File: vm8086.cc

package info (click to toggle)
bochs 2.3-2etch1
  • links: PTS
  • area: main
  • in suites: etch
  • size: 14,116 kB
  • ctags: 16,927
  • sloc: cpp: 130,524; ansic: 18,822; sh: 7,922; makefile: 3,836; yacc: 1,056; asm: 463; perl: 381; lex: 280; csh: 3
file content (345 lines) | stat: -rw-r--r-- 13,015 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/////////////////////////////////////////////////////////////////////////
// $Id: vm8086.cc,v 1.27 2006/06/12 16:58:27 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2001  MandrakeSoft S.A.
//
//    MandrakeSoft S.A.
//    43, rue d'Aboukir
//    75002 Paris - France
//    http://www.linux-mandrake.com/
//    http://www.mandrakesoft.com/
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA


#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR

#if BX_SUPPORT_X86_64==0
// Make life easier for merging 64&32-bit code.
#define RIP EIP
#define RSP ESP
#endif


// Notes:
//
// The high bits of the 32bit eip image are ignored by
// the IRET to VM.  The high bits of the 32bit esp image
// are loaded into ESP.  A subsequent push uses
// only the low 16bits since it's in VM.  In neither case
// did a protection fault occur during actual tests.  This
// is contrary to the Intel docs which claim a #GP for
// eIP out of code limits.
//
// IRET to VM does affect IOPL, IF, VM, and RF


#if BX_SUPPORT_V8086_MODE

#if BX_CPU_LEVEL >= 3

void BX_CPU_C::stack_return_to_v86(Bit32u new_eip, Bit32u raw_cs_selector,
                              Bit32u flags32)
{
  Bit32u temp_ESP, new_esp, esp_laddr;
  Bit16u raw_es_selector, raw_ds_selector, raw_fs_selector,
         raw_gs_selector, raw_ss_selector;

  // Must be 32bit effective opsize, VM is set in upper 16bits of eFLAGS
  // and CPL = 0 to get here

  // ----------------
  // |     | OLD GS | eSP+32
  // |     | OLD FS | eSP+28
  // |     | OLD DS | eSP+24
  // |     | OLD ES | eSP+20
  // |     | OLD SS | eSP+16
  // |  OLD ESP     | eSP+12
  // | OLD EFLAGS   | eSP+8
  // |     | OLD CS | eSP+4
  // |  OLD EIP     | eSP+0
  // ----------------

  if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
    temp_ESP = ESP;
  else
    temp_ESP = SP;

  // top 36 bytes of stack must be within stack limits, else #SS(0)
  if ( !can_pop(36) ) {
    BX_INFO(("iret: VM: top 36 bytes not within limits"));
    exception(BX_SS_EXCEPTION, 0, 0);
  }

  esp_laddr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base + temp_ESP;

  // load SS:ESP from stack
  access_linear(esp_laddr + 12, 4, 0, BX_READ, &new_esp);
  access_linear(esp_laddr + 16, 2, 0, BX_READ, &raw_ss_selector);

  // load ES,DS,FS,GS from stack
  access_linear(esp_laddr + 20, 2, 0, BX_READ, &raw_es_selector);
  access_linear(esp_laddr + 24, 2, 0, BX_READ, &raw_ds_selector);
  access_linear(esp_laddr + 28, 2, 0, BX_READ, &raw_fs_selector);
  access_linear(esp_laddr + 32, 2, 0, BX_READ, &raw_gs_selector);

  writeEFlags(flags32, EFlagsValidMask);

  // load CS:IP from stack; already read and passed as args
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = raw_cs_selector;
  EIP = new_eip & 0xffff;

  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = raw_es_selector;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = raw_ds_selector;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = raw_fs_selector;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = raw_gs_selector;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = raw_ss_selector;
  RSP = new_esp;	// full 32 bit are loaded

  init_v8086_mode();
}

void BX_CPU_C::iret16_stack_return_from_v86(bxInstruction_c *i)
{
  if ((BX_CPU_THIS_PTR get_IOPL() < 3) && (CR4_VME_ENABLED == 0)) {
    // trap to virtual 8086 monitor
    BX_DEBUG(("IRET in vm86 with IOPL != 3, VME = 0"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  Bit16u ip, cs_raw, flags16;

  if( !can_pop(6) )
  {
    exception(BX_SS_EXCEPTION, 0, 0);
    return;
  }

  pop_16(&ip);
  pop_16(&cs_raw);
  pop_16(&flags16);

#if BX_SUPPORT_VME
  if (CR4_VME_ENABLED && BX_CPU_THIS_PTR get_IOPL() < 3)
  {
    if (((flags16 & EFlagsIFMask) && BX_CPU_THIS_PTR get_VIP()) || 
         (flags16 & EFlagsTFMask))
    {
      BX_DEBUG(("iret16_stack_return_from_v86: #GP(0) in VME mode"));
      exception(BX_GP_EXCEPTION, 0, 0);
    }

    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw);
    RIP = (Bit32u) ip;

    // IF, IOPL unchanged, EFLAGS.VIF = TMP_FLAGS.IF
    Bit32u changeMask = EFlagsOSZAPCMask | EFlagsTFMask | 
                            EFlagsDFMask | EFlagsNTMask | EFlagsVIFMask;
    Bit32u flags32 = (Bit32u) flags16;
    if (BX_CPU_THIS_PTR get_IF()) flags32 |= EFlagsVIFMask;
    writeEFlags(flags32, changeMask);

    return;
  }
#endif

  load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw);
  RIP = (Bit32u) ip;
  write_flags(flags16, /*IOPL*/ 0, /*IF*/ 1);
}

void BX_CPU_C::iret32_stack_return_from_v86(bxInstruction_c *i)
{
  if (BX_CPU_THIS_PTR get_IOPL() < 3) {
    // trap to virtual 8086 monitor
    BX_DEBUG(("IRET in vm86 with IOPL != 3, VME = 0"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  Bit32u eip, cs_raw, flags32;
  // Build a mask of the following bits:
  // ID,VIP,VIF,AC,VM,RF,x,NT,IOPL,OF,DF,IF,TF,SF,ZF,x,AF,x,PF,x,CF
  Bit32u change_mask = EFlagsOSZAPCMask | EFlagsTFMask | EFlagsIFMask 
                         | EFlagsDFMask | EFlagsNTMask | EFlagsRFMask;

#if BX_CPU_LEVEL >= 4
  change_mask |= (EFlagsIDMask | EFlagsACMask);  // ID/AC
#endif

  if( !can_pop(12) )
  {
    exception(BX_SS_EXCEPTION, 0, 0);
    return;
  }
  
  pop_32(&eip);
  pop_32(&cs_raw);
  pop_32(&flags32);

  load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], (Bit16u) cs_raw);
  RIP = eip;
  // VIF, VIP, VM, IOPL unchanged
  writeEFlags(flags32, change_mask);
}

#if BX_SUPPORT_VME
void BX_CPU_C::v86_redirect_interrupt(Bit32u vector)
{
  Bit16u temp_IP, temp_CS, temp_flags = read_flags();

  access_linear(vector*4,     2, 0, BX_READ, &temp_IP);
  access_linear(vector*4 + 2, 2, 0, BX_READ, &temp_CS);

  if (BX_CPU_THIS_PTR get_IOPL() < 3) {
    temp_flags |= EFlagsIOPLMask;
    if (BX_CPU_THIS_PTR get_VIF())
      temp_flags |=  EFlagsIFMask;
    else
      temp_flags &= ~EFlagsIFMask;
  }

  Bit16u old_IP = IP;
  Bit16u old_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;

  push_16(temp_flags);
  // push return address onto new stack
  push_16(old_CS);
  push_16(old_IP);

  load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], (Bit16u) temp_CS);
  RIP = temp_IP;

  BX_CPU_THIS_PTR clear_TF();
  BX_CPU_THIS_PTR clear_RF();
  if (BX_CPU_THIS_PTR get_IOPL() == 3)
    BX_CPU_THIS_PTR clear_IF ();
  else
    BX_CPU_THIS_PTR clear_VIF();
}
#endif

void BX_CPU_C::init_v8086_mode(void)
{
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid   = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p       = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl     = 3;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.type    = BX_CODE_EXEC_READ_ACCESSED;

  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base =
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value << 4;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit        = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g            = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b          = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl          = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl                 = 3;

#if BX_SUPPORT_ICACHE  // update instruction cache
  BX_CPU_THIS_PTR updateFetchModeMask();
#endif

  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid   = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p       = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl     = 3;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type    = BX_DATA_READ_WRITE_ACCESSED;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base =
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value << 4;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit        = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g            = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b          = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.avl          = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl                 = 3;

  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid   = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p       = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl     = 3;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.type    = BX_DATA_READ_WRITE_ACCESSED;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base =
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value << 4;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit        = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit_scaled = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g            = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.d_b          = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.avl          = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl                 = 3;

  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid   = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p       = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl     = 3;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.type    = BX_DATA_READ_WRITE_ACCESSED;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base =
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value << 4;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit        = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g            = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b          = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.avl          = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl                 = 3;

  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid   = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.p       = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.dpl     = 3;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.segment = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.type    = BX_DATA_READ_WRITE_ACCESSED;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base =
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value << 4;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit        = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit_scaled = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g            = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.d_b          = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.avl          = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.rpl                 = 3;

  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid   = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.p       = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.dpl     = 3;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.segment = 1;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.type    = BX_DATA_READ_WRITE_ACCESSED;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base =
    BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value << 4;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit        = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit_scaled = 0xffff;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g            = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.d_b          = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.avl          = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.rpl                 = 3;
}

#endif /* BX_CPU_LEVEL >= 3 */

#else  // BX_SUPPORT_V8086_MODE

// compiled without v8086 mode support

void BX_CPU_C::stack_return_to_v86(Bit32u new_eip, Bit32u raw_cs_selector, Bit32u flags32)
{
  BX_PANIC(("stack_return_to_v86: virtual 8086 mode not supported !"));
}

void BX_CPU_C::stack_return_from_v86(void)
{
  BX_PANIC(("stack_return_from_v86: virtual 8086 mode not supported !"));
}

#endif // BX_SUPPORT_V8086_MODE