File: cpu.cc

package info (click to toggle)
bochs 3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,244 kB
  • sloc: cpp: 270,331; ansic: 25,334; sh: 8,371; makefile: 5,512; yacc: 1,485; asm: 395; perl: 359; lex: 318; csh: 3
file content (858 lines) | stat: -rw-r--r-- 26,221 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2001-2018  The Bochs Project
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////

#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR

#include "memory/memory-bochs.h"
#include "pc_system.h"
#include "cpustats.h"

#include "bx_debug/debug.h"

#if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS

#define BX_SYNC_TIME_IF_SINGLE_PROCESSOR(allowed_delta) {                               \
  if (BX_SMP_PROCESSORS == 1) {                                                         \
    Bit32u delta = (Bit32u)(BX_CPU_THIS_PTR icount - BX_CPU_THIS_PTR icount_last_sync); \
    if (delta >= allowed_delta) {                                                       \
      BX_CPU_THIS_PTR sync_icount();                                                    \
      BX_TICKN(delta);                                                                  \
    }                                                                                   \
  }                                                                                     \
}

#else

#define BX_SYNC_TIME_IF_SINGLE_PROCESSOR(allowed_delta) \
  if (BX_SMP_PROCESSORS == 1) BX_TICK1()

#endif

jmp_buf BX_CPU_C::jmp_buf_env;

#if BX_DEBUGGER
void BX_CPU_C::cpu_loop_debugger(void)
{
  BX_CPU_THIS_PTR break_point = 0;
  BX_CPU_THIS_PTR magic_break = 0;
  BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;

  if (setjmp(BX_CPU_THIS_PTR jmp_buf_env)) {
    // can get here only from exception function or VMEXIT
    BX_CPU_THIS_PTR icount++;
    if (BX_SMP_PROCESSORS == 1) BX_TICK1();
    if (dbg_instruction_epilog()) return;
  }

  // If the exception() routine has encountered a nasty fault scenario,
  // the debugger may request that control is returned to it so that
  // the situation may be examined.
  if (bx_guard.interrupt_requested) return;

  // We get here either by a normal function call, or by a longjmp
  // back from an exception() call.  In either case, commit the
  // new EIP/ESP, and set up other environmental fields.  This code
  // mirrors similar code below, after the interrupt() call.
  BX_CPU_THIS_PTR prev_rip = RIP; // commit new EIP
  BX_CPU_THIS_PTR speculative_rsp = false;

  while (1) {

    // check on events which occurred for previous instructions (traps)
    // and ones which are asynchronous to the CPU (hardware interrupts)
    Bit32u handle_event = BX_CPU_THIS_PTR async_event & ~BX_ASYNC_EVENT_STOP_TRACE;
    if (handle_event) {
      if (handleAsyncEvent()) {
        // If request to return to caller ASAP.
        return;
      }
    }

    // stop tracing after every instruction to handle in internal debugger
    BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE;

    bxICacheEntry_c *entry = getICacheEntry();
    bxInstruction_c *i = entry->i;
    bxInstruction_c *last = i + (entry->tlen);

    for(;;) {
      if (BX_CPU_THIS_PTR trace)
        debug_disasm_instruction(BX_CPU_THIS_PTR prev_rip);

      // want to allow changing of the instruction inside instrumentation callback
      BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i);
      RIP += i->ilen();
      BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction
#if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS == 0
      BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP
      BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i);
      BX_CPU_THIS_PTR icount++;
#endif
      if (BX_SMP_PROCESSORS == 1) BX_TICK1();

      // note instructions generating exceptions never reach this point
      if (dbg_instruction_epilog()) return;

      if (BX_CPU_THIS_PTR async_event & ~BX_ASYNC_EVENT_STOP_TRACE) break;

      if (++i == last) {
        entry = getICacheEntry();
        i = entry->i;
        last = i + (entry->tlen);
      }
    }
  }  // while (1)
}
#endif // BX_DEBUGGER

void BX_CPU_C::cpu_loop(void)
{
#if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS
  volatile Bit8u stack_anchor = 0;

  BX_CPU_THIS_PTR cpuloop_stack_anchor = &stack_anchor;
#endif

#if BX_DEBUGGER
  BX_ASSERT(! bx_dbg.debugger_active);
#endif

  if (setjmp(BX_CPU_THIS_PTR jmp_buf_env)) {
    // can get here only from exception function or VMEXIT
    BX_CPU_THIS_PTR icount++;
    BX_SYNC_TIME_IF_SINGLE_PROCESSOR(0);
#if BX_GDBSTUB
    if (gdbstub_instruction_epilog() || bx_dbg.gdbstub_enabled) return;
#endif
  }

  // We get here either by a normal function call, or by a longjmp
  // back from an exception() call.  In either case, commit the
  // new EIP/ESP, and set up other environmental fields.  This code
  // mirrors similar code below, after the interrupt() call.
  BX_CPU_THIS_PTR prev_rip = RIP; // commit new EIP
  BX_CPU_THIS_PTR speculative_rsp = false;

#if BX_SUPPORT_CET && BX_SUPPORT_VMX
  if (BX_CPU_THIS_PTR in_vmx_guest) {
    VMCS_CACHE *vm = &BX_CPU_THIS_PTR vmcs;
    if (vm->shadow_stack_prematurely_busy)
      BX_PANIC(("Shadow stack prematurely busy is left set !"));
    vm->shadow_stack_prematurely_busy = false; // for safety
  }
#endif

  while (1) {

    // check on events which occurred for previous instructions (traps)
    // and ones which are asynchronous to the CPU (hardware interrupts)
    if (BX_CPU_THIS_PTR async_event) {
      if (handleAsyncEvent()) {
        // If request to return to caller ASAP.
        return;
      }
    }

    bxICacheEntry_c *entry = getICacheEntry();
    bxInstruction_c *i = entry->i;

#if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS
    for(;;) {
      // want to allow changing of the instruction inside instrumentation callback
      BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i);
      RIP += i->ilen();
      // when handlers chaining is enabled this single call will execute entire trace
      BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction

      BX_SYNC_TIME_IF_SINGLE_PROCESSOR(0);

      if (BX_CPU_THIS_PTR async_event) break;

      i = getICacheEntry()->i;
    }
#else // BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS == 0

    bxInstruction_c *last = i + (entry->tlen);

    for(;;) {

      // want to allow changing of the instruction inside instrumentation callback
      BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i);
      RIP += i->ilen();
      BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction
      BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP
      BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i);
      BX_CPU_THIS_PTR icount++;

      BX_SYNC_TIME_IF_SINGLE_PROCESSOR(0);

      // note instructions generating exceptions never reach this point
#if BX_GDBSTUB
      if (gdbstub_instruction_epilog()) return;
#endif

      if (BX_CPU_THIS_PTR async_event) break;

      if (++i == last) {
        entry = getICacheEntry();
        i = entry->i;
        last = i + (entry->tlen);
      }
    }
#endif

    // clear stop trace magic indication that probably was set by repeat or branch32/64
    BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE;

  }  // while (1)
}

#if BX_SUPPORT_SMP

void BX_CPU_C::cpu_run_trace(void)
{
  // check on events which occurred for previous instructions (traps)
  // and ones which are asynchronous to the CPU (hardware interrupts)
  if (BX_CPU_THIS_PTR async_event) {
    if (handleAsyncEvent()) {
      // If request to return to caller ASAP.
      return;
    }
  }

  bxICacheEntry_c *entry = getICacheEntry();
  bxInstruction_c *i = entry->i;

#if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS
  // want to allow changing of the instruction inside instrumentation callback
  BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i);
  RIP += i->ilen();
  // when handlers chaining is enabled this single call will execute entire trace
  BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction

  if (BX_CPU_THIS_PTR async_event) {
    // clear stop trace magic indication that probably was set by repeat or branch32/64
    BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE;
  }
#else
  bxInstruction_c *last = i + (entry->tlen);

  for(;;) {
    // want to allow changing of the instruction inside instrumentation callback
    BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i);
    RIP += i->ilen();
    BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction
    BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP
    BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i);
    BX_CPU_THIS_PTR icount++;

    if (BX_CPU_THIS_PTR async_event) {
      // clear stop trace magic indication that probably was set by repeat or branch32/64
      BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE;
      break;
    }

    if (++i == last) break;
  }
#endif // BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS
}

#endif

#include "decoder/ia_opcodes.h"

bxICacheEntry_c* BX_CPU_C::getICacheEntry(void)
{
  bx_address eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;

  if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) {
    prefetch();
    eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
  }

  INC_ICACHE_STAT(iCacheLookups);

  bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrFetchPage + eipBiased;
  bxICacheEntry_c *entry = BX_CPU_THIS_PTR iCache.find_entry(pAddr, BX_CPU_THIS_PTR fetchModeMask);

  if (entry == NULL)
  {
    // iCache miss. No validated instruction with matching fetch parameters
    // is in the iCache.
    INC_ICACHE_STAT(iCacheMisses);
    entry = serveICacheMiss((Bit32u) eipBiased, pAddr);
  }

#if BX_SUPPORT_CET
  if (WaitingForEndbranch(CPL)) {
    bxInstruction_c *i = entry->i;
    if (i->getIaOpcode() != (long64_mode() ? BX_IA_ENDBRANCH64 : BX_IA_ENDBRANCH32) && i->getIaOpcode() != BX_IA_INT3) {
      if (LegacyEndbranchTreatment(CPL)) {
        BX_ERROR(("Endbranch is expected for CPL=%d", CPL));
        exception(BX_CP_EXCEPTION, BX_CP_ENDBRANCH);
      }
    }
  }
#endif

  return entry;
}

#if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS && BX_ENABLE_TRACE_LINKING

// The function is called after taken branch instructions and tries to link the branch to the next trace
void BX_CPP_AttrRegparmN(1) BX_CPU_C::linkTrace(bxInstruction_c *i)
{
  volatile Bit8u stack_anchor = 0;

  if (bx_dbg.debugger_active)
    return;

#if BX_SUPPORT_SMP
  if (BX_SMP_PROCESSORS > 1)
    return;
#endif

#define BX_HANDLERS_CHAINING_MAX_LINK_DEPTH 1000

  // do not allow extreme trace link depth / avoid host stack overflow
  // (could happen with badly compiled instruction handlers)
  static Bit32u linkDepth = 0;

  if (BX_CPU_THIS_PTR async_event || ++linkDepth > BX_HANDLERS_CHAINING_MAX_LINK_DEPTH) {
    linkDepth = 0;
    return;
  }

#define BX_HANDLERS_CHAINING_MAX_STACK_DEPTH 0x10000

  size_t stack_depth = BX_CPU_THIS_PTR cpuloop_stack_anchor - &stack_anchor;
  if (stack_depth > BX_HANDLERS_CHAINING_MAX_STACK_DEPTH) {
    linkDepth = 0;
    return;
  }

  Bit32u delta = (Bit32u) (BX_CPU_THIS_PTR icount - BX_CPU_THIS_PTR icount_last_sync);
  if(delta >= bx_pc_system.getNumCpuTicksLeftNextEvent()) {
    linkDepth = 0;
    return;
  }

  BX_SYNC_TIME_IF_SINGLE_PROCESSOR(0);

  bxInstruction_c *next = i->getNextTrace(BX_CPU_THIS_PTR iCache.traceLinkTimeStamp);
  if (next) {
    BX_EXECUTE_INSTRUCTION(next);
    return;
  }

  bx_address eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
  if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) {
    prefetch();
    eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
  }

  INC_ICACHE_STAT(iCacheLookups);

  bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrFetchPage + eipBiased;
  bxICacheEntry_c *entry = BX_CPU_THIS_PTR iCache.find_entry(pAddr, BX_CPU_THIS_PTR fetchModeMask);

  if (entry != NULL) // link traces - handle only hit cases
  {
    i->setNextTrace(entry->i, BX_CPU_THIS_PTR iCache.traceLinkTimeStamp);
    i = entry->i;
    BX_EXECUTE_INSTRUCTION(i);
  }
}

#endif

#define BX_REPEAT_TIME_UPDATE_INTERVAL (BX_MAX_TRACE_LENGTH-1)

void BX_CPP_AttrRegparmN(2) BX_CPU_C::repeat(bxInstruction_c *i, BxRepIterationPtr_tR execute)
{
  // non repeated instruction
  if (! i->repUsedL()) {
    BX_CPU_CALL_REP_ITERATION(execute, (i));
    return;
  }

  BX_ASSERT(! bx_dbg.debugger_active || BX_CPU_THIS_PTR async_event);

  BX_CPU_THIS_PTR clear_RF();

#if BX_SUPPORT_X86_64
  if (i->as64L()) {
    while(1) {
      if (RCX != 0) {
        BX_CPU_CALL_REP_ITERATION(execute, (i));
        BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
        RCX --;
      }
      if (RCX == 0) return;

      if (BX_CPU_THIS_PTR async_event)
        break; // exit always if debugger enabled

      BX_CPU_THIS_PTR icount++;

      BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
    }
  }
  else
#endif
  if (i->as32L()) {
    while(1) {
      if (ECX != 0) {
        BX_CPU_CALL_REP_ITERATION(execute, (i));
        BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
        RCX = ECX - 1;
      }
      if (ECX == 0) return;

      if (BX_CPU_THIS_PTR async_event)
        break; // exit always if debugger enabled

      BX_CPU_THIS_PTR icount++;

      BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
    }
  }
  else  // 16bit addrsize
  {
    while(1) {
      if (CX != 0) {
        BX_CPU_CALL_REP_ITERATION(execute, (i));
        BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
        CX --;
      }
      if (CX == 0) return;

      if (BX_CPU_THIS_PTR async_event)
        break; // exit always if debugger enabled

      BX_CPU_THIS_PTR icount++;

      BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
    }
  }

  BX_CPU_THIS_PTR assert_RF();

  RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP

  // assert magic async_event to stop trace execution
  BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE;
}

void BX_CPP_AttrRegparmN(2) BX_CPU_C::repeat_ZF(bxInstruction_c *i, BxRepIterationPtr_tR execute)
{
  unsigned rep = i->lockRepUsedValue();

  // non repeated instruction
  if (rep < 2) {
    BX_CPU_CALL_REP_ITERATION(execute, (i));
    return;
  }

  BX_CPU_THIS_PTR clear_RF();

  if (rep == 3) { /* repeat prefix 0xF3 */
#if BX_SUPPORT_X86_64
    if (i->as64L()) {
      while(1) {
        if (RCX != 0) {
          BX_CPU_CALL_REP_ITERATION(execute, (i));
          BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
          RCX --;
        }
        if (! get_ZF() || RCX == 0) return;

        if (BX_CPU_THIS_PTR async_event)
          break; // exit always if debugger enabled

        BX_CPU_THIS_PTR icount++;

        BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
      }
    }
    else
#endif
    if (i->as32L()) {
      while(1) {
        if (ECX != 0) {
          BX_CPU_CALL_REP_ITERATION(execute, (i));
          BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
          RCX = ECX - 1;
        }
        if (! get_ZF() || ECX == 0) return;

        if (BX_CPU_THIS_PTR async_event)
          break; // exit always if debugger enabled

        BX_CPU_THIS_PTR icount++;

        BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
      }
    }
    else  // 16bit addrsize
    {
      while(1) {
        if (CX != 0) {
          BX_CPU_CALL_REP_ITERATION(execute, (i));
          BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
          CX --;
        }
        if (! get_ZF() || CX == 0) return;

        if (BX_CPU_THIS_PTR async_event)
          break; // exit always if debugger enabled

        BX_CPU_THIS_PTR icount++;

        BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
      }
    }
  }
  else {          /* repeat prefix 0xF2 */
#if BX_SUPPORT_X86_64
    if (i->as64L()) {
      while(1) {
        if (RCX != 0) {
          BX_CPU_CALL_REP_ITERATION(execute, (i));
          BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
          RCX --;
        }
        if (get_ZF() || RCX == 0) return;

        if (BX_CPU_THIS_PTR async_event)
          break; // exit always if debugger enabled

        BX_CPU_THIS_PTR icount++;

        BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
      }
    }
    else
#endif
    if (i->as32L()) {
      while(1) {
        if (ECX != 0) {
          BX_CPU_CALL_REP_ITERATION(execute, (i));
          BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
          RCX = ECX - 1;
        }
        if (get_ZF() || ECX == 0) return;

        if (BX_CPU_THIS_PTR async_event)
          break; // exit always if debugger enabled

        BX_CPU_THIS_PTR icount++;

        BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
      }
    }
    else  // 16bit addrsize
    {
      while(1) {
        if (CX != 0) {
          BX_CPU_CALL_REP_ITERATION(execute, (i));
          BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
          CX --;
        }
        if (get_ZF() || CX == 0) return;

        if (BX_CPU_THIS_PTR async_event)
          break; // exit always if debugger enabled

        BX_CPU_THIS_PTR icount++;

        BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL);
      }
    }
  }

  BX_CPU_THIS_PTR assert_RF();

  RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP

  // assert magic async_event to stop trace execution
  BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE;
}

// boundaries of consideration:
//
//  * physical memory boundary: 1024k (1Megabyte) (increments of...)
//  * A20 boundary:             1024k (1Megabyte)
//  * page boundary:            4k
//  * ROM boundary:             2k (dont care since we are only reading)
//  * segment boundary:         any

void BX_CPU_C::prefetch(void)
{
  bx_address laddr;
  unsigned pageOffset;

  INC_ICACHE_STAT(iCachePrefetch);

#if BX_SUPPORT_X86_64
  if (long64_mode()) {
    if (! IsCanonicalAccess(RIP, BX_EXECUTE, USER_PL)) {
      BX_ERROR(("prefetch: #GP(0): RIP crossed canonical boundary"));
      exception(BX_GP_EXCEPTION, 0);
    }

    // linear address is equal to RIP in 64-bit long mode
    pageOffset = PAGE_OFFSET(EIP);
    laddr = RIP;

    // Calculate RIP at the beginning of the page.
    BX_CPU_THIS_PTR eipPageBias = pageOffset - RIP;
    BX_CPU_THIS_PTR eipPageWindowSize = 4096;
  }
  else
#endif
  {

#if BX_CPU_LEVEL >= 5
    if (USER_PL && BX_CPU_THIS_PTR get_VIP() && BX_CPU_THIS_PTR get_VIF()) {
      if (BX_CPU_THIS_PTR cr4.get_PVI() | (v8086_mode() && BX_CPU_THIS_PTR cr4.get_VME())) {
        BX_ERROR(("prefetch: inconsistent VME state"));
        exception(BX_GP_EXCEPTION, 0);
      }
    }
#endif

    BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RIP); /* avoid 32-bit EIP wrap */
    laddr = get_laddr32(BX_SEG_REG_CS, EIP);
    pageOffset = PAGE_OFFSET(laddr);

    // Calculate RIP at the beginning of the page.
    BX_CPU_THIS_PTR eipPageBias = (bx_address) pageOffset - EIP;

    Bit32u limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled;
    if (EIP > limit) {
      BX_ERROR(("prefetch: EIP [%08x] > CS.limit [%08x]", EIP, limit));
      exception(BX_GP_EXCEPTION, 0);
    }

    BX_CPU_THIS_PTR eipPageWindowSize = 4096;
    if (limit + BX_CPU_THIS_PTR eipPageBias < 4096) {
      BX_CPU_THIS_PTR eipPageWindowSize = (Bit32u)(limit + BX_CPU_THIS_PTR eipPageBias + 1);
    }
  }

#if BX_X86_DEBUGGER
  if (hwbreakpoint_check(laddr, BX_HWDebugInstruction, BX_HWDebugInstruction)) {
    signal_event(BX_EVENT_CODE_BREAKPOINT_ASSIST);
    if (! interrupts_inhibited(BX_INHIBIT_DEBUG)) {
       // The next instruction could already hit a code breakpoint but
       // async_event won't take effect immediatelly.
       // Check if the next executing instruction hits code breakpoint

       // check only if not fetching page cross instruction
       // this check is 32-bit wrap safe as well
       if (EIP == (Bit32u) BX_CPU_THIS_PTR prev_rip) {
         Bit32u dr6_bits = code_breakpoint_match(laddr);
         if (dr6_bits & BX_DEBUG_TRAP_HIT) {
           BX_ERROR(("#DB: x86 code breakpoint caught"));
           BX_CPU_THIS_PTR debug_trap |= dr6_bits;
           exception(BX_DB_EXCEPTION, 0);
         }
       }
    }
  }
  else {
    clear_event(BX_EVENT_CODE_BREAKPOINT_ASSIST);
  }
#endif

  BX_CPU_THIS_PTR clear_RF();

  bx_address lpf = LPFOf(laddr);
  bx_TLB_entry *tlbEntry = BX_ITLB_ENTRY_OF(laddr);
  Bit8u *fetchPtr = 0;

  if ((tlbEntry->lpf == lpf) && (tlbEntry->accessBits & (1 << unsigned(USER_PL))) != 0) {
    BX_CPU_THIS_PTR pAddrFetchPage = tlbEntry->ppf;
    fetchPtr = (Bit8u*) tlbEntry->hostPageAddr;
  }
  else {
    bx_phy_address pAddr = translate_linear(tlbEntry, laddr, USER_PL, BX_EXECUTE);
    BX_CPU_THIS_PTR pAddrFetchPage = PPFOf(pAddr);
  }

  if (fetchPtr) {
    BX_CPU_THIS_PTR eipFetchPtr = fetchPtr;
  }
  else {
    BX_CPU_THIS_PTR eipFetchPtr = (const Bit8u*) getHostMemAddr(BX_CPU_THIS_PTR pAddrFetchPage, BX_EXECUTE);

    // Sanity checks
    if (! BX_CPU_THIS_PTR eipFetchPtr) {
      bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrFetchPage + pageOffset;
      if (pAddr >= BX_MEM(0)->get_memory_len()) {
        BX_PANIC(("prefetch: running in bogus memory, pAddr=0x" FMT_PHY_ADDRX, pAddr));
      }
      else {
        BX_PANIC(("prefetch: getHostMemAddr vetoed direct read, pAddr=0x" FMT_PHY_ADDRX, pAddr));
      }
    }
  }
}

#if BX_DEBUGGER
bool BX_CPU_C::dbg_instruction_epilog(void)
{
  bx_address debug_eip = RIP;
  Bit16u cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;

  dbg_get_guard_state(&BX_CPU_THIS_PTR guard_found.guard_state);

  //
  // Take care of break point conditions generated during instruction execution
  //

  // Check if we hit read/write or time breakpoint
  if (BX_CPU_THIS_PTR break_point) {
    Bit64u tt = bx_pc_system.time_ticks();
    switch (BX_CPU_THIS_PTR break_point) {
    case BREAK_POINT_TIME:
      BX_INFO(("[" FMT_LL "d] Caught time breakpoint", tt));
      BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT;
      return true; // on a breakpoint
    case BREAK_POINT_READ:
      BX_INFO(("[" FMT_LL "d] Caught read watch point", tt));
      BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT;
      return true; // on a breakpoint
    case BREAK_POINT_WRITE:
      BX_INFO(("[" FMT_LL "d] Caught write watch point", tt));
      BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT;
      return true; // on a breakpoint
    default:
      BX_PANIC(("Weird break point condition"));
    }
  }

  if (BX_CPU_THIS_PTR magic_break) {
    BX_INFO(("[" FMT_LL "d] Stopped on MAGIC BREAKPOINT", bx_pc_system.time_ticks()));
    BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT;
    return true; // on a breakpoint
  }

  // convenient point to see if user requested debug break or typed Ctrl-C
  if (bx_guard.interrupt_requested) {
    return true;
  }

  // support for 'show' command in debugger
  extern unsigned dbg_show_mask;
  if(dbg_show_mask) {
    bx_dbg_show_symbolic();
  }

  // Just committed an instruction, before fetching a new one
  // see if debugger is looking for iaddr breakpoint of any type
  if (bx_guard.guard_for) {
    if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) {
#if (BX_DBG_MAX_VIR_BPOINTS > 0)
      if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) {
        for (unsigned n=0; n<bx_guard.iaddr.num_virtual; n++) {
          if (bx_guard.iaddr.vir[n].enabled &&
             (bx_guard.iaddr.vir[n].cs  == cs) &&
             (bx_guard.iaddr.vir[n].eip == debug_eip))
          {
            if (! bx_guard.iaddr.vir[n].condition || bx_dbg_eval_condition(bx_guard.iaddr.vir[n].condition)) {
              BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_VIR;
              BX_CPU_THIS_PTR guard_found.iaddr_index = n;
              return true; // on a breakpoint
            }
          }
        }
      }
#endif
#if (BX_DBG_MAX_LIN_BPOINTS > 0)
      if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) {
        for (unsigned n=0; n<bx_guard.iaddr.num_linear; n++) {
          if (bx_guard.iaddr.lin[n].enabled &&
             (bx_guard.iaddr.lin[n].addr == BX_CPU_THIS_PTR guard_found.guard_state.laddr))
          {
            if (! bx_guard.iaddr.lin[n].condition || bx_dbg_eval_condition(bx_guard.iaddr.lin[n].condition)) {
              BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_LIN;
              BX_CPU_THIS_PTR guard_found.iaddr_index = n;
              return true; // on a breakpoint
            }
          }
        }
      }
#endif
#if (BX_DBG_MAX_PHY_BPOINTS > 0)
      if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) {
        bx_phy_address phy;
        bool valid = dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.guard_state.laddr, &phy);
        if (valid) {
          for (unsigned n=0; n<bx_guard.iaddr.num_physical; n++) {
            if (bx_guard.iaddr.phy[n].enabled && (bx_guard.iaddr.phy[n].addr == phy))
            {
              if (! bx_guard.iaddr.phy[n].condition || bx_dbg_eval_condition(bx_guard.iaddr.phy[n].condition)) {
                BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_PHY;
                BX_CPU_THIS_PTR guard_found.iaddr_index = n;
                return true; // on a breakpoint
              }
            }
          }
        }
      }
#endif
    }

    // see if debugger requesting icount guard
    if (bx_guard.guard_for & BX_DBG_GUARD_ICOUNT) {
      if (get_icount() >= BX_CPU_THIS_PTR guard_found.icount_max) {
        return true;
      }
    }
  }

  return false;
}
#endif

#if BX_GDBSTUB
bool BX_CPU_C::gdbstub_instruction_epilog(void)
{
  if (bx_dbg.gdbstub_enabled) {
    unsigned reason =
#if BX_SUPPORT_X86_64 == 0
      bx_gdbstub_check(EIP);
#else
      bx_gdbstub_check(RIP);
#endif
    if (reason != GDBSTUB_STOP_NO_REASON) 
      return(1);
  }

  return(0);
}
#endif