1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2018 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MUL_EAXEdR(bxInstruction_c *i)
{
Bit32u op1_32 = EAX;
Bit32u op2_32 = BX_READ_32BIT_REG(i->src());
Bit64u product_64 = ((Bit64u) op1_32) * ((Bit64u) op2_32);
Bit32u product_32l = GET32L(product_64);
Bit32u product_32h = GET32H(product_64);
/* now write product back to destination */
RAX = product_32l;
RDX = product_32h;
/* set EFLAGS */
SET_FLAGS_OSZAPC_LOGIC_32(product_32l);
if(product_32h != 0)
{
BX_CPU_THIS_PTR oszapc.assert_flags_OxxxxC();
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IMUL_EAXEdR(bxInstruction_c *i)
{
Bit32s op1_32 = EAX;
Bit32s op2_32 = BX_READ_32BIT_REG(i->src());
Bit64s product_64 = ((Bit64s) op1_32) * ((Bit64s) op2_32);
Bit32u product_32l = GET32L(product_64);
Bit32u product_32h = GET32H(product_64);
/* now write product back to destination */
RAX = product_32l;
RDX = product_32h;
/* set eflags:
* IMUL r/m32: condition for clearing CF & OF:
* EDX:EAX = sign-extend of EAX
*/
SET_FLAGS_OSZAPC_LOGIC_32(product_32l);
if(product_64 != (Bit32s)product_64)
{
BX_CPU_THIS_PTR oszapc.assert_flags_OxxxxC();
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::DIV_EAXEdR(bxInstruction_c *i)
{
Bit32u op2_32 = BX_READ_32BIT_REG(i->src());
if (op2_32 == 0) {
exception(BX_DE_EXCEPTION, 0);
}
Bit64u op1_64 = GET64_FROM_HI32_LO32(EDX, EAX);
Bit64u quotient_64 = op1_64 / op2_32;
Bit32u remainder_32 = (Bit32u) (op1_64 % op2_32);
Bit32u quotient_32l = (Bit32u) (quotient_64 & 0xFFFFFFFF);
if (quotient_64 != quotient_32l)
{
exception(BX_DE_EXCEPTION, 0);
}
/* set EFLAGS:
* DIV affects the following flags: O,S,Z,A,P,C are undefined
*/
/* now write quotient back to destination */
RAX = quotient_32l;
RDX = remainder_32;
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IDIV_EAXEdR(bxInstruction_c *i)
{
Bit64s op1_64 = GET64_FROM_HI32_LO32(EDX, EAX);
/* check MIN_INT case */
if (op1_64 == ((Bit64s)BX_CONST64(0x8000000000000000)))
exception(BX_DE_EXCEPTION, 0);
Bit32s op2_32 = BX_READ_32BIT_REG(i->src());
if (op2_32 == 0)
exception(BX_DE_EXCEPTION, 0);
Bit64s quotient_64 = op1_64 / op2_32;
Bit32s remainder_32 = (Bit32s) (op1_64 % op2_32);
Bit32s quotient_32l = (Bit32s) (quotient_64 & 0xFFFFFFFF);
if (quotient_64 != quotient_32l)
{
exception(BX_DE_EXCEPTION, 0);
}
/* set EFLAGS:
* IDIV affects the following flags: O,S,Z,A,P,C are undefined
*/
/* now write quotient back to destination */
RAX = (Bit32u) quotient_32l;
RDX = (Bit32u) remainder_32;
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IMUL_GdEdIdR(bxInstruction_c *i)
{
Bit32s op2_32 = BX_READ_32BIT_REG(i->src());
Bit32s op3_32 = i->Id();
Bit64s product_64 = ((Bit64s) op2_32) * ((Bit64s) op3_32);
Bit32u product_32 = (Bit32u)(product_64 & 0xFFFFFFFF);
/* now write product back to destination */
BX_WRITE_32BIT_REGZ(i->dst(), product_32);
/* set eflags:
* IMUL r32,r/m32,imm32: condition for clearing CF & OF:
* result exactly fits within r32
*/
SET_FLAGS_OSZAPC_LOGIC_32(product_32);
if(product_64 != (Bit32s) product_64)
{
BX_CPU_THIS_PTR oszapc.assert_flags_OxxxxC();
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IMUL_GdEdR(bxInstruction_c *i)
{
Bit32s op1_32 = BX_READ_32BIT_REG(i->dst());
Bit32s op2_32 = BX_READ_32BIT_REG(i->src());
Bit64s product_64 = ((Bit64s) op1_32) * ((Bit64s) op2_32);
Bit32u product_32 = (Bit32u)(product_64 & 0xFFFFFFFF);
/* now write product back to destination */
BX_WRITE_32BIT_REGZ(i->dst(), product_32);
/* set eflags:
* IMUL r32,r/m32: condition for clearing CF & OF:
* result exactly fits within r32
*/
SET_FLAGS_OSZAPC_LOGIC_32(product_32);
if(product_64 != (Bit32s) product_64)
{
BX_CPU_THIS_PTR oszapc.assert_flags_OxxxxC();
}
BX_NEXT_INSTR(i);
}
|