1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// This is a test framework for the rr_simulation() function.
// To use it:
// - cut and paste the current code from cpu_sched.C (see below)
// - edit main() to set up your test case
#include <vector>
#include <cstdarg>
using std::vector;
#define CPU_PESSIMISM_FACTOR 1.0
#define SECONDS_PER_DAY 86400
struct RESULT;
struct PROJECT {
char name[256];
double resource_share;
bool non_cpu_intensive;
vector<RESULT*>active;
vector<RESULT*>pending;
double cpu_shortfall;
double rrsim_proc_rate;
int rr_sim_deadlines_missed;
PROJECT(char* n, double rs) {
safe_strcpy(name, n);
resource_share = rs;
non_cpu_intensive = false;
}
char* get_project_name() {
return name;
}
void set_rrsim_proc_rate(double);
};
struct RESULT {
char name[256];
double ectr;
double estimated_cpu_time_remaining() {
return ectr;
}
double rrsim_finish_delay;
double rrsim_cpu_left;
double report_deadline;
bool rr_sim_misses_deadline;
bool last_rr_sim_missed_deadline;
PROJECT* project;
RESULT(PROJECT* p, char* n, double e, double rd) {
project = p;
safe_strcpy(name, n);
ectr = e;
report_deadline = rd;
}
bool nearly_runnable() {
return true;
}
double computation_deadline();
};
struct FLAGS {
bool rr_simulation;
};
FLAGS log_flags;
struct PREFS {
double work_buf_min_days;
double work_buf_additional_days;
double cpu_scheduling_period_minutes;
};
struct CLIENT_STATE {
double nearly_runnable_resource_share();
double total_resource_share();
double now;
int ncpus;
vector<RESULT*>results;
vector<PROJECT*>projects;
PREFS global_prefs;
double cpu_shortfall;
double overall_cpu_frac() {
return 1;
}
bool rr_simulation();
double work_buf_min() {
return global_prefs.work_buf_min_days*86400;
}
double work_buf_additional() {
return global_prefs.work_buf_additional_days * 86400;
}
};
struct CLIENT_STATE gstate;
double CLIENT_STATE::nearly_runnable_resource_share() {
double x=0;
for (unsigned int i=0; i<projects.size(); i++) {
x += projects[i]->resource_share;
}
return x;
}
double CLIENT_STATE::total_resource_share() {
return nearly_runnable_resource_share();
}
#define MSG_INFO 0
void msg_printf(PROJECT* p, int, const char* fmt, ...) {
char buf[8192];
va_list ap;
va_start(ap, fmt);
vsprintf(buf, fmt, ap);
va_end(ap);
printf("%s: %s\n", p?p->name:"BOINC", buf);
}
///////////////////// CUT AND PASTE FROM CPU_SCHED.C //////////////
double RESULT::computation_deadline() {
return report_deadline - (
gstate.global_prefs.work_buf_min_days * SECONDS_PER_DAY
// Seconds that the host will not be connected to the Internet
+ gstate.global_prefs.cpu_scheduling_period()
// Seconds that the CPU may be busy with some other result
+ SECONDS_PER_DAY
// Deadline cusion
);
}
void PROJECT::set_rrsim_proc_rate(double rrs) {
int nactive = (int)active.size();
if (nactive == 0) return;
double x;
if (rrs) {
x = resource_share/rrs;
} else {
x = 1; // pathological case; maybe should be 1/# runnable projects
}
// if this project has fewer active results than CPUs,
// scale up its share to reflect this
//
if (nactive < gstate.ncpus) {
x *= ((double)gstate.ncpus)/nactive;
}
// But its rate on a given CPU can't exceed 1
//
if (x>1) {
x = 1;
}
rrsim_proc_rate = x*gstate.overall_cpu_frac();
if (log_flags.rr_simulation) {
msg_printf(this, MSG_INFO,
"set_rrsim_proc_rate: %f (rrs %f, rs %f, nactive %d, ocf %f",
rrsim_proc_rate, rrs, resource_share, nactive, gstate.overall_cpu_frac()
);
}
}
bool CLIENT_STATE::rr_simulation() {
double rrs = nearly_runnable_resource_share();
double trs = total_resource_share();
PROJECT* p, *pbest;
RESULT* rp, *rpbest;
vector<RESULT*> active;
unsigned int i;
double x;
bool rval = false;
if (log_flags.rr_simulation) {
msg_printf(0, MSG_INFO,
"rr_sim start: work_buf_min %f rrs %f trs %f",
work_buf_min(), rrs, trs
);
}
// Initialize result lists for each project:
// "active" is what's currently running (in the simulation)
// "pending" is what's queued
//
for (i=0; i<projects.size(); i++) {
p = projects[i];
p->active.clear();
p->pending.clear();
p->rr_sim_deadlines_missed = 0;
p->cpu_shortfall = 0;
}
for (i=0; i<results.size(); i++) {
rp = results[i];
if (!rp->nearly_runnable()) continue;
if (rp->project->non_cpu_intensive) continue;
rp->rrsim_cpu_left = rp->estimated_cpu_time_remaining();
p = rp->project;
if (p->active.size() < (unsigned int)ncpus) {
active.push_back(rp);
p->active.push_back(rp);
} else {
p->pending.push_back(rp);
}
rp->last_rr_sim_missed_deadline = rp->rr_sim_misses_deadline;
rp->rr_sim_misses_deadline = false;
}
for (i=0; i<projects.size(); i++) {
p = projects[i];
p->set_rrsim_proc_rate(rrs);
// if there are no results for a project,
// the shortfall is its entire share.
//
if (!p->active.size()) {
double rsf = trs ? p->resource_share/trs : 1;
p->cpu_shortfall = (work_buf_min()+work_buf_additional()) * overall_cpu_frac() * ncpus * rsf;
if (log_flags.rr_simulation) {
msg_printf(p, MSG_INFO,
"no results; shortfall %f wbm %f ocf %f rsf %f",
p->cpu_shortfall, work_buf_min(), overall_cpu_frac(), rsf
);
}
}
}
double buf_end = now + work_buf_min() + work_buf_additional();
// Simulation loop. Keep going until work done
//
double sim_now = now;
cpu_shortfall = 0;
while (active.size()) {
// compute finish times and see which result finishes first
//
rpbest = NULL;
for (i=0; i<active.size(); i++) {
rp = active[i];
p = rp->project;
rp->rrsim_finish_delay = rp->rrsim_cpu_left/p->rrsim_proc_rate;
if (!rpbest || rp->rrsim_finish_delay < rpbest->rrsim_finish_delay) {
rpbest = rp;
}
}
pbest = rpbest->project;
if (log_flags.rr_simulation) {
msg_printf(pbest, MSG_INFO,
"rr_sim: result %s finishes after %f (%f/%f)",
rpbest->name, rpbest->rrsim_finish_delay, rpbest->rrsim_cpu_left, pbest->rrsim_proc_rate
);
}
// "rpbest" is first result to finish. Does it miss its deadline?
//
double diff = sim_now + rpbest->rrsim_finish_delay - ((rpbest->computation_deadline()-now)*CPU_PESSIMISM_FACTOR + now);
if (diff > 0) {
rpbest->rr_sim_misses_deadline = true;
pbest->rr_sim_deadlines_missed++;
rval = true;
if (log_flags.rr_simulation) {
msg_printf(0, MSG_INFO,
"rr_sim: result %s misses deadline by %f",
rpbest->name, diff
);
}
}
int last_active_size = active.size();
int last_proj_active_size = pbest->active.size();
{
vector<RESULT*>::iterator it;
// remove *rpbest from active set,
// and adjust CPU time left for other results
//
it = active.begin();
while (it != active.end()) {
rp = *it;
if (rp == rpbest) {
it = active.erase(it);
} else {
x = rp->project->rrsim_proc_rate*rpbest->rrsim_finish_delay;
rp->rrsim_cpu_left -= x;
it++;
}
}
}
{
vector<RESULT*>::iterator it;
// remove *rpbest from its project's active set
//
it = pbest->active.begin();
while (it != pbest->active.end()) {
rp = *it;
if (rp == rpbest) {
it = pbest->active.erase(it);
} else {
it++;
}
}
}
// If project has more results, add one to active set.
//
if (pbest->pending.size()) {
rp = pbest->pending[0];
pbest->pending.erase(pbest->pending.begin());
active.push_back(rp);
pbest->active.push_back(rp);
}
// If all work done for a project, subtract that project's share
// and recompute processing rates
//
if (pbest->active.size() == 0) {
rrs -= pbest->resource_share;
if (log_flags.rr_simulation) {
msg_printf(pbest, MSG_INFO,
"rr_sim: decr rrs by %f, new value %f",
pbest->resource_share, rrs
);
}
for (i=0; i<projects.size(); i++) {
p = projects[i];
p->set_rrsim_proc_rate(rrs);
}
}
// increment CPU shortfalls if necessary
//
if (sim_now < buf_end) {
double end_time = sim_now + rpbest->rrsim_finish_delay;
if (end_time > buf_end) end_time = buf_end;
double d_time = end_time - sim_now;
int nidle_cpus = ncpus - last_active_size;
if (nidle_cpus<0) nidle_cpus = 0;
if (nidle_cpus > 0) cpu_shortfall += d_time*nidle_cpus;
double rsf = trs?pbest->resource_share/trs:1;
double proj_cpu_share = ncpus*rsf;
if (last_proj_active_size < proj_cpu_share) {
pbest->cpu_shortfall += d_time*(proj_cpu_share - last_proj_active_size);
if (log_flags.rr_simulation) {
msg_printf(pbest, MSG_INFO,
"rr_sim: new shortfall %f d_time %f proj_cpu_share %f lpas %d",
pbest->cpu_shortfall, d_time, proj_cpu_share, last_proj_active_size
);
}
}
if (end_time < buf_end) {
d_time = buf_end - end_time;
// if this is the last result for this project, account for the tail
if (!pbest->active.size()) {
pbest->cpu_shortfall += d_time * proj_cpu_share;
if (log_flags.rr_simulation) {
msg_printf(pbest, MSG_INFO, "rr_sim proj out of work; shortfall %f d %f pcs %f",
pbest->cpu_shortfall, d_time, proj_cpu_share
);
}
}
}
if (log_flags.rr_simulation) {
msg_printf(0, MSG_INFO,
"rr_sim total: idle cpus %d, last active %d, active %d, shortfall %f",
nidle_cpus, last_active_size, (int)active.size(), cpu_shortfall
);
msg_printf(0, MSG_INFO,
"rr_sim proj %s: last active %d, active %d, shortfall %f",
pbest->get_project_name(), last_proj_active_size, (int)pbest->active.size(),
pbest->cpu_shortfall
);
}
}
sim_now += rpbest->rrsim_finish_delay;
}
if (sim_now < buf_end) {
cpu_shortfall += (buf_end - sim_now) * ncpus;
}
if (log_flags.rr_simulation) {
for (i=0; i<projects.size(); i++) {
p = projects[i];
if (p->cpu_shortfall) {
msg_printf(p, MSG_INFO,
"rr_sim: shortfall %f\n", p->cpu_shortfall
);
}
}
msg_printf(NULL, MSG_INFO,
"rr_simulation: end; returning %s; total shortfall %f\n",
rval?"true":"false",
cpu_shortfall
);
}
return rval;
}
////////////////////// END CUT AND PASTE ////////////////
int main() {
PROJECT* p;
RESULT* r;
log_flags.rr_simulation = true;
gstate.global_prefs.work_buf_min_days = 1;
gstate.global_prefs.work_buf_additional_days = 1;
gstate.global_prefs.cpu_scheduling_period_minutes = 60;
gstate.ncpus = 1;
gstate.now = 0;
p = new PROJECT("project A", 33.);
gstate.projects.push_back(p);
r = new RESULT(p, "result 1", 9, 1e6);
gstate.results.push_back(r);
r = new RESULT(p, "result 2", 9, 1e6);
gstate.results.push_back(r);
r = new RESULT(p, "result 3", 9, 1e6);
gstate.results.push_back(r);
p = new PROJECT("project B", 33.);
gstate.projects.push_back(p);
r = new RESULT(p, "result 4", 20, 1e6);
gstate.results.push_back(r);
p = new PROJECT("project C", 33.);
gstate.projects.push_back(p);
r = new RESULT(p, "result 5", 30, 1e6);
gstate.results.push_back(r);
gstate.rr_simulation();
}
|