1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
|
// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2011 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// ssim - simulator for distributed storage
//
// Simulates the storage of files on a dynamic set of hosts.
// usage: ssim
// --policy filename
// default is at start of main()
// --host_life_mean x
// default: 100 days
// --connect_interval x
// default: 1 day
// --mean_xfer_rate x
// default: 200000
// --file_size x
// default: 1e12
// --debug_status
// --debug_ft
// write recovery details to stdout
// --log_actions
// write actions to stdout
// --sim_duration_years;
// --random
// srand to pid
//
// outputs:
// stdout: log info
// summary.txt: format
// fault tolerance min
// disk_usage mean
// upload_mean
// download_mean
#include <set>
#include <limits.h>
#include <cmath>
#include <sys/types.h>
#include <unistd.h>
#include "des.h"
#include "stats.h"
#include "vda_lib.h"
using std::set;
bool log_actions = false;
double min_failures_time[100];
int min_min_failures = 100;
// We simulate policies based on coding and replication.
//
// Coding means that data is divided into M = N+K units,
// of which any N are sufficient to reconstruct the original data.
// When we need to reconstruct an encoded unit on the server,
// we try to upload N_UPLOAD subunits,
// where N <= N_UPLOAD <= M
// The units in an encoding can themselves be encoded.
//
// The bottom-level data units ("chunks") are stored on hosts,
// possibly with replication
struct PARAMS {
// The model of the host population is:
// - the population is unbounded
// - host lifetime is exponentially distributed
// - the time needed to transfer n bytes of data to/from a host is
// U1*connect_interval + (U2+.5)*n/mean_xfer_rate;
// where U1 and U2 are uniform random vars
// (U1 is per-transfer, U2 is per-host)
//
double host_life_mean;
double connect_interval;
double mean_xfer_rate;
double file_size;
double sim_duration;
PARAMS() {
// default parameters
//
host_life_mean = 100.*86400;
connect_interval = 86400.;
mean_xfer_rate = .2e6;
file_size = 1e10;
sim_duration = 1000.*86400;
}
} params;
// Terminology:
//
// A data unit is "recoverable" if it can be recovered on the server
// by uploading data from hosts.
// A chunk is recoverable if it's present on the server or on at least 1 host.
// (note: if it's downloading, it's still present on the server)
// An encoded data unit is recoverable if at least N
// of its subunits are recoverable.
// Figures of merit
//
// for each file, we compute:
// - the average and peak server network rate, up and down
// - the average and peak disk usage
// - the average and min fault tolerance level
// (i.e. number of simultaneous host failures needed to lose the file)
//
// These are measured starting from the time when the file's
// initial downloads have all succeeded or failed
SIMULATOR sim;
int next_file_id=0;
int next_host_id=0;
inline double drand() {
return (double)rand()/(double)RAND_MAX;
}
double ran_exp(double mean) {
return -log(drand())*mean;
}
char* now_str() {
return time_str(sim.now);
}
void show_msg(char* msg) {
if (log_actions) {
printf("%s: %s", time_str(sim.now), msg);
}
}
struct CHUNK;
struct CHUNK_ON_HOST;
struct META_CHUNK;
struct SIM_HOST;
set<SIM_HOST*> hosts;
// Represents a host.
// The associated EVENT is the disappearance of the host
//
struct SIM_HOST : EVENT {
int id;
double transfer_rate;
set<CHUNK_ON_HOST*> chunks; // chunks present or downloading
virtual void handle();
SIM_HOST() {
t = sim.now + ran_exp(params.host_life_mean);
id = next_host_id++;
transfer_rate = params.mean_xfer_rate*(drand() + .5);
hosts.insert(this);
}
};
#if 0
// The host arrival process.
// The associated EVENT is the arrival of a host
//
struct HOST_ARRIVAL : EVENT {
virtual void handle() {
sim.insert(new SIM_HOST);
t += ran_exp(86400./HOSTS_PER_DAY);
sim.insert(this);
}
};
#endif
void die(const char* msg) {
printf("%s: %s\n", now_str(), msg);
exit(1);
}
// The status of a chunk on a particular host.
// The associated event is the completion of an upload or download
//
struct CHUNK_ON_HOST : VDA_CHUNK_HOST, EVENT {
SIM_HOST* host;
CHUNK* chunk;
virtual void handle();
void start_upload();
void start_download();
void remove();
};
// represents a file to be stored.
// The associated EVENT is the arrival of the file
//
struct SIM_FILE : VDA_FILE_AUX, EVENT {
double size;
int id;
#if 0
set<SIM_HOST*> unused_hosts;
// hosts that don't have any chunks of this file
#endif
SIM_FILE(double s) {
id = next_file_id++;
#if 0
unused_hosts = hosts;
#endif
size = s;
disk_usage.init("Disk usage", "disk.dat", DISK);
upload_rate.init("Upload rate", "upload.dat", NETWORK);
download_rate.init("Download rate", "download.dat", NETWORK);
fault_tolerance.init("Fault tolerance", "fault_tol.dat", FAULT_TOLERANCE);
}
// the first event is the creation of a file;
// the 2nd is its retrieval
//
virtual void handle() {
if (meta_chunk) {
printf("%s: Retrieving file\n", now_str());
meta_chunk->data_needed = true;
} else {
meta_chunk = new META_CHUNK(this, NULL, size, 0, id);
if (log_actions) {
printf("created file %d: size %f GB encoded size %f GB\n",
id, size/1e9, disk_usage.value/1e9
);
}
t = sim.now + 500.*86400;
sim.insert(this);
}
meta_chunk->recovery_plan();
meta_chunk->recovery_action(sim.now);
if (meta_chunk->data_now_present) {
printf("File is present on server\n");
}
}
void recover() {
if (debug_status) {
printf("recovery_plan():\n");
}
meta_chunk->recovery_plan();
if (meta_chunk->status == UNRECOVERABLE) {
printf("FILE IS LOST!!\n");
sim.done = true;
min_min_failures = 0;
min_failures_time[0] = sim.now;
return;
}
if (debug_status) {
printf("decide_reconstruct():\n");
}
meta_chunk->decide_reconstruct();
if (debug_status) {
printf("reconstruct_and_cleanup():\n");
}
meta_chunk->reconstruct_and_cleanup();
if (debug_status) {
printf("recovery_action():\n");
}
meta_chunk->recovery_action(sim.now);
meta_chunk->compute_min_failures();
int mf = meta_chunk->min_failures;
printf(" Min failures: %d\n", mf);
fault_tolerance.sample(
mf-1, collecting_stats(), sim.now
);
while (mf < min_min_failures) {
min_min_failures--;
min_failures_time[min_min_failures] = sim.now;
}
}
void print_stats(double now) {
printf("Statistics for file %d\n", id);
printf(" Server disk usage:\n");
disk_usage.print(now);
printf(" Upload rate:\n");
upload_rate.print(now);
printf(" Download rate:\n");
download_rate.print(now);
printf(" Fault tolerance level:\n");
fault_tolerance.print(now);
FILE* f = fopen("summary.txt", "w");
fault_tolerance.print_summary(f, now);
disk_usage.print_summary(f, now);
upload_rate.print_summary(f, now);
download_rate.print_summary(f, now);
fclose(f);
}
};
//////////////////// method defs ////////////////////
void CHUNK_ON_HOST::start_upload() {
transfer_in_progress = true;
transfer_wait = true;
t = sim.now + drand()*params.connect_interval;
if (log_actions) {
printf("%s: waiting to start upload of %s\n", now_str(), physical_file_name);
}
sim.insert(this);
}
void CHUNK_ON_HOST::start_download() {
transfer_in_progress = true;
transfer_wait = true;
t = sim.now + drand()*params.connect_interval;
if (log_actions) {
printf("%s: waiting to start download of %s\n", now_str(), physical_file_name);
}
sim.insert(this);
}
// transfer or transfer wait has finished
//
void CHUNK_ON_HOST::handle() {
if (transfer_wait) {
transfer_wait = false;
if (present_on_host) {
if (log_actions) {
printf("%s: starting upload of %s\n",
now_str(), physical_file_name
);
}
chunk->parent->dfile->upload_rate.sample_inc(
host->transfer_rate,
chunk->parent->dfile->collecting_stats(),
sim.now
);
} else {
if (log_actions) {
printf("%s: starting download of %s\n",
now_str(), physical_file_name
);
}
chunk->parent->dfile->download_rate.sample_inc(
host->transfer_rate,
chunk->parent->dfile->collecting_stats(),
sim.now
);
}
t = sim.now + chunk->size/host->transfer_rate;
sim.insert(this);
return;
}
transfer_in_progress = false;
if (present_on_host) {
// it was an upload
if (log_actions) {
printf("%s: upload of %s completed\n",
now_str(), physical_file_name
);
}
chunk->parent->dfile->upload_rate.sample_inc(
-host->transfer_rate,
chunk->parent->dfile->collecting_stats(),
sim.now
);
chunk->upload_complete();
} else {
present_on_host = true;
if (log_actions) {
printf("%s: download of %s completed\n",
now_str(), physical_file_name
);
}
chunk->parent->dfile->download_rate.sample_inc(
-host->transfer_rate,
chunk->parent->dfile->collecting_stats(),
sim.now
);
chunk->download_complete();
}
}
void CHUNK_ON_HOST::remove() {
if (transfer_in_progress) {
sim.remove(this);
if (!transfer_wait) {
if (present_on_host) {
chunk->parent->dfile->upload_rate.sample_inc(
-host->transfer_rate,
chunk->parent->dfile->collecting_stats(),
sim.now
);
} else {
chunk->parent->dfile->download_rate.sample_inc(
-host->transfer_rate,
chunk->parent->dfile->collecting_stats(),
sim.now
);
}
}
}
}
// the host has failed
//
void SIM_HOST::handle() {
set<SIM_HOST*>::iterator i = hosts.find(this);
hosts.erase(i);
if (log_actions) {
printf("%s: host %d failed\n", now_str(), id);
}
set<CHUNK_ON_HOST*>::iterator p;
for (p = chunks.begin(); p != chunks.end(); ++p) {
CHUNK_ON_HOST* c = *p;
c->chunk->host_failed(c);
c->remove();
delete c;
}
}
CHUNK::CHUNK(META_CHUNK* mc, double s, int index) {
parent = mc;
present_on_server = true;
size = s;
sprintf(name, "%s.%d", parent->name, index);
VDA_FILE_AUX* fp = parent->dfile;
fp->pending_init_downloads += fp->policy.replication;
fp->disk_usage.sample_inc(size, false, sim.now, "init");
}
// if there aren't enough replicas of this chunk,
// pick new hosts and start downloads
//
int CHUNK::assign() {
if (!present_on_server) return 0;
VDA_FILE_AUX* fp = parent->dfile;
while ((int)(hosts.size()) < fp->policy.replication) {
#if 0
if (parent->dfile->unused_hosts.size() == 0) {
die("no more hosts!\n");
}
set<SIM_HOST*>::iterator i = fp->unused_hosts.begin();
SIM_HOST* h = *i;
fp->unused_hosts.erase(i);
#else
SIM_HOST* h = new SIM_HOST;
sim.insert(h);
#endif
CHUNK_ON_HOST *c = new CHUNK_ON_HOST();
sprintf(c->physical_file_name, "chunk %s on host %d", name, h->id);
if (log_actions) {
printf("%s: assigning chunk %s to host %d\n",
now_str(), name, h->id
);
}
c->host = h;
c->chunk = this;
h->chunks.insert(c);
hosts.insert(c);
c->start_download();
}
return 0;
}
int CHUNK::start_upload() {
// if no upload of this chunk is in progress, start one.
// NOTE: all instances are inherently present_on_host,
// since this is only called if chunk is not present on server
//
set<VDA_CHUNK_HOST*>::iterator i;
for (i=hosts.begin(); i!=hosts.end(); ++i) {
CHUNK_ON_HOST* c = (CHUNK_ON_HOST*)*i;
if (c->transfer_in_progress) return 0;
}
CHUNK_ON_HOST* c = (CHUNK_ON_HOST*)*(hosts.begin());
c->start_upload();
return 0;
}
void CHUNK::host_failed(VDA_CHUNK_HOST* p) {
set<VDA_CHUNK_HOST*>::iterator i = hosts.find(p);
hosts.erase(i);
if (log_actions) {
printf("%s: handling loss of %s\n", now_str(), p->physical_file_name);
}
SIM_FILE* sfp = (SIM_FILE*)parent->dfile;
sfp->recover();
}
void CHUNK::upload_complete() {
if (!present_on_server) {
present_on_server = true;
parent->dfile->disk_usage.sample_inc(
size,
parent->dfile->collecting_stats(),
sim.now,
"upload_complete"
);
}
SIM_FILE* sfp = (SIM_FILE*)parent->dfile;
sfp->recover();
}
void CHUNK::download_complete() {
if (parent->dfile->pending_init_downloads) {
parent->dfile->pending_init_downloads--;
}
SIM_FILE* sfp = (SIM_FILE*)parent->dfile;
sfp->recover();
}
int CHUNK::upload_all() {
return 0;
}
int META_CHUNK::upload_all() {
return 0;
}
int META_CHUNK::encode(bool) {
if (log_actions) {
printf("%s: encoding metachunk %s\n", now_str(), name);
}
// new chunks count toward server disk usage
//
if (bottom_level) {
for (unsigned int i=0; i<children.size(); i++) {
CHUNK& c = *(CHUNK*)children[i];
if (!c.present_on_server) {
dfile->disk_usage.sample_inc(
c.size, dfile->collecting_stats(), sim.now, "encode"
);
}
}
}
return 0;
}
int META_CHUNK::decode() {
if (log_actions) {
printf("%s: decoding metachunk %s\n", now_str(), name);
}
return 0;
}
int DATA_UNIT::delete_file() {
return 0;
}
set<SIM_FILE*> dfiles;
int main(int argc, char** argv) {
POLICY policy;
bool log_disk_usage = false;
bool log_fault_tolerance = false;
bool log_download = false;
bool log_upload = false;
// default policy
//
#if 0
policy.replication = 2;
policy.max_ft = 1;
policy.coding_levels = 1;
policy.codings[0].n = 4;
policy.codings[0].k = 2;
policy.codings[0].m = 6;
#else
policy.replication = 1;
policy.max_ft = 0;
policy.coding_levels = 2;
policy.codings[0].n = 4;
policy.codings[0].k = 2;
policy.codings[0].m = 6;
policy.codings[0].n_upload = 5;
policy.codings[1].n = 4;
policy.codings[1].k = 2;
policy.codings[1].m = 6;
policy.codings[1].n_upload = 5;
#endif
for (int i=1; i<argc; i++) {
if (!strcmp(argv[i], "--policy")) {
int retval = policy.parse(argv[++i]);
if (retval) exit(1);
} else if (!strcmp(argv[i], "--host_life_mean")) {
params.host_life_mean = atof(argv[++i]);
} else if (!strcmp(argv[i], "--connect_interval")) {
params.connect_interval = atof(argv[++i]);
} else if (!strcmp(argv[i], "--mean_xfer_rate")) {
params.mean_xfer_rate = atof(argv[++i]);
} else if (!strcmp(argv[i], "--file_size")) {
params.file_size = atof(argv[++i]);
} else if (!strcmp(argv[i], "--debug_status")) {
debug_status = true;
} else if (!strcmp(argv[i], "--debug_ft")) {
debug_ft = true;
} else if (!strcmp(argv[i], "--log_actions")) {
log_actions = true;
} else if (!strcmp(argv[i], "--log_disk_usage")) {
log_disk_usage = true;
} else if (!strcmp(argv[i], "--log_fault_tolerance")) {
log_fault_tolerance = true;
} else if (!strcmp(argv[i], "--log_download")) {
log_download = true;
} else if (!strcmp(argv[i], "--log_upload")) {
log_upload = true;
} else if (!strcmp(argv[i], "--sim_duration_years")) {
params.sim_duration = atof(argv[++i])*86400*365;
} else if (!strcmp(argv[i], "--random")) {
srand(getpid());
} else {
printf("bad arg %s\n", argv[i]);
exit(1);
}
}
#if 0
HOST_ARRIVAL *h = new HOST_ARRIVAL;
h->t = 0;
sim.insert(h);
#endif
#if 0
for (int i=0; i<500; i++) {
sim.insert(new SIM_HOST);
}
#endif
SIM_FILE* dfile = new SIM_FILE(params.file_size);
dfile->policy = policy;
if (log_disk_usage) dfile->disk_usage.log_changes = true;
if (log_fault_tolerance) dfile->fault_tolerance.log_changes = true;
if (log_download) dfile->download_rate.log_changes = true;
if (log_upload) dfile->upload_rate.log_changes = true;
sim.insert(dfile);
sim.simulate(params.sim_duration);
printf("%s: simulation finished\n", now_str());
dfile->print_stats(sim.now);
FILE* f = fopen("mft.dat", "w");
for (int i=0; i<=policy.max_ft; i++) {
fprintf(f, "%d %f\n", i, min_failures_time[i]);
}
fclose(f);
}
|