1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
|
// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// Simulate the processing of the current workload
// (include jobs that are downloading)
// with weighted round-robin (WRR) scheduling.
//
// Outputs are changes to global state:
// - deadline misses (per-project count, per-result flag)
// Deadline misses are not counted for tasks
// that are too large to run in RAM right now.
// - for each resource type (in RSC_WORK_FETCH):
// - shortfall
// - nidle_now: # of idle instances
// - sim_excluded_instances: bitmap of instances idle because of exclusions
//
// For coprocessors, we saturate the resource if possible;
// i.e. with 2 GPUs, we'd let a 1-GPU app and a 2-GPU app run together.
// Otherwise, there'd be the possibility of computing
// a nonzero shortfall inappropriately.
//
#include "cpp.h"
#ifdef _WIN32
#include "boinc_win.h"
#else
#include "config.h"
#endif
#ifdef _MSC_VER
#define snprintf _snprintf
#endif
#include "client_msgs.h"
#include "client_state.h"
#include "coproc.h"
#include "project.h"
#include "result.h"
using std::vector;
inline void rsc_string(RESULT* rp, char* buf, int len) {
APP_VERSION* avp = rp->avp;
if (avp->gpu_usage.rsc_type) {
snprintf(buf, len,
"%.2f CPU + %.2f %s",
avp->avg_ncpus, avp->gpu_usage.usage,
rsc_name_long(avp->gpu_usage.rsc_type)
);
} else {
snprintf(buf, len, "%.2f CPU", avp->avg_ncpus);
}
}
// set "nused" bits of the source bitmap in the dest bitmap
//
static inline void set_bits(
COPROC_INSTANCE_BITMAP src, double nused, COPROC_INSTANCE_BITMAP& dst
) {
// if all bits are already set, we're done
//
if ((src&dst) == src) return;
COPROC_INSTANCE_BITMAP bit = 1;
for (int i=0; i<MAX_COPROC_INSTANCES; i++) {
if (nused <= 0) break;
if (bit & src) {
dst |= bit;
nused -= 1;
}
bit <<= 1;
}
}
// this is here (rather than rr_sim.h) because its inline functions
// refer to RESULT
//
struct RR_SIM {
vector<RESULT*> active;
inline void activate(RESULT* rp) {
PROJECT* p = rp->project;
active.push_back(rp);
rsc_work_fetch[0].sim_nused += rp->avp->avg_ncpus;
p->rsc_pwf[0].sim_nused += rp->avp->avg_ncpus;
int rt = rp->avp->gpu_usage.rsc_type;
if (rt) {
rsc_work_fetch[rt].sim_nused += rp->avp->gpu_usage.usage;
p->rsc_pwf[rt].sim_nused += rp->avp->gpu_usage.usage;
if (rsc_work_fetch[rt].has_exclusions) {
set_bits(
rp->app->non_excluded_instances[rt],
p->rsc_pwf[rt].nused_total,
rsc_work_fetch[rt].sim_used_instances
);
#if 0
msg_printf(p, MSG_INFO, "%d non_excl %d used %d",
rt,
rp->app->non_excluded_instances[rt],
rsc_work_fetch[rt].sim_used_instances
);
#endif
}
}
}
void init_pending_lists();
void pick_jobs_to_run(double reltime);
void simulate();
RR_SIM() {}
~RR_SIM() {}
};
// estimate the long-term FLOPS that this job will get
// (counting unavailability)
//
void set_rrsim_flops(RESULT* rp) {
// For coproc jobs, use app version estimate
//
if (rp->uses_gpu()) {
rp->rrsim_flops = rp->avp->flops * gstate.overall_gpu_frac();
} else if (rp->avp->needs_network) {
rp->rrsim_flops = rp->avp->flops * gstate.overall_cpu_and_network_frac();
} else {
rp->rrsim_flops = rp->avp->flops * gstate.overall_cpu_frac();
}
if (rp->rrsim_flops == 0) {
rp->rrsim_flops = 1e6; // just in case
}
}
void print_deadline_misses() {
unsigned int i;
RESULT* rp;
PROJECT* p;
for (i=0; i<gstate.results.size(); i++){
rp = gstate.results[i];
if (rp->rr_sim_misses_deadline) {
msg_printf(rp->project, MSG_INFO,
"[rr_sim] Result %s projected to miss deadline.",
rp->name
);
}
}
for (i=0; i<gstate.projects.size(); i++) {
p = gstate.projects[i];
for (int j=0; j<coprocs.n_rsc; j++) {
if (p->rsc_pwf[j].deadlines_missed) {
msg_printf(p, MSG_INFO,
"[rr_sim] Project has %d projected %s deadline misses",
p->rsc_pwf[j].deadlines_missed,
rsc_name_long(j)
);
}
}
}
}
// Decide what jobs to include in the simulation;
// build the "pending" lists for each (project, processor type) pair.
// NOTE: "results" is sorted by increasing arrival time.
//
void RR_SIM::init_pending_lists() {
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
for (int j=0; j<coprocs.n_rsc; j++) {
p->rsc_pwf[j].pending.clear();
p->rsc_pwf[j].queue_est = 0;
}
}
for (unsigned int i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
rp->rr_sim_misses_deadline = false;
rp->already_selected = false;
if (!rp->nearly_runnable()) continue;
if (rp->some_download_stalled()) continue;
if (rp->project->non_cpu_intensive) continue;
rp->rrsim_flops_left = rp->estimated_flops_remaining();
//if (rp->rrsim_flops_left <= 0) continue;
// job may have fraction_done=1 but not be done;
// if it's past its deadline, we need to mark it as such
PROJECT* p = rp->project;
p->pwf.n_runnable_jobs++;
p->rsc_pwf[0].nused_total += rp->avp->avg_ncpus;
set_rrsim_flops(rp);
int rt = rp->avp->gpu_usage.rsc_type;
if (rt) {
p->rsc_pwf[rt].nused_total += rp->avp->gpu_usage.usage;
p->rsc_pwf[rt].n_runnable_jobs++;
p->rsc_pwf[rt].queue_est += rp->rrsim_flops_left/rp->rrsim_flops;
}
p->rsc_pwf[rt].pending.push_back(rp);
rp->rrsim_done = false;
}
}
// Pick jobs to run, putting them in "active" list.
// Simulate what the job scheduler would do:
// pick a job from the project P with highest scheduling priority,
// then adjust P's scheduling priority.
//
// This is called at the start of the simulation,
// and again each time a job finishes.
// In the latter case, some resources may be saturated.
//
void RR_SIM::pick_jobs_to_run(double reltime) {
active.clear();
// save and restore rec_temp
//
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
p->pwf.rec_temp_save = p->pwf.rec_temp;
}
// loop over resource types; do the GPUs first
//
for (int rt=coprocs.n_rsc-1; rt>=0; rt--) {
vector<PROJECT*> project_heap;
// Make a heap of projects with runnable jobs for this resource,
// ordered by scheduling priority.
// Clear usage counts.
// Initialize iterators to the pending list of each project.
//
rsc_work_fetch[rt].sim_nused = 0;
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
RSC_PROJECT_WORK_FETCH& rsc_pwf = p->rsc_pwf[rt];
if (rsc_pwf.pending.size() ==0) continue;
rsc_pwf.pending_iter = rsc_pwf.pending.begin();
rsc_pwf.sim_nused = 0;
p->pwf.rec_temp = p->pwf.rec;
p->compute_sched_priority();
project_heap.push_back(p);
}
make_heap(project_heap.begin(), project_heap.end());
// Loop over jobs.
// Keep going until the resource is saturated or there are no more jobs.
//
while (1) {
if (project_heap.empty()) break;
// p is the highest-priority project with work for this resource
//
PROJECT* p = project_heap.front();
RSC_PROJECT_WORK_FETCH& rsc_pwf = p->rsc_pwf[rt];
RESULT* rp = *rsc_pwf.pending_iter;
// garbage-collect jobs that already completed in our simulation
// (this is just a handy place to do this)
//
if (rp->rrsim_done) {
rsc_pwf.pending_iter = rsc_pwf.pending.erase(rsc_pwf.pending_iter);
} else {
// add job to active list, and adjust project priority
//
activate(rp);
adjust_rec_sched(rp);
if (log_flags.rrsim_detail && !rp->already_selected) {
char buf[256];
rsc_string(rp, buf, sizeof(buf));
msg_printf(rp->project, MSG_INFO,
"[rr_sim_detail] %.2f: starting %s (%s) (%.2fG/%.2fG)",
reltime, rp->name, buf, rp->rrsim_flops_left/1e9, rp->rrsim_flops/1e9
);
rp->already_selected = true;
}
// check whether resource is saturated
//
if (rt) {
if (rsc_work_fetch[rt].sim_nused >= coprocs.coprocs[rt].count) {
break;
}
// if a GPU isn't saturated but this project is using
// its max given exclusions, remove it from project heap
//
if (rsc_pwf.sim_nused >= coprocs.coprocs[rt].count - p->rsc_pwf[rt].ncoprocs_excluded) {
pop_heap(project_heap.begin(), project_heap.end());
project_heap.pop_back();
continue;
}
} else {
if (rsc_work_fetch[rt].sim_nused >= gstate.ncpus) break;
}
++rsc_pwf.pending_iter;
}
if (rsc_pwf.pending_iter == rsc_pwf.pending.end()) {
// if this project now has no more jobs for the resource,
// remove it from the project heap
//
pop_heap(project_heap.begin(), project_heap.end());
project_heap.pop_back();
} else if (!rp->rrsim_done) {
// Otherwise reshuffle the project heap
//
make_heap(project_heap.begin(), project_heap.end());
}
}
}
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
p->pwf.rec_temp = p->pwf.rec_temp_save;
}
}
static void record_nidle_now() {
// note the number of idle instances
//
rsc_work_fetch[0].nidle_now = gstate.ncpus - rsc_work_fetch[0].sim_nused;
if (rsc_work_fetch[0].nidle_now < 0) rsc_work_fetch[0].nidle_now = 0;
for (int i=1; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].nidle_now = coprocs.coprocs[i].count - rsc_work_fetch[i].sim_nused;
if (rsc_work_fetch[i].nidle_now < 0) rsc_work_fetch[i].nidle_now = 0;
}
}
static void handle_missed_deadline(RESULT* rpbest, double diff, double ar) {
ACTIVE_TASK* atp = gstate.lookup_active_task_by_result(rpbest);
PROJECT* pbest = rpbest->project;
if (atp) {
atp->last_deadline_miss_time = gstate.now;
}
if (atp && atp->procinfo.working_set_size_smoothed > ar) {
if (log_flags.rr_simulation) {
msg_printf(pbest, MSG_INFO,
"[rr_sim] %s misses deadline but too large to run",
rpbest->name
);
}
} else {
rpbest->rr_sim_misses_deadline = true;
int rt = rpbest->avp->gpu_usage.rsc_type;
if (rt) {
pbest->rsc_pwf[rt].deadlines_missed++;
rsc_work_fetch[rt].deadline_missed_instances += rpbest->avp->gpu_usage.usage;
} else {
pbest->rsc_pwf[0].deadlines_missed++;
rsc_work_fetch[0].deadline_missed_instances += rpbest->avp->avg_ncpus;
}
if (log_flags.rr_simulation) {
msg_printf(pbest, MSG_INFO,
"[rr_sim] %s misses deadline by %.2f",
rpbest->name, diff
);
}
}
}
void RR_SIM::simulate() {
PROJECT* pbest;
RESULT* rp, *rpbest;
unsigned int u;
double ar = gstate.available_ram();
work_fetch.rr_init();
if (log_flags.rr_simulation) {
msg_printf(0, MSG_INFO,
"[rr_sim] start: work_buf min %.0f additional %.0f total %.0f on_frac %.3f active_frac %.3f",
gstate.work_buf_min(),
gstate.work_buf_additional(),
gstate.work_buf_total(),
gstate.time_stats.on_frac,
gstate.time_stats.active_frac
);
}
project_priority_init(false);
init_pending_lists();
// Simulation loop. Keep going until all jobs done
//
double buf_end = gstate.now + gstate.work_buf_total();
double sim_now = gstate.now;
bool first = true;
while (1) {
pick_jobs_to_run(sim_now-gstate.now);
if (first) {
record_nidle_now();
first = false;
}
if (!active.size()) break;
// compute finish times and see which job finishes first
//
rpbest = NULL;
for (u=0; u<active.size(); u++) {
rp = active[u];
rp->rrsim_finish_delay = rp->rrsim_flops_left/rp->rrsim_flops;
if (!rpbest || rp->rrsim_finish_delay < rpbest->rrsim_finish_delay) {
rpbest = rp;
}
}
// see if we finish a time slice before first job ends
//
double delta_t = rpbest->rrsim_finish_delay;
if (log_flags.rrsim_detail) {
msg_printf(NULL, MSG_INFO,
"[rrsim_detail] rpbest: %s (finish delay %.2f)",
rpbest->name,
delta_t
);
}
if (delta_t > 3600) {
rpbest = 0;
// limit the granularity
//
if (delta_t > 36000) {
delta_t /= 10;
} else {
delta_t = 3600;
}
if (log_flags.rrsim_detail) {
msg_printf(NULL, MSG_INFO,
"[rrsim_detail] time-slice step of %.2f sec", delta_t
);
}
} else {
rpbest->rrsim_done = true;
pbest = rpbest->project;
if (log_flags.rr_simulation) {
char buf[256];
rsc_string(rpbest, buf, sizeof(buf));
msg_printf(pbest, MSG_INFO,
"[rr_sim] %.2f: %s finishes (%s) (%.2fG/%.2fG)",
sim_now + delta_t - gstate.now,
rpbest->name,
buf,
rpbest->estimated_flops_remaining()/1e9, rpbest->rrsim_flops/1e9
);
}
// Does it miss its deadline?
//
double diff = (sim_now + rpbest->rrsim_finish_delay) - rpbest->computation_deadline();
if (diff > 0) {
handle_missed_deadline(rpbest, diff, ar);
// update busy time of relevant processor types
//
double frac = rpbest->uses_gpu()?gstate.overall_gpu_frac():gstate.overall_cpu_frac();
double dur = rpbest->estimated_runtime_remaining() / frac;
rsc_work_fetch[0].update_busy_time(dur, rpbest->avp->avg_ncpus);
int rt = rpbest->avp->gpu_usage.rsc_type;
if (rt) {
rsc_work_fetch[rt].update_busy_time(dur, rpbest->avp->gpu_usage.usage);
}
}
}
// adjust FLOPS left of other active jobs
//
for (unsigned int i=0; i<active.size(); i++) {
rp = active[i];
rp->rrsim_flops_left -= rp->rrsim_flops*delta_t;
// can be slightly less than 0 due to roundoff
//
if (rp->rrsim_flops_left < -1e6) {
if (log_flags.rr_simulation) {
msg_printf(rp->project, MSG_INTERNAL_ERROR,
"%s: negative FLOPs left %f", rp->name, rp->rrsim_flops_left
);
}
}
if (rp->rrsim_flops_left < 0) {
rp->rrsim_flops_left = 0;
}
}
for (int i=0; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].update_stats(sim_now, delta_t, buf_end);
}
// update project REC
//
double f = gstate.host_info.p_fpops;
for (unsigned int i=0; i<gstate.projects.size(); i++) {
PROJECT* p = gstate.projects[i];
double dtemp = sim_now;
double x = 0;
for (int j=0; j<coprocs.n_rsc; j++) {
x += p->rsc_pwf[j].sim_nused * delta_t * f * rsc_work_fetch[j].relative_speed;
}
x *= COBBLESTONE_SCALE;
update_average(
sim_now+delta_t,
sim_now,
x,
cc_config.rec_half_life,
p->pwf.rec_temp,
dtemp
);
p->compute_sched_priority();
}
sim_now += delta_t;
}
// identify GPU instances starved because of exclusions
//
for (int i=1; i<coprocs.n_rsc; i++) {
RSC_WORK_FETCH& rwf = rsc_work_fetch[i];
if (!rwf.has_exclusions) continue;
COPROC& cp = coprocs.coprocs[i];
COPROC_INSTANCE_BITMAP mask = 0;
for (int j=0; j<cp.count; j++) {
mask |= ((COPROC_INSTANCE_BITMAP)1)<<j;
}
rwf.sim_excluded_instances = ~(rwf.sim_used_instances) & mask;
if (log_flags.rrsim_detail) {
msg_printf(0, MSG_INFO,
"[rrsim_detail] rsc %d: sim_used_inst %lld mask %lld sim_excluded_instances %lld",
i, rwf.sim_used_instances, mask, rwf.sim_excluded_instances
);
}
}
// if simulation ends before end of buffer, take the tail into account
//
if (sim_now < buf_end) {
double d_time = buf_end - sim_now;
for (int i=0; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].update_stats(sim_now, d_time, buf_end);
}
}
}
void rr_simulation() {
RR_SIM rr_sim;
rr_sim.simulate();
}
// Compute the number of idle instances of each resource
// Put results in global state (rsc_work_fetch)
//
void get_nidle() {
int nidle_rsc = coprocs.n_rsc;
for (int i=1; i<coprocs.n_rsc; i++) {
rsc_work_fetch[i].nidle_now = coprocs.coprocs[i].count;
}
for (unsigned int i=0; i<gstate.results.size(); i++) {
RESULT* rp = gstate.results[i];
if (!rp->nearly_runnable()) continue;
if (rp->some_download_stalled()) continue;
APP_VERSION* avp = rp->avp;
if (rsc_work_fetch[0].nidle_now) {
rsc_work_fetch[0].nidle_now -= avp->avg_ncpus;
if (rsc_work_fetch[0].nidle_now <= 0) {
nidle_rsc--;
rsc_work_fetch[0].nidle_now = 0;
}
}
int j = avp->gpu_usage.rsc_type;
if (!j) {
continue;
}
if (rsc_work_fetch[j].nidle_now) {
rsc_work_fetch[j].nidle_now -= avp->gpu_usage.usage;
if (rsc_work_fetch[j].nidle_now <= 0) {
nidle_rsc--;
rsc_work_fetch[j].nidle_now = 0;
}
}
if (nidle_rsc == 0) {
// no idle resources - no need to look further
//
break;
}
}
}
bool any_resource_idle() {
for (int i=1; i<coprocs.n_rsc; i++) {
if (rsc_work_fetch[i].nidle_now > 0) {
return true;
}
}
return false;
}
|