DS selector --- //
  seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]);
  SMRAM_FIELD(saved_state, SMRAM_DS_BASE_HI32) = seg->cache.u.segment.base >> 32;
  SMRAM_FIELD(saved_state, SMRAM_DS_BASE_LO32) = seg->cache.u.segment.base & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_DS_LIMIT) = seg->cache.u.segment.limit;
  SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR_AR) = seg->selector.value |
    (((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
  // --- SS selector --- //
  seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]);
  SMRAM_FIELD(saved_state, SMRAM_SS_BASE_HI32) = seg->cache.u.segment.base >> 32;
  SMRAM_FIELD(saved_state, SMRAM_SS_BASE_LO32) = seg->cache.u.segment.base & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_SS_LIMIT) = seg->cache.u.segment.limit;
  SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR_AR) = seg->selector.value |
    (((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
  // --- CS selector --- //
  seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]);
  SMRAM_FIELD(saved_state, SMRAM_CS_BASE_HI32) = seg->cache.u.segment.base >> 32;
  SMRAM_FIELD(saved_state, SMRAM_CS_BASE_LO32) = seg->cache.u.segment.base & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_CS_LIMIT) = seg->cache.u.segment.limit;
  SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR_AR) = seg->selector.value |
    (((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
  // --- ES selector --- //
  seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]);
  SMRAM_FIELD(saved_state, SMRAM_ES_BASE_HI32) = seg->cache.u.segment.base >> 32;
  SMRAM_FIELD(saved_state, SMRAM_ES_BASE_LO32) = seg->cache.u.segment.base & 0xffffffff;
  SMRAM_FIELD(saved_state, SMRAM_ES_LIMIT) = seg->cache.u.segment.limit;
  SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR_AR) = seg->selector.value |
    (((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
}

bx_bool BX_CPU_C::smram_restore_state(const Bit32u *saved_state)
{
  Bit32u temp_cr0    = SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR0);
  Bit32u temp_eflags = SMRAM_FIELD(saved_state, SMRAM_OFFSET_RFLAGS32);
  Bit32u temp_efer   = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EFER);

  bx_bool pe = (temp_cr0 & 0x01);
  bx_bool nw = (temp_cr0 >> 29) & 0x01;
  bx_bool cd = (temp_cr0 >> 30) & 0x01;
  bx_bool pg = (temp_cr0 >> 31) & 0x01;

  // check CR0 conditions for entering to shutdown state
  if (pg && !pe) {
    BX_PANIC(("SMM restore: attempt to set CR0.PG with CR0.PE cleared !"));
    return 0;
  }

  if (nw && !cd) {
    BX_PANIC(("SMM restore: attempt to set CR0.NW with CR0.CD cleared !"));
    return 0;
  }

  // shutdown if write to reserved CR4 bits
  if (! SetCR4(SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR4))) {
    BX_PANIC(("SMM restore: incorrect CR4 state !"));
    return 0;
  }

  BX_CPU_THIS_PTR msr.sce   = (temp_efer >> 0)  & 1;
  BX_CPU_THIS_PTR msr.lme   = (temp_efer >> 8)  & 1;
  BX_CPU_THIS_PTR msr.lma   = (temp_efer >> 10) & 1;
  BX_CPU_THIS_PTR msr.nxe   = (temp_efer >> 11) & 1;
  BX_CPU_THIS_PTR msr.ffxsr = (temp_efer >> 14) & 1;

  if (BX_CPU_THIS_PTR msr.lma) {
    if (temp_eflags & EFlagsVMMask) {
      BX_PANIC(("SMM restore: If EFER.LMA = 1 => RFLAGS.VM=0 !"));
      return 0;
    }

    if (!BX_CPU_THIS_PTR cr4.get_PAE() || !pg || !pe || !BX_CPU_THIS_PTR msr.lme) {
      BX_PANIC(("SMM restore: If EFER.LMA = 1 <=> CR4.PAE, CR0.PG, CR0.PE, EFER.LME=1 !"));
      return 0;
    }
  }

  if (BX_CPU_THIS_PTR cr4.get_PAE() && pg && pe && BX_CPU_THIS_PTR msr.lme) {
    if (! BX_CPU_THIS_PTR msr.lma) {
      BX_PANIC(("SMM restore: If EFER.LMA = 1 <=> CR4.PAE, CR0.PG, CR0.PE, EFER.LME=1 !"));
      return 0;
    }
  }

  // hack CR0 to be able to back to long mode correctly
  BX_CPU_THIS_PTR cr0.pe = 0; // real mode (bit 0)
  BX_CPU_THIS_PTR cr0.pg = 0; // paging disabled (bit 31)
  BX_CPU_THIS_PTR cr0.val32 &= 0x7ffffffe;
  SetCR0(temp_cr0);
  setEFlags(temp_eflags);

  bx_phy_address temp_cr3 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR3);
  CR3_change(temp_cr3);

  RAX = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RAX_HI32, SMRAM_OFFSET_RAX_LO32);
  RBX = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RBX_HI32, SMRAM_OFFSET_RBX_LO32);
  RCX = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RCX_HI32, SMRAM_OFFSET_RCX_LO32);
  RDX = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RDX_HI32, SMRAM_OFFSET_RDX_LO32);
  RSP = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RSP_HI32, SMRAM_OFFSET_RSP_LO32);
  RBP = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RBP_HI32, SMRAM_OFFSET_RBP_LO32);
  RSI = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RSI_HI32, SMRAM_OFFSET_RSI_LO32);
  RDI = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RDI_HI32, SMRAM_OFFSET_RDI_LO32);
  R8  = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R8_HI32,  SMRAM_OFFSET_R8_LO32);
  R9  = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R9_HI32,  SMRAM_OFFSET_R9_LO32);
  R10 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R10_HI32, SMRAM_OFFSET_R10_LO32);
  R11 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R11_HI32, SMRAM_OFFSET_R11_LO32);
  R12 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R12_HI32, SMRAM_OFFSET_R12_LO32);
  R13 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R13_HI32, SMRAM_OFFSET_R13_LO32);
  R14 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R14_HI32, SMRAM_OFFSET_R14_LO32);
  R15 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R15_HI32, SMRAM_OFFSET_R15_LO32);
  RIP = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RIP_HI32, SMRAM_OFFSET_RIP_LO32);

  BX_CPU_THIS_PTR dr6 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR6);
  BX_CPU_THIS_PTR dr7 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR7);

  BX_CPU_THIS_PTR gdtr.base  = SMRAM_FIELD64(saved_state, SMRAM_GDTR_BASE_HI32, SMRAM_GDTR_BASE_LO32);
  BX_CPU_THIS_PTR gdtr.limit = SMRAM_FIELD(saved_state, SMRAM_GDTR_LIMIT);
  BX_CPU_THIS_PTR idtr.base  = SMRAM_FIELD64(saved_state, SMRAM_IDTR_BASE_HI32, SMRAM_IDTR_BASE_LO32);
  BX_CPU_THIS_PTR idtr.limit = SMRAM_FIELD(saved_state, SMRAM_IDTR_LIMIT);

  if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS],
          SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD64(saved_state, SMRAM_CS_BASE_HI32, SMRAM_CS_BASE_LO32),
          SMRAM_FIELD(saved_state, SMRAM_CS_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR_AR) >> 16))
  {
     if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment) {
        BX_PANIC(("SMM restore: restored valid non segment CS !"));
        return 0;
     }
  }

  handleCpuModeChange();

  if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS],
          SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD64(saved_state, SMRAM_DS_BASE_HI32, SMRAM_DS_BASE_LO32),
          SMRAM_FIELD(saved_state, SMRAM_DS_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR_AR) >> 16))
  {
     if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment) {
        BX_PANIC(("SMM restore: restored valid non segment DS !"));
        return 0;
     }
  }

  if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS],
          SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD64(saved_state, SMRAM_SS_BASE_HI32, SMRAM_SS_BASE_LO32),
          SMRAM_FIELD(saved_state, SMRAM_SS_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR_AR) >> 16))
  {
     if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment) {
        BX_PANIC(("SMM restore: restored valid non segment SS !"));
        return 0;
     }
  }

  if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES],
          SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD64(saved_state, SMRAM_ES_BASE_HI32, SMRAM_ES_BASE_LO32),
          SMRAM_FIELD(saved_state, SMRAM_ES_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR_AR) >> 16))
  {
     if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment) {
        BX_PANIC(("SMM restore: restored valid non segment ES !"));
        return 0;
     }
  }

  if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS],
          SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD64(saved_state, SMRAM_FS_BASE_HI32, SMRAM_FS_BASE_LO32),
          SMRAM_FIELD(saved_state, SMRAM_FS_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR_AR) >> 16))
  {
     if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.segment) {
        BX_PANIC(("SMM restore: restored valid non segment FS !"));
        return 0;
     }
  }

  if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS],
          SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD64(saved_state, SMRAM_GS_BASE_HI32, SMRAM_GS_BASE_LO32),
          SMRAM_FIELD(saved_state, SMRAM_GS_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR_AR) >> 16))
  {
     if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.segment) {
        BX_PANIC(("SMM restore: restored valid non segment GS !"));
        return 0;
     }
  }

  if (set_segment_ar_data(&BX_CPU_THIS_PTR ldtr,
          SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD64(saved_state, SMRAM_LDTR_BASE_HI32, SMRAM_LDTR_BASE_LO32),
          SMRAM_FIELD(saved_state, SMRAM_LDTR_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR_AR) >> 16))
  {
     if (BX_CPU_THIS_PTR ldtr.cache.type != BX_SYS_SEGMENT_LDT) {
        BX_PANIC(("SMM restore: LDTR is not LDT descriptor type !"));
        return 0;
     }
  }

  if (set_segment_ar_data(&BX_CPU_THIS_PTR tr,
          SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD64(saved_state, SMRAM_TR_BASE_HI32, SMRAM_TR_BASE_LO32),
          SMRAM_FIELD(saved_state, SMRAM_TR_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR_AR) >> 16))
  {
     if (BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_AVAIL_286_TSS &&
         BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_BUSY_286_TSS &&
         BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_AVAIL_386_TSS &&
         BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_BUSY_386_TSS)
     {
        BX_PANIC(("SMM restore: TR is not TSS descriptor type !"));
        return 0;
     }
  }

  if (SMM_REVISION_ID & SMM_SMBASE_RELOCATION)
     BX_CPU_THIS_PTR smbase = SMRAM_FIELD(saved_state, SMRAM_SMBASE_OFFSET);

  return 1;
}

#else /* BX_SUPPORT_X86_64 == 0 */

void BX_CPU_C::smram_save_state(Bit32u *saved_state)
{
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR0) = BX_CPU_THIS_PTR cr0.val32;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR3) = BX_CPU_THIS_PTR cr3;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_EFLAGS) = read_eflags();
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_EIP) = EIP;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_EDI) = EDI;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_ESI) = ESI;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_EBP) = EBP;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_ESP) = ESP;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_EBX) = EBX;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_EDX) = EDX;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_ECX) = ECX;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_EAX) = EAX;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR6) = BX_CPU_THIS_PTR dr6;
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR7) = BX_CPU_THIS_PTR dr7;
  SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR)   = BX_CPU_THIS_PTR   tr.selector.value;
  SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR) = BX_CPU_THIS_PTR ldtr.selector.value;

  SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR) =
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value;
  SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR) =
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value;
  SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR) =
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
  SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR) =
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
  SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR) =
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
  SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR) =
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;

  // --- SS selector --- //
  bx_segment_reg_t *seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]);
  SMRAM_FIELD(saved_state, SMRAM_SS_BASE) = seg->cache.u.segment.base;
  SMRAM_FIELD(saved_state, SMRAM_SS_LIMIT) = seg->cache.u.segment.limit;
  SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR_AR) = seg->selector.value |
    (((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
  // --- CS selector --- //
  seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]);
  SMRAM_FIELD(saved_state, SMRAM_CS_BASE) = seg->cache.u.segment.base;
  SMRAM_FIELD(saved_state, SMRAM_CS_LIMIT) = seg->cache.u.segment.limit;
  SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR_AR) = seg->selector.value |
    (((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
  // --- ES selector --- //
  seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]);
  SMRAM_FIELD(saved_state, SMRAM_ES_BASE) = seg->cache.u.segment.base;
  SMRAM_FIELD(saved_state, SMRAM_ES_LIMIT) = seg->cache.u.segment.limit;
  SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR_AR) = seg->selector.value |
    (((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
  // --- LDTR --- //
  SMRAM_FIELD(saved_state, SMRAM_LDTR_BASE) = BX_CPU_THIS_PTR ldtr.cache.u.ldt.base;
  SMRAM_FIELD(saved_state, SMRAM_LDTR_LIMIT) = BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit;
  SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR_AR) = BX_CPU_THIS_PTR ldtr.selector.value |
    (((Bit32u) get_segment_ar_data(&BX_CPU_THIS_PTR ldtr.cache)) << 16);
  // --- GDTR --- //
  SMRAM_FIELD(saved_state, SMRAM_GDTR_BASE) = BX_CPU_THIS_PTR gdtr.base;
  SMRAM_FIELD(saved_state, SMRAM_GDTR_LIMIT) = BX_CPU_THIS_PTR gdtr.limit;
  /* base+0x7f6c is reserved */
  /* base+0x7f68 is reserved */

  // --- Task Register --- //
  SMRAM_FIELD(saved_state, SMRAM_TR_BASE) = BX_CPU_THIS_PTR tr.cache.u.tss.base;
  SMRAM_FIELD(saved_state, SMRAM_TR_LIMIT) = BX_CPU_THIS_PTR tr.cache.u.tss.limit;
  SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR_AR) = BX_CPU_THIS_PTR tr.selector.value |
    (((Bit32u) get_segment_ar_data(&BX_CPU_THIS_PTR tr.cache)) << 16);

  // --- IDTR --- //
  SMRAM_FIELD(saved_state, SMRAM_IDTR_BASE) = BX_CPU_THIS_PTR idtr.base;
  SMRAM_FIELD(saved_state, SMRAM_IDTR_LIMIT) = BX_CPU_THIS_PTR idtr.limit;
  /* base+0x7f50 is reserved */
  // --- GS selector --- //
  seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS]);
  SMRAM_FIELD(saved_state, SMRAM_GS_BASE) = seg->cache.u.segment.base;
  SMRAM_FIELD(saved_state, SMRAM_GS_LIMIT) = seg->cache.u.segment.limit;
  SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR_AR) = seg->selector.value |
    (((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
  // --- FS selector --- //
  seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]);
  SMRAM_FIELD(saved_state, SMRAM_FS_BASE) = seg->cache.u.segment.base;
  SMRAM_FIELD(saved_state, SMRAM_FS_LIMIT) = seg->cache.u.segment.limit;
  SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR_AR) = seg->selector.value |
    (((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
  // --- DS selector --- //
  seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]);
  SMRAM_FIELD(saved_state, SMRAM_DS_BASE) = seg->cache.u.segment.base;
  SMRAM_FIELD(saved_state, SMRAM_DS_LIMIT) = seg->cache.u.segment.limit;
  SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR_AR) = seg->selector.value |
    (((Bit32u) get_segment_ar_data(&seg->cache)) << 16);

  /* base+0x7f28 to base+7f18 is reserved */
#if BX_CPU_LEVEL >= 4
  SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR4) = BX_CPU_THIS_PTR cr4.getRegister();
#endif

  /* base+0x7f02 is Auto HALT restart field (2 byte) */
  /* base+0x7f00 is I/O restart field (2 byte) */
  SMRAM_FIELD(saved_state, SMRAM_SMM_REVISION_ID) = SMM_REVISION_ID;
  SMRAM_FIELD(saved_state, SMRAM_SMBASE_OFFSET)   = BX_CPU_THIS_PTR smbase;
  /* base+0x7ef4 to base+0x7e00 is reserved */
}

bx_bool BX_CPU_C::smram_restore_state(const Bit32u *saved_state)
{
  Bit32u temp_cr0    = SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR0);
  Bit32u temp_eflags = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EFLAGS);
  Bit32u temp_cr3    = SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR3);

  bx_bool pe = (temp_cr0 & 0x01);
  bx_bool nw = (temp_cr0 >> 29) & 0x01;
  bx_bool cd = (temp_cr0 >> 30) & 0x01;
  bx_bool pg = (temp_cr0 >> 31) & 0x01;

  // check conditions for entering to shutdown state
  if (pg && !pe) {
    BX_PANIC(("SMM restore: attempt to set CR0.PG with CR0.PE cleared !"));
    return 0;
  }

  if (nw && !cd) {
    BX_PANIC(("SMM restore: attempt to set CR0.NW with CR0.CD cleared !"));
    return 0;
  }

  SetCR0(temp_cr0);
  CR3_change(temp_cr3);
  setEFlags(temp_eflags);

#if BX_CPU_LEVEL >= 4
  if (! SetCR4(SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR4))) {
    BX_PANIC(("SMM restore: incorrect CR4 state !"));
    return 0;
  }
#endif

  EIP = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EIP);
  EDI = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EDI);
  ESI = SMRAM_FIELD(saved_state, SMRAM_OFFSET_ESI);
  EBP = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EBP);
  ESP = SMRAM_FIELD(saved_state, SMRAM_OFFSET_ESP);
  EBX = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EBX);
  EDX = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EDX);
  ECX = SMRAM_FIELD(saved_state, SMRAM_OFFSET_ECX);
  EAX = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EAX);

  BX_CPU_THIS_PTR dr6 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR6);
  BX_CPU_THIS_PTR dr7 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR7);

  BX_CPU_THIS_PTR gdtr.base  = SMRAM_FIELD(saved_state, SMRAM_GDTR_BASE);
  BX_CPU_THIS_PTR gdtr.limit = SMRAM_FIELD(saved_state, SMRAM_GDTR_LIMIT);
  BX_CPU_THIS_PTR idtr.base  = SMRAM_FIELD(saved_state, SMRAM_IDTR_BASE);
  BX_CPU_THIS_PTR idtr.limit = SMRAM_FIELD(saved_state, SMRAM_IDTR_LIMIT);

  if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS],
          SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD(saved_state, SMRAM_CS_BASE),
          SMRAM_FIELD(saved_state, SMRAM_CS_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR_AR) >> 16))
  {
     if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment) {
        BX_PANIC(("SMM restore: restored valid non segment CS !"));
        return 0;
     }
  }

  handleCpuModeChange();

  if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS],
          SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD(saved_state, SMRAM_DS_BASE),
          SMRAM_FIELD(saved_state, SMRAM_DS_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR_AR) >> 16))
  {
     if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment) {
        BX_PANIC(("SMM restore: restored valid non segment DS !"));
        return 0;
     }
  }

  if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS],
          SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD(saved_state, SMRAM_SS_BASE),
          SMRAM_FIELD(saved_state, SMRAM_SS_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR_AR) >> 16))
  {
     if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment) {
        BX_PANIC(("SMM restore: restored valid non segment SS !"));
        return 0;
     }
  }

  if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES],
          SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD(saved_state, SMRAM_ES_BASE),
          SMRAM_FIELD(saved_state, SMRAM_ES_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR_AR) >> 16))
  {
     if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment) {
        BX_PANIC(("SMM restore: restored valid non segment ES !"));
        return 0;
     }
  }

  if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS],
          SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD(saved_state, SMRAM_FS_BASE),
          SMRAM_FIELD(saved_state, SMRAM_FS_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR_AR) >> 16))
  {
     if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.segment) {
        BX_PANIC(("SMM restore: restored valid non segment FS !"));
        return 0;
     }
  }

  if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS],
          SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD(saved_state, SMRAM_GS_BASE),
          SMRAM_FIELD(saved_state, SMRAM_GS_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR_AR) >> 16))
  {
     if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.segment) {
        BX_PANIC(("SMM restore: restored valid non segment GS !"));
        return 0;
     }
  }

  if (set_segment_ar_data(&BX_CPU_THIS_PTR ldtr,
          SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD(saved_state, SMRAM_LDTR_BASE),
          SMRAM_FIELD(saved_state, SMRAM_LDTR_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR_AR) >> 16))
  {
     if (BX_CPU_THIS_PTR ldtr.cache.type != BX_SYS_SEGMENT_LDT) {
        BX_PANIC(("SMM restore: LDTR is not LDT descriptor type !"));
        return 0;
     }
  }

  if (set_segment_ar_data(&BX_CPU_THIS_PTR tr,
          SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR_AR) & 0xffff,
          SMRAM_FIELD(saved_state, SMRAM_TR_BASE),
          SMRAM_FIELD(saved_state, SMRAM_TR_LIMIT),
          SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR_AR) >> 16))
  {
     if (BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_AVAIL_286_TSS &&
         BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_BUSY_286_TSS &&
         BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_AVAIL_386_TSS &&
         BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_BUSY_386_TSS)
     {
        BX_PANIC(("SMM restore: TR is not TSS descriptor type !"));
        return 0;
     }
  }

  if (SMM_REVISION_ID & SMM_SMBASE_RELOCATION) {
     BX_CPU_THIS_PTR smbase = SMRAM_FIELD(saved_state, SMRAM_SMBASE_OFFSET);
#if BX_CPU_LEVEL < 6
     if (BX_CPU_THIS_PTR smbase & 0x7fff) {
        BX_PANIC(("SMM restore: SMBASE must be aligned to 32K !"));
        return 0;
     }
#endif
  }

  return 1;
}

#endif /* BX_SUPPORT_X86_64 */

#endif /* BX_CPU_LEVEL >= 3 */