1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2018 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EwR(bxInstruction_c *i)
{
push_16(BX_READ_16BIT_REG(i->dst()));
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EwM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit16u op1_16 = read_virtual_word(i->seg(), eaddr);
push_16(op1_16);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH16_Sw(bxInstruction_c *i)
{
push_16(BX_CPU_THIS_PTR sregs[i->src()].selector.value);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP16_Sw(bxInstruction_c *i)
{
RSP_SPECULATIVE;
Bit16u selector = pop_16();
load_seg_reg(&BX_CPU_THIS_PTR sregs[i->dst()], selector);
RSP_COMMIT;
if (i->dst() == BX_SEG_REG_SS) {
// POP SS inhibits interrupts, debug exceptions and single-step
// trap exceptions until the execution boundary following the
// next instruction is reached.
// Same code as MOV_SwEw()
inhibit_interrupts(BX_INHIBIT_INTERRUPTS_BY_MOVSS);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EwR(bxInstruction_c *i)
{
BX_WRITE_16BIT_REG(i->dst(), pop_16());
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EwM(bxInstruction_c *i)
{
RSP_SPECULATIVE;
Bit16u val16 = pop_16();
// Note: there is one little weirdism here. It is possible to use
// SP in the modrm addressing. If used, the value of SP after the
// pop is used to calculate the address.
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
write_virtual_word(i->seg(), eaddr, val16);
RSP_COMMIT;
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_Iw(bxInstruction_c *i)
{
push_16(i->Iw());
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSHA16(bxInstruction_c *i)
{
Bit32u temp_ESP = ESP;
Bit16u temp_SP = SP;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
{
stack_write_word((Bit32u)(temp_ESP - 2), AX);
stack_write_word((Bit32u)(temp_ESP - 4), CX);
stack_write_word((Bit32u)(temp_ESP - 6), DX);
stack_write_word((Bit32u)(temp_ESP - 8), BX);
stack_write_word((Bit32u)(temp_ESP - 10), temp_SP);
stack_write_word((Bit32u)(temp_ESP - 12), BP);
stack_write_word((Bit32u)(temp_ESP - 14), SI);
stack_write_word((Bit32u)(temp_ESP - 16), DI);
ESP -= 16;
}
else
{
stack_write_word((Bit16u)(temp_SP - 2), AX);
stack_write_word((Bit16u)(temp_SP - 4), CX);
stack_write_word((Bit16u)(temp_SP - 6), DX);
stack_write_word((Bit16u)(temp_SP - 8), BX);
stack_write_word((Bit16u)(temp_SP - 10), temp_SP);
stack_write_word((Bit16u)(temp_SP - 12), BP);
stack_write_word((Bit16u)(temp_SP - 14), SI);
stack_write_word((Bit16u)(temp_SP - 16), DI);
SP -= 16;
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPA16(bxInstruction_c *i)
{
Bit16u di, si, bp, bx, dx, cx, ax;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
{
Bit32u temp_ESP = ESP;
di = stack_read_word((Bit32u)(temp_ESP + 0));
si = stack_read_word((Bit32u)(temp_ESP + 2));
bp = stack_read_word((Bit32u)(temp_ESP + 4));
stack_read_word((Bit32u)(temp_ESP + 6));
bx = stack_read_word((Bit32u)(temp_ESP + 8));
dx = stack_read_word((Bit32u)(temp_ESP + 10));
cx = stack_read_word((Bit32u)(temp_ESP + 12));
ax = stack_read_word((Bit32u)(temp_ESP + 14));
ESP += 16;
}
else
{
Bit16u temp_SP = SP;
di = stack_read_word((Bit16u)(temp_SP + 0));
si = stack_read_word((Bit16u)(temp_SP + 2));
bp = stack_read_word((Bit16u)(temp_SP + 4));
stack_read_word((Bit16u)(temp_SP + 6));
bx = stack_read_word((Bit16u)(temp_SP + 8));
dx = stack_read_word((Bit16u)(temp_SP + 10));
cx = stack_read_word((Bit16u)(temp_SP + 12));
ax = stack_read_word((Bit16u)(temp_SP + 14));
SP += 16;
}
DI = di;
SI = si;
BP = bp;
BX = bx;
DX = dx;
CX = cx;
AX = ax;
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER16_IwIb(bxInstruction_c *i)
{
Bit16u imm16 = i->Iw();
Bit8u level = i->Ib2();
level &= 0x1F;
RSP_SPECULATIVE;
push_16(BP);
Bit16u frame_ptr16 = SP;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
Bit32u ebp = EBP; // Use temp copy for case of exception.
if (level > 0) {
/* do level-1 times */
while (--level) {
ebp -= 2;
Bit16u temp16 = stack_read_word(ebp);
push_16(temp16);
}
/* push(frame pointer) */
push_16(frame_ptr16);
}
ESP -= imm16;
// ENTER finishes with memory write check on the final stack pointer
// the memory is touched but no write actually occurs
// emulate it by doing RMW read access from SS:ESP
read_RMW_virtual_word_32(BX_SEG_REG_SS, ESP); // no lock, should be touch only
BP = frame_ptr16;
}
else {
Bit16u bp = BP;
if (level > 0) {
/* do level-1 times */
while (--level) {
bp -= 2;
Bit16u temp16 = stack_read_word(bp);
push_16(temp16);
}
/* push(frame pointer) */
push_16(frame_ptr16);
}
SP -= imm16;
// ENTER finishes with memory write check on the final stack pointer
// the memory is touched but no write actually occurs
// emulate it by doing RMW read access from SS:SP
read_RMW_virtual_word_32(BX_SEG_REG_SS, SP); // no lock, should be touch only
}
BP = frame_ptr16;
RSP_COMMIT;
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LEAVE16(bxInstruction_c *i)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
Bit16u value16;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) {
value16 = stack_read_word(EBP);
ESP = EBP + 2;
}
else {
value16 = stack_read_word(BP);
SP = BP + 2;
}
BP = value16;
BX_NEXT_INSTR(i);
}
|