1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
/////////////////////////////////////////////////////////////////////////
// $Id: instr.h 14086 2021-01-30 08:35:35Z sshwarts $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2016-2017 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#ifndef BX_INSTR_H
#define BX_INSTR_H
extern bx_address bx_asize_mask[];
const char *get_bx_opcode_name(Bit16u ia_opcode);
const char *get_intel_disasm_opcode_name(Bit16u ia_opcode);
const char *get_gas_disasm_opcode_name(Bit16u ia_opcode);
class BX_CPU_C;
class bxInstruction_c;
#ifndef BX_STANDALONE_DECODER
// <TAG-TYPE-EXECUTEPTR-START>
#if BX_USE_CPU_SMF
typedef void (BX_CPP_AttrRegparmN(1) *BxExecutePtr_tR)(bxInstruction_c *);
#else
typedef void (BX_CPU_C::*BxExecutePtr_tR)(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
#endif
// <TAG-TYPE-EXECUTEPTR-END>
#endif
// <TAG-CLASS-INSTRUCTION-START>
class bxInstruction_c {
public:
#ifndef BX_STANDALONE_DECODER
// Function pointers; a function to resolve the modRM address
// given the current state of the CPU and the instruction data,
// and a function to execute the instruction after resolving
// the memory address (if any).
BxExecutePtr_tR execute1;
union {
BxExecutePtr_tR execute2;
bxInstruction_c *next;
} handlers;
#endif
struct {
// 15...0 opcode
Bit16u ia_opcode;
// 7...4 (unused)
// 3...0 ilen (0..15)
Bit8u ilen;
#define BX_LOCK_PREFIX_USED 1
// 7...6 lockUsed, repUsed (0=none, 1=0xF0, 2=0xF2, 3=0xF3)
// 5...5 extend8bit
// 4...4 mod==c0 (modrm)
// 3...3 os64
// 2...2 os32
// 1...1 as64
// 0...0 as32
Bit8u metaInfo1;
} metaInfo;
enum {
BX_INSTR_METADATA_DST = 0,
BX_INSTR_METADATA_SRC1 = 1,
BX_INSTR_METADATA_SRC2 = 2,
BX_INSTR_METADATA_SRC3 = 3,
BX_INSTR_METADATA_CET_SEGOVERRIDE = 3, // share src3
BX_INSTR_METADATA_SEG = 4,
BX_INSTR_METADATA_BASE = 5,
BX_INSTR_METADATA_INDEX = 6,
BX_INSTR_METADATA_SCALE = 7
};
// using 5-bit field for registers (16 regs in 64-bit, RIP, NIL)
Bit8u metaData[8];
union {
// Form (longest case): [opcode+modrm+sib/displacement32/immediate32]
struct {
union {
Bit32u Id;
Bit16u Iw[2];
// use Ib[3] as EVEX mask register
// use Ib[2] as AVX attributes
// 7..5 (unused)
// 4..4 VEX.W
// 3..3 Broadcast/RC/SAE control (EVEX.b)
// 2..2 Zeroing/Merging mask (EVEX.z)
// 1..0 Round control
// use Ib[1] as AVX VL
Bit8u Ib[4];
};
union {
Bit16u displ16u; // for 16-bit modrm forms
Bit32u displ32u; // for 32-bit modrm forms
Bit32u Id2;
Bit16u Iw2[2];
Bit8u Ib2[4];
};
} modRMForm;
#if BX_SUPPORT_X86_64
struct {
Bit64u Iq; // for MOV Rx,imm64
} IqForm;
#endif
};
#ifdef BX_INSTR_STORE_OPCODE_BYTES
Bit8u opcode_bytes[16];
BX_CPP_INLINE const Bit8u* get_opcode_bytes(void) const {
return opcode_bytes;
}
BX_CPP_INLINE void set_opcode_bytes(const Bit8u *opcode) {
memcpy(opcode_bytes, opcode, ilen());
}
#endif
#ifndef BX_STANDALONE_DECODER
BX_CPP_INLINE BxExecutePtr_tR execute2(void) const {
return handlers.execute2;
}
#endif
BX_CPP_INLINE unsigned seg(void) const {
return metaData[BX_INSTR_METADATA_SEG];
}
BX_CPP_INLINE void setSeg(unsigned val) {
metaData[BX_INSTR_METADATA_SEG] = val;
}
#if BX_SUPPORT_CET
BX_CPP_INLINE unsigned segOverrideCet(void) const {
return metaData[BX_INSTR_METADATA_CET_SEGOVERRIDE];
}
BX_CPP_INLINE void setCetSegOverride(unsigned val) {
metaData[BX_INSTR_METADATA_CET_SEGOVERRIDE] = val;
}
#endif
BX_CPP_INLINE void setFoo(unsigned foo) {
// none of x87 instructions has immediate
modRMForm.Iw[0] = foo;
}
BX_CPP_INLINE unsigned foo() const {
return modRMForm.Iw[0];
}
BX_CPP_INLINE unsigned b1() const {
return modRMForm.Iw[0] >> 8;
}
BX_CPP_INLINE void setSibScale(unsigned scale) {
metaData[BX_INSTR_METADATA_SCALE] = scale;
}
BX_CPP_INLINE unsigned sibScale() const {
return metaData[BX_INSTR_METADATA_SCALE];
}
BX_CPP_INLINE void setSibIndex(unsigned index) {
metaData[BX_INSTR_METADATA_INDEX] = index;
}
BX_CPP_INLINE unsigned sibIndex() const {
return metaData[BX_INSTR_METADATA_INDEX];
}
BX_CPP_INLINE void setSibBase(unsigned base) {
metaData[BX_INSTR_METADATA_BASE] = base;
}
BX_CPP_INLINE unsigned sibBase() const {
return metaData[BX_INSTR_METADATA_BASE];
}
BX_CPP_INLINE Bit32s displ32s() const { return (Bit32s) modRMForm.displ32u; }
BX_CPP_INLINE Bit16s displ16s() const { return (Bit16s) modRMForm.displ16u; }
BX_CPP_INLINE Bit32u Id() const { return modRMForm.Id; }
BX_CPP_INLINE Bit16u Iw() const { return modRMForm.Iw[0]; }
BX_CPP_INLINE Bit8u Ib() const { return modRMForm.Ib[0]; }
BX_CPP_INLINE Bit16u Id2() const { return modRMForm.Id2; }
BX_CPP_INLINE Bit16u Iw2() const { return modRMForm.Iw2[0]; }
BX_CPP_INLINE Bit8u Ib2() const { return modRMForm.Ib2[0]; }
#if BX_SUPPORT_X86_64
BX_CPP_INLINE Bit64u Iq() const { return IqForm.Iq; }
#endif
// Info in the metaInfo field.
// Note: the 'L' at the end of certain flags, means the value returned
// is for Logical comparisons, eg if (i->os32L() && i->as32L()). If you
// want a bool value, use os32B() etc. This makes for smaller
// code, when a strict 0 or 1 is not necessary.
BX_CPP_INLINE void init(unsigned os32, unsigned as32, unsigned os64, unsigned as64)
{
metaInfo.metaInfo1 = (os32<<2) | (os64<<3) | (as32<<0) | (as64<<1);
}
BX_CPP_INLINE unsigned os32L(void) const {
return metaInfo.metaInfo1 & (1<<2);
}
BX_CPP_INLINE void setOs32B(unsigned bit) {
metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~(1<<2)) | (bit<<2);
}
BX_CPP_INLINE void assertOs32(void) {
metaInfo.metaInfo1 |= (1<<2);
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned os64L(void) const {
return metaInfo.metaInfo1 & (1<<3);
}
BX_CPP_INLINE void assertOs64(void) {
metaInfo.metaInfo1 |= (1<<3);
}
#else
BX_CPP_INLINE unsigned os64L(void) const { return 0; }
#endif
BX_CPP_INLINE unsigned osize(void) const {
return (metaInfo.metaInfo1 >> 2) & 0x3;
}
BX_CPP_INLINE unsigned as32L(void) const {
return metaInfo.metaInfo1 & 0x1;
}
BX_CPP_INLINE void setAs32B(unsigned bit) {
metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~0x1) | (bit);
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned as64L(void) const {
return metaInfo.metaInfo1 & (1<<1);
}
BX_CPP_INLINE void clearAs64(void) {
metaInfo.metaInfo1 &= ~(1<<1);
}
#else
BX_CPP_INLINE unsigned as64L(void) const { return 0; }
#endif
BX_CPP_INLINE unsigned asize(void) const {
return metaInfo.metaInfo1 & 0x3;
}
BX_CPP_INLINE bx_address asize_mask(void) const {
return bx_asize_mask[asize()];
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned extend8bitL(void) const {
return metaInfo.metaInfo1 & (1<<5);
}
BX_CPP_INLINE void assertExtend8bit(void) {
metaInfo.metaInfo1 |= (1<<5);
}
#endif
BX_CPP_INLINE unsigned ilen(void) const {
return metaInfo.ilen;
}
BX_CPP_INLINE void setILen(unsigned ilen) {
metaInfo.ilen = ilen;
}
BX_CPP_INLINE unsigned getIaOpcode(void) const {
return metaInfo.ia_opcode;
}
BX_CPP_INLINE void setIaOpcode(Bit16u op) {
metaInfo.ia_opcode = op;
}
BX_CPP_INLINE const char* getIaOpcodeName(void) const {
return get_bx_opcode_name(getIaOpcode());
}
BX_CPP_INLINE const char* getIaOpcodeNameShort(void) const {
return get_bx_opcode_name(getIaOpcode()) + /*"BX_IA_"*/ 6;
}
BX_CPP_INLINE unsigned repUsedL(void) const {
return metaInfo.metaInfo1 >> 7;
}
BX_CPP_INLINE unsigned lockRepUsedValue(void) const {
return metaInfo.metaInfo1 >> 6;
}
BX_CPP_INLINE void setLockRepUsed(unsigned value) {
metaInfo.metaInfo1 = (metaInfo.metaInfo1 & 0x3f) | (value << 6);
}
BX_CPP_INLINE void setLock(void) {
setLockRepUsed(BX_LOCK_PREFIX_USED);
}
BX_CPP_INLINE bool getLock(void) const {
return lockRepUsedValue() == BX_LOCK_PREFIX_USED;
}
BX_CPP_INLINE unsigned getVL(void) const {
#if BX_SUPPORT_AVX
return modRMForm.Ib[1];
#else
return 0;
#endif
}
BX_CPP_INLINE void setVL(unsigned value) {
modRMForm.Ib[1] = value;
}
#if BX_SUPPORT_AVX
BX_CPP_INLINE void setVexW(unsigned bit) {
modRMForm.Ib[2] = (modRMForm.Ib[2] & ~(1<<4)) | (bit<<4);
}
BX_CPP_INLINE unsigned getVexW(void) const {
return modRMForm.Ib[2] & (1 << 4);
}
#else
BX_CPP_INLINE unsigned getVexW(void) const { return 0; }
#endif
#if BX_SUPPORT_EVEX
BX_CPP_INLINE void setOpmask(unsigned reg) {
modRMForm.Ib[3] = reg;
}
BX_CPP_INLINE unsigned opmask(void) const {
return modRMForm.Ib[3];
}
BX_CPP_INLINE void setEvexb(unsigned bit) {
modRMForm.Ib[2] = (modRMForm.Ib[2] & ~(1<<3)) | (bit<<3);
}
BX_CPP_INLINE unsigned getEvexb(void) const {
return modRMForm.Ib[2] & (1 << 3);
}
BX_CPP_INLINE void setZeroMasking(unsigned bit) {
modRMForm.Ib[2] = (modRMForm.Ib[2] & ~(1<<2)) | (bit<<2);
}
BX_CPP_INLINE unsigned isZeroMasking(void) const {
return modRMForm.Ib[2] & (1 << 2);
}
BX_CPP_INLINE void setRC(unsigned rc) {
modRMForm.Ib[2] = (modRMForm.Ib[2] & ~0x3) | rc;
}
BX_CPP_INLINE unsigned getRC(void) const {
return modRMForm.Ib[2] & 0x3;
}
#endif
BX_CPP_INLINE void setSrcReg(unsigned src, unsigned reg) {
metaData[src] = reg;
}
BX_CPP_INLINE unsigned getSrcReg(unsigned src) const {
return metaData[src];
}
BX_CPP_INLINE unsigned dst() const {
return metaData[BX_INSTR_METADATA_DST];
}
BX_CPP_INLINE unsigned src1() const {
return metaData[BX_INSTR_METADATA_SRC1];
}
BX_CPP_INLINE unsigned src2() const {
return metaData[BX_INSTR_METADATA_SRC2];
}
BX_CPP_INLINE unsigned src3() const {
return metaData[BX_INSTR_METADATA_SRC3];
}
BX_CPP_INLINE unsigned src() const { return src1(); }
BX_CPP_INLINE unsigned modC0() const
{
// This is a cheaper way to test for modRM instructions where
// the mod field is 0xc0. FetchDecode flags this condition since
// it is quite common to be tested for.
return metaInfo.metaInfo1 & (1<<4);
}
BX_CPP_INLINE void assertModC0()
{
metaInfo.metaInfo1 |= (1<<4);
}
#if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS && BX_ENABLE_TRACE_LINKING && !defined(BX_STANDALONE_DECODER)
BX_CPP_INLINE bxInstruction_c* getNextTrace(Bit32u currTraceLinkTimeStamp) {
if (currTraceLinkTimeStamp > modRMForm.Id2) handlers.next = NULL;
return handlers.next;
}
BX_CPP_INLINE void setNextTrace(bxInstruction_c* iptr, Bit32u traceLinkTimeStamp) {
handlers.next = iptr;
modRMForm.Id2 = traceLinkTimeStamp;
}
#endif
};
// <TAG-CLASS-INSTRUCTION-END>
enum BxDisasmStyle {
BX_DISASM_INTEL,
BX_DISASM_GAS
};
extern char* disasm(const Bit8u *opcode, bool is_32, bool is_64, char *disbufptr, bxInstruction_c *i, bx_address cs_base, bx_address rip, BxDisasmStyle style = BX_DISASM_INTEL);
#endif
|