File: disasm.h

package info (click to toggle)
bochs 2.3-2etch1
  • links: PTS
  • area: main
  • in suites: etch
  • size: 14,116 kB
  • ctags: 16,927
  • sloc: cpp: 130,524; ansic: 18,822; sh: 7,922; makefile: 3,836; yacc: 1,056; asm: 463; perl: 381; lex: 280; csh: 3
file content (508 lines) | stat: -rw-r--r-- 15,473 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
#ifndef _BX_DISASM_H_
#define _BX_DISASM_H_

#include "config.h"

#define BX_DECODE_MODRM(modrm_byte, mod, opcode, rm) { \
  mod    = (modrm_byte >> 6) & 0x03; \
  opcode = (modrm_byte >> 3) & 0x07; \
  rm     =  modrm_byte & 0x07;       \
}

#define BX_DECODE_SIB(sib_byte, scale, index, base) { \
  scale =  sib_byte >> 6;          \
  index = (sib_byte >> 3) & 0x07;  \
  base  =  sib_byte & 0x07;        \
}

// will be used in future
#define IA_286        0x00000001        /* 286+ instruction */
#define IA_386        0x00000002        /* 386+ instruction */
#define IA_486        0x00000004        /* 486+ instruction */
#define IA_PENTIUM    0x00000008        /* Pentium+ instruction */
#define IA_P6         0x00000010        /* P6 new instruction */
#define IA_SYSTEM     0x00000020        /* system instruction (require CPL=0) */
#define IA_LEGACY     0x00000040        /* legacy instruction */
#define IA_X87        0x00000080        /* FPU (X87) instruction */
#define IA_MMX        0x00000100        /* MMX instruction */
#define IA_3DNOW      0x00000200        /* 3DNow! instruction */
#define IA_PREFETCH   0x00000400        /* Prefetch instruction */
#define IA_SSE        0x00000800        /* SSE  instruction */
#define IA_SSE2       0x00001000        /* SSE2 instruction */
#define IA_SSE3       0x00002000        /* SSE3 instruction */
#define IA_SSE4       0x00004000        /* SSE4 instruction */
#define IA_X86_64     0x00008000        /* x86-64 instruction */

/* general purpose bit register */
enum {
	rAX_REG,
	rCX_REG,
	rDX_REG,
	rBX_REG,
	rSP_REG,
	rBP_REG,
	rSI_REG,
	rDI_REG
};

/* segment register */
enum {
	ES_REG,
	CS_REG,
	SS_REG,
	DS_REG,
	FS_REG,
	GS_REG,
        INVALID_SEG1,
        INVALID_SEG2
};

class disassembler;
struct x86_insn;

typedef void (disassembler::*BxDisasmPtr_t)(const x86_insn *insn);
typedef void (disassembler::*BxDisasmResolveModrmPtr_t)(const x86_insn *insn, unsigned attr);

struct BxDisasmOpcodeInfo_t
{
    const char *IntelOpcode;
    const char *AttOpcode;
    BxDisasmPtr_t Operand1;
    BxDisasmPtr_t Operand2;
    BxDisasmPtr_t Operand3;
};

struct BxDisasmOpcodeTable_t
{
    Bit32u Attr;
    const void *OpcodeInfo;
};

// segment override not used
#define NO_SEG_OVERRIDE 0xFF

// datasize attributes
#define X_SIZE      0x0000
#define B_SIZE      0x0100
#define W_SIZE      0x0200
#define D_SIZE      0x0300
#define Q_SIZE      0x0400
#define Z_SIZE      0x0500
#define V_SIZE      0x0600
#define O_SIZE      0x0700
#define T_SIZE      0x0800
#define P_SIZE      0x0900

// branch hint attribute
#define BRANCH_HINT 0x1000

struct x86_insn 
{
public:
  x86_insn(bx_bool is32, bx_bool is64);

  bx_bool is_seg_override() const { 
     return (seg_override != NO_SEG_OVERRIDE);
 }

public:
  bx_bool is_32, is_64;
  bx_bool as_32, as_64;
  bx_bool os_32, os_64;

  Bit8u extend8b;
  Bit8u rex_r, rex_x, rex_b;
  Bit8u seg_override;
  unsigned b1, prefixes;
  unsigned ilen;

  Bit8u modrm, mod, nnn, rm;
  Bit8u sib, scale, index, base;
  union {
     Bit16u displ16;
     Bit32u displ32;
  } displacement;
};

BX_CPP_INLINE x86_insn::x86_insn(bx_bool is32, bx_bool is64)
{
  is_32 = is32;
  is_64 = is64;

  if (is_64) {
    os_64 = 0;
    as_64 = 1;
    os_32 = 1;
    as_32 = 1;
  }
  else {
    os_64 = 0;
    as_64 = 0;
    os_32 = is_32;
    as_32 = is_32;
  }

  extend8b = 0;
  rex_r = rex_b = rex_x = 0;
  seg_override = NO_SEG_OVERRIDE;
  prefixes = 0;
  ilen = 0;
  b1 = 0;

  modrm = mod = nnn = rm = 0;
  sib = scale = index = base = 0;
  displacement.displ32 = 0;
}

class disassembler {
public:
  disassembler() { set_syntax_intel(); }

  unsigned disasm(bx_bool is_32, bx_bool is_64, bx_address base, bx_address ip, const Bit8u *instr, char *disbuf);

  unsigned disasm16(bx_address base, bx_address ip, const Bit8u *instr, char *disbuf)
    { return disasm(0, 0, base, ip, instr, disbuf); }

  unsigned disasm32(bx_address base, bx_address ip, const Bit8u *instr, char *disbuf)
    { return disasm(1, 0, base, ip, instr, disbuf); }

  unsigned disasm64(bx_address base, bx_address ip, const Bit8u *instr, char *disbuf)
    { return disasm(1, 1, base, ip, instr, disbuf); }

  x86_insn decode(bx_bool is_32, bx_bool is_64, bx_address base, bx_address ip, const Bit8u *instr, char *disbuf);

  x86_insn decode16(bx_address base, bx_address ip, const Bit8u *instr, char *disbuf)
    { return decode(0, 0, base, ip, instr, disbuf); }

  x86_insn decode32(bx_address base, bx_address ip, const Bit8u *instr, char *disbuf)
    { return decode(1, 0, base, ip, instr, disbuf); }

  x86_insn decode64(bx_address base, bx_address ip, const Bit8u *instr, char *disbuf)
    { return decode(1, 1, base, ip, instr, disbuf); }

  void set_syntax_intel();
  void set_syntax_att  ();

  void toggle_syntax_mode();

private:
  bx_bool intel_mode;

  const char **general_16bit_regname;
  const char **general_8bit_regname;
  const char **general_32bit_regname;
  const char **general_8bit_regname_rex;
  const char **general_64bit_regname;

  const char **segment_name;
  const char **index16;

  const char *sreg_mod01or10_rm32[8];
  const char *sreg_mod00_base32[8];
  const char *sreg_mod01or10_base32[8];
  const char *sreg_mod00_rm16[8];
  const char *sreg_mod01or10_rm16[8];

private:

  bx_address db_eip, db_base;

  const Bit8u *instruction;        // for fetching of next byte of instruction

  char *disbufptr;

  BxDisasmResolveModrmPtr_t resolve_modrm;

  BX_CPP_INLINE Bit8u  fetch_byte() {
    db_eip++;
    return(*instruction++);
  };

  BX_CPP_INLINE Bit8u  peek_byte() {
    return(*instruction);
  };

  BX_CPP_INLINE Bit16u fetch_word() {
    Bit8u b0 = * (Bit8u *) instruction++;
    Bit8u b1 = * (Bit8u *) instruction++;
    Bit16u ret16 = (b1<<8) | b0;
    db_eip += 2;
    return(ret16);
  };

  BX_CPP_INLINE Bit32u fetch_dword() {
    Bit8u b0 = * (Bit8u *) instruction++;
    Bit8u b1 = * (Bit8u *) instruction++;
    Bit8u b2 = * (Bit8u *) instruction++;
    Bit8u b3 = * (Bit8u *) instruction++;
    Bit32u ret32 = (b3<<24) | (b2<<16) | (b1<<8) | b0;
    db_eip += 4;
    return(ret32);
  };

  BX_CPP_INLINE Bit64u fetch_qword() {
    Bit64u d0 = fetch_dword();
    Bit64u d1 = fetch_dword();
    Bit64u ret64 = (d1<<32) | d0;
    return(ret64);
  };

  void dis_putc(char symbol);
  void dis_sprintf(char *fmt, ...);
  void decode_modrm(x86_insn *insn);

  void resolve16_mod0   (const x86_insn *insn, unsigned mode);
  void resolve16_mod1or2(const x86_insn *insn, unsigned mode);

  void resolve32_mod0   (const x86_insn *insn, unsigned mode);
  void resolve32_mod1or2(const x86_insn *insn, unsigned mode);

  void resolve32_mod0_rm4   (const x86_insn *insn, unsigned mode);
  void resolve32_mod1or2_rm4(const x86_insn *insn, unsigned mode);

  void resolve64_mod0   (const x86_insn *insn, unsigned mode);
  void resolve64_mod1or2(const x86_insn *insn, unsigned mode);

  void resolve64_mod0_rm4   (const x86_insn *insn, unsigned mode);
  void resolve64_mod1or2_rm4(const x86_insn *insn, unsigned mode);

  void initialize_modrm_segregs();

  void print_datasize (unsigned mode);

  void print_memory_access16(int datasize,
          const char *seg, const char *index, Bit16u disp);
  void print_memory_access  (int datasize,
          const char *seg, const char *base, const char *index, int scale, Bit32u disp);

  void print_disassembly_intel(const x86_insn *insn, const BxDisasmOpcodeInfo_t *entry);
  void print_disassembly_att  (const x86_insn *insn, const BxDisasmOpcodeInfo_t *entry);

public:

/* 
 * Codes for Addressing Method:
 * ---------------------------
 * A  - Direct address. The instruction has no ModR/M byte; the address 
 *      of the operand is encoded in the instruction; and no base register, 
 *      index register, or scaling factor can be applied.
 * C  - The reg field of the ModR/M byte selects a control register.
 * D  - The reg field of the ModR/M byte selects a debug register.
 * E  - A ModR/M byte follows the opcode and specifies the operand. The 
 *      operand is either a general-purpose register or a memory address. 
 *      If it is a memory address, the address is computed from a segment 
 *      register and any of the following values: a base register, an
 *      index register, a scaling factor, a displacement.
 * F  - Flags Register.
 * G  - The reg field of the ModR/M byte selects a general register.
 * I  - Immediate data. The operand value is encoded in subsequent bytes of 
 *      the instruction.
 * J  - The instruction contains a relative offset to be added to the 
 *      instruction pointer register.
 * M  - The ModR/M byte may refer only to memory.
 * N  - The R/M field of the ModR/M byte selects a packed-quadword  MMX 
        technology register.
 * O  - The instruction has no ModR/M byte; the offset of the operand is 
 *      coded as a word or double word (depending on address size attribute) 
 *      in the instruction. No base register, index register, or scaling 
 *      factor can be applied.
 * P  - The reg field of the ModR/M byte selects a packed quadword MMX 
 *      technology register.
 * Q  - A ModR/M byte follows the opcode and specifies the operand. The 
 *      operand is either an MMX technology register or a memory address. 
 *      If it is a memory address, the address is computed from a segment 
 *      register and any of the following values: a base register, an 
 *      index register, a scaling factor, and a displacement.
 * R  - The mod field of the ModR/M byte may refer only to a general register.
 * S  - The reg field of the ModR/M byte selects a segment register.
 * U  - The R/M field of the ModR/M byte selects a 128-bit XMM register.
 * T  - The reg field of the ModR/M byte selects a test register.
 * V  - The reg field of the ModR/M byte selects a 128-bit XMM register.
 * W  - A ModR/M byte follows the opcode and specifies the operand. The 
 *      operand is either a 128-bit XMM register or a memory address. If 
 *      it is a memory address, the address is computed from a segment 
 *      register and any of the following values: a base register, an
 *      index register, a scaling factor, and a displacement.
 * X  - Memory addressed by the DS:rSI register pair.
 * Y  - Memory addressed by the ES:rDI register pair.
 */   

/* 
 * Codes for Operand Type:
 * ----------------------
 * a  - Two one-word operands in memory or two double-word operands in 
 *      memory, depending on operand-size attribute (used only by the BOUND
 *      instruction).
 * b  - Byte, regardless of operand-size attribute.
 * d  - Doubleword, regardless of operand-size attribute.
 * dq - Double-quadword, regardless of operand-size attribute.
 * p  - 32-bit or 48-bit pointer, depending on operand-size attribute.
 * pd - 128-bit packed double-precision floating-point data.
 * pi - Quadword MMX technology register (packed integer)
 * ps - 128-bit packed single-precision floating-point data.
 * q  - Quadword, regardless of operand-size attribute.
 * s  - 6-byte or 10-byte pseudo-descriptor.
 * si - Doubleword integer register (scalar integer)
 * ss - Scalar element of a 128-bit packed single-precision floating data.
 * sd - Scalar element of a 128-bit packed double-precision floating data.
 * v  - Word, doubleword or quadword, depending on operand-size attribute.
 * w  - Word, regardless of operand-size attr.
 */

  // far call/jmp
  void Apw(const x86_insn *insn);
  void Apd(const x86_insn *insn);

  // 8-bit general purpose registers
  void AL(const x86_insn *insn);
  void CL(const x86_insn *insn);

  // 16-bit general purpose registers
  void AX(const x86_insn *insn);
  void DX(const x86_insn *insn);

  // 32-bit general purpose registers
  void EAX(const x86_insn *insn);

  // 64-bit general purpose registers
  void RAX(const x86_insn *insn);

  // segment registers
  void CS(const x86_insn *insn);
  void DS(const x86_insn *insn);
  void ES(const x86_insn *insn);
  void SS(const x86_insn *insn);
  void FS(const x86_insn *insn);
  void GS(const x86_insn *insn);

  // segment registers
  void Sw(const x86_insn *insn);

  // test registers
  void Td(const x86_insn *insn);

  // control register
  void Cd(const x86_insn *insn);
  void Cq(const x86_insn *insn);

  // debug register
  void Dd(const x86_insn *insn);
  void Dq(const x86_insn *insn);

  //  8-bit general purpose register
  void R8(const x86_insn *insn);

  // 16-bit general purpose register
  void RX(const x86_insn *insn);

  // 32-bit general purpose register
  void ERX(const x86_insn *insn);

  // 64-bit general purpose register
  void RRX(const x86_insn *insn);

  // general purpose register or memory operand
  void Eb(const x86_insn *insn);
  void Ew(const x86_insn *insn);
  void Ed(const x86_insn *insn);
  void Eq(const x86_insn *insn);

  // general purpose register
  void Gb(const x86_insn *insn);
  void Gw(const x86_insn *insn);
  void Gd(const x86_insn *insn);
  void Gq(const x86_insn *insn);

  // immediate
  void I1(const x86_insn *insn);
  void Ib(const x86_insn *insn);
  void Iw(const x86_insn *insn);
  void Id(const x86_insn *insn);
  void Iq(const x86_insn *insn);

  // two immediates Iw/Ib
  void IwIb(const x86_insn *insn);

  // sign extended immediate
  void sIbw(const x86_insn *insn);
  void sIbd(const x86_insn *insn);
  void sIbq(const x86_insn *insn);
  void sIdq(const x86_insn *insn);

  // floating point
  void ST0(const x86_insn *insn);
  void STi(const x86_insn *insn);

  // general purpose register
  void Rw(const x86_insn *insn);
  void Rd(const x86_insn *insn);
  void Rq(const x86_insn *insn);

  // mmx register
  void Pq(const x86_insn *insn);

  // mmx register or memory operand
  void Qd(const x86_insn *insn);
  void Qq(const x86_insn *insn);
  void Vq(const x86_insn *insn);
  void Nq(const x86_insn *insn);

  // xmm register
  void Udq(const x86_insn *insn);
  void Vdq(const x86_insn *insn);
  void Vss(const x86_insn *insn);
  void Vsd(const x86_insn *insn);
  void Vps(const x86_insn *insn);
  void Vpd(const x86_insn *insn);

  // xmm register or memory operand
  void Wq(const x86_insn *insn);
  void Wdq(const x86_insn *insn);
  void Wss(const x86_insn *insn);
  void Wsd(const x86_insn *insn);
  void Wps(const x86_insn *insn);
  void Wpd(const x86_insn *insn);

  // direct memory access
  void OP_O(const x86_insn *insn, unsigned size);
  void Ob(const x86_insn *insn);
  void Ow(const x86_insn *insn);
  void Od(const x86_insn *insn);
  void Oq(const x86_insn *insn);

  // memory operand
  void OP_M(const x86_insn *insn, unsigned size);
  void Ma(const x86_insn *insn);
  void Mp(const x86_insn *insn);
  void Ms(const x86_insn *insn);
  void Mx(const x86_insn *insn);
  void Mb(const x86_insn *insn);
  void Mw(const x86_insn *insn);
  void Md(const x86_insn *insn);
  void Mq(const x86_insn *insn);
  void Mt(const x86_insn *insn);
  void Mdq(const x86_insn *insn);
  void Mps(const x86_insn *insn);
  void Mpd(const x86_insn *insn);

  // string instructions
  void OP_X(const x86_insn *insn, unsigned size);
  void Xb(const x86_insn *insn);
  void Xw(const x86_insn *insn);
  void Xd(const x86_insn *insn);
  void Xq(const x86_insn *insn);

  // string instructions
  void OP_Y(const x86_insn *insn, unsigned size);
  void Yb(const x86_insn *insn);
  void Yw(const x86_insn *insn);
  void Yd(const x86_insn *insn);
  void Yq(const x86_insn *insn);

  // jump offset
  void Jb(const x86_insn *insn);
  void Jw(const x86_insn *insn);
  void Jd(const x86_insn *insn);
};

#endif