File: quickstart.md

package info (click to toggle)
boinor 0.19.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 52,604 kB
  • sloc: python: 20,947; makefile: 172; sh: 36
file content (556 lines) | stat: -rw-r--r-- 18,529 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
(quickstart)=
# Quickstart

## Defining the orbit: {{ Orbit }} objects

The core of boinor are the {{ Orbit }} objects
inside the {py:class}`boinor.twobody` module. They store all the required
information to define an orbit:

- The body acting as the central body of the orbit, for example the
  Earth.
- The position and velocity vectors or the orbital elements.
- The time at which the orbit is defined.

First of all, you have to import the relevant modules and classes:

```python
from astropy import units as u

from boinor.bodies import Earth, Mars, Sun
from boinor.twobody import Orbit
```

## From position and velocity

There are several methods available to create {{ Orbit }} objects.
For example, if you have the position and velocity vectors you can use
{py:meth}`~boinor.twobody.orbit.scalar.Orbit.from_vectors`:

```python
# Data from Curtis (2013), example 4.3
r = [-6045, -3490, 2500] << u.km
v = [-3.457, 6.618, 2.533] << u.km / u.s

orb = Orbit.from_vectors(Earth, r, v)
```

And that's it! Notice a couple of things:

- Defining vectorial physical quantities using Astropy units is very easy.
  The list is automatically converted to a {py:mod}`astropy.units.Quantity`,
  which is actually a subclass of NumPy arrays.

- If you display the orbit you just created, you get a string with the
  radius of pericenter, radius of apocenter, inclination, reference
  frame and attractor:
  ```python    
  >>> orb
  7283 x 10293 km x 153.2 deg (GCRS) orbit around Earth (♁) at epoch J2000.000 (TT)
  ```

- If no time is specified, then a default value is assigned:
  ```python
  >>> orb.epoch
  <Time object: scale='tt' format='jyear_str' value=J2000.000>
  >>> orb.epoch.iso
  '2000-01-01 12:00:00.000'
  ```

- The reference frame of the orbit will be one pseudo-inertial frame around the attractor.
  You can retrieve it using the {py:attr}`~boinor.twobody.orbit.scalar.Orbit.frame` property:
  ```python
  >>> orb.get_frame()
  <GCRS Frame (obstime=J2000.000, obsgeoloc=(0., 0., 0.) m, obsgeovel=(0., 0., 0.) m / s)>
  ```

### Intermezzo: quick visualization of the orbit

```{figure} _static/curtis.png
---
align: right
width: 350px
alt: Plot of the orbit
---
```

If you're working on interactive mode (for example, using JupyterLab)
you can immediately plot the current orbit:

    orb.plot()

This plot is made in the so called *perifocal frame*, which means:

- you're visualizing the plane of the orbit itself,
- the $(x)$ axis points to the pericenter, and
- the $(y)$ axis is turned $90 \mathrm{^\circ}$ in the direction of the orbit.

The dotted line represents the *osculating orbit*: the instantaneous Keplerian orbit at that point. This is relevant in the context of perturbations, when the object shall deviate from its Keplerian orbit.

```{note}
This visualization uses Plotly under interactive environments like Jupyter
Notebook or Jupyter Lab while it switches to Matplotlib otherwise. Nevertheless,
you can select the drawing backend. Check out the
{py:class}`boinor.plotting.orbit.OrbitPlotter` documentation for more
information. 
```

## From classical orbital elements

You can also define an {{ Orbit }} using a set of six parameters called **orbital elements**.
Although there are several of these element sets, each one with its advantages and drawbacks,
right now boinor supports the *classical orbital elements*:

- Semimajor axis $(a)$.
- Eccentricity $(e)$.
- Inclination $(i)$.
- Right ascension of the ascending node $(\Omega)$.
- Argument of pericenter $(\omega)$.
- True anomaly $(\nu)$.

In this case, you'd use the method
{py:meth}`~boinor.twobody.orbit.Orbit.from_classical`:

```python
# Data for Mars at J2000 from JPL HORIZONS
a = 1.523679 << u.AU
ecc = 0.093315 << u.one
inc = 1.85 << u.deg
raan = 49.562 << u.deg
argp = 286.537 << u.deg
nu = 23.33 << u.deg

orb = Orbit.from_classical(Sun, a, ecc, inc, raan, argp, nu)
```

Notice that whether you create an {{ Orbit }} from $(r)$ and $(v)$ or from
elements you can access many mathematical properties of the orbit:
```python
>>> orb.period.to(u.day)
<Quantity 686.9713888628166 d>
>>> orb.v
<Quantity [  1.16420211, 26.29603612,  0.52229379] km / s>
```

To see a complete list of properties, check out the {{ Orbit }} class on the API reference.

## Moving forward in time: propagation

Now that you have defined an orbit, you might be interested in computing
how is it going to evolve in the future. In the context of orbital mechanics,
this process is known as **propagation**.

For example, start by importing an example orbit from the International Space Station:

```python   
>>> from boinor.examples import iss
>>> iss
6772 x 6790 km x 51.6 deg (GCRS) orbit around Earth (♁)
>>> iss.epoch
<Time object: scale='utc' format='iso' value=2013-03-18 12:00:00.000>
>>> iss.nu.to(u.deg)
<Quantity 46.595804677061956 deg>
>>> iss.n.to(u.deg / u.min)
<Quantity 3.887010576192155 deg / min>
```

Using the {py:meth}`~boinor.twobody.orbit.scalar.Orbit.propagate` method
you can now retrieve the position of the ISS after some time:

```python
>>> iss_30m = iss.propagate(30 << u.min)
>>> iss_30m.epoch  # Notice you advanced the epoch!
<Time object: scale='utc' format='iso' value=2013-03-18 12:30:00.000>
>>> iss_30m.nu.to(u.deg)
<Quantity 163.1409357544868 deg>
```

To explore different propagation algorithms, check out the
{py:mod}`boinor.twobody.propagation` module.

## Studying trajectories: {py:class}`~boinor.ephem.Ephem` objects

The `propagate` method gives you the final orbit at the epoch you designated.
To retrieve the whole trajectory instead, you can use
{py:meth}`boinor.twobody.orbit.scalar.Orbit.to_ephem`, which returns an
{{ Ephem }} instance:

```python
from boinor.twobody.sampling import EpochsArray, TrueAnomalyBounds, EpochBounds
from boinor.util import time_range

start_date = Time("2022-07-11 05:05", scale="utc")
end_date = Time("2022-07-11 07:05", scale="utc")

# One full revolution
ephem1 = iss.to_ephem()

# Explicit times given
ephem2 = iss.to_ephem(strategy=EpochsArray(epochs=time_range(start_date, end=end_date)))

# Automatic grid, true anomaly limits
ephem3 = iss.to_ephem(strategy=TrueAnomalyBounds(min_nu=0 << u.deg, max_nu=180 << u.deg))

# Automatic grid, epoch limits
ephem4 = iss.to_ephem(strategy=EpochBounds(min_epoch=start_date, max_epoch=end_date))
```

`Ephem` objects contain the coordinates of an object sampled at specific times.
You can access both:

```python
>>> ephem1.epochs[:3]
<Time object: scale='utc' format='iso' value=['2013-03-18 12:23:55.155' '2013-03-18 12:24:51.237'
 '2013-03-18 12:25:47.323']>
>>> ephem1.sample(ephem1.epochs[:3])
<CartesianRepresentation (x, y, z) in km
    [( 859.07256   , -4137.20368   , 5295.56871   ),
     (1270.55257535, -4012.16848983, 5309.55706958),
     (1676.93829596, -3870.95571409, 5302.1480373 )]
 (has differentials w.r.t.: 's')>
```

## Studying non-keplerian orbits: perturbations

Apart from the Keplerian propagators, boinor also allows you to
define custom perturbation accelerations to study non Keplerian orbits,
thanks to Cowell's method:

```python
>>> from numba import njit
>>> import numpy as np
>>> from boinor.core.propagation import func_twobody
>>> from boinor.twobody.propagation import CowellPropagator
>>> r0 = [-2384.46, 5729.01, 3050.46] << u.km
>>> v0 = [-7.36138, -2.98997, 1.64354] << (u.km / u.s)
>>> initial = Orbit.from_vectors(Earth, r0, v0)
>>> @njit
... def accel(t0, state, k):
...     """Constant acceleration aligned with the velocity. """
...     v_vec = state[3:]
...     norm_v = (v_vec * v_vec).sum() ** 0.5
...     return 1e-5 * v_vec / norm_v
...
... def f(t0, u_, k):
...     du_kep = func_twobody(t0, u_, k)
...     ax, ay, az = accel(t0, u_, k)
...     du_ad = np.array([0, 0, 0, ax, ay, az])
...     return du_kep + du_ad

>>> initial.propagate(3 << u.day, method=CowellPropagator(f=f))
18255 x 21848 km x 28.0 deg (GCRS) orbit around Earth (♁) at epoch J2000.008 (TT)
```

Some natural perturbations are available in boinor to be used
directly in this way. For instance, to examine the effect of J2 perturbation:

```python
>>> from boinor.core.perturbations import J2_perturbation
>>> tofs = [48.0] << u.h
>>> def f(t0, u_, k):
...     du_kep = func_twobody(t0, u_, k)
...     ax, ay, az = J2_perturbation(
...         t0, u_, k, J2=Earth.J2.value, R=Earth.R.to(u.km).value
...     )
...     du_ad = np.array([0, 0, 0, ax, ay, az])
...     return du_kep + du_ad

>>> final = initial.propagate(tofs, method=CowellPropagator(f=f))
```

The J2 perturbation changes the orbit parameters {cite:p}`Curtis2013{example 12.2}`:

```python
>>> ((final.raan - initial.raan) / tofs).to(u.deg / u.h)
<Quantity -0.17232668 deg / h>
>>> ((final.argp - initial.argp) / tofs).to(u.deg / u.h)
<Quantity 0.28220397 deg / h>
```

## Studying artificial perturbations: thrust

In addition to natural perturbations, boinor also has built-in
artificial perturbations (thrust guidance laws) aimed at intentional change of some
orbital elements. For example, to simultaneously change eccentricity and inclination:

```python
>>> ecc_0, ecc_f = [0.4, 0.0] << u.one
>>> a = 42164 << u.km
>>> inc_0 = 0.0 << u.deg  # baseline
>>> inc_f = 20.0 << u.deg
>>> argp = 0.0  << u.deg  # the method is efficient for 0 and 180
>>> f = 2.4e-7 << (u.km / u.s ** 2)

# Retrieve r and v from initial orbit
>>> orb0 = Orbit.from_classical(
...     Earth,
...     a,
...     ecc_0,
...     inc_0,
...     0,
...     argp,
...     0,
... )
>>> a_d, _, t_f = change_ecc_inc(orb0, ecc_f, inc_f, f)

# Propagate orbit
>>> def f_geo(t0, u_, k):
...     du_kep = func_twobody(t0, u_, k)
...     ax, ay, az = a_d(t0, u_, k)
...     du_ad = np.array([0, 0, 0, ax, ay, az])
...     return du_kep + du_ad

>>> orbf = orb0.propagate(t_f << u.s, method=CowellPropagator(f=f_geo, rtol=1e-8))
```

The thrust changes orbit parameters as desired (within errors):

```python
>>> orbf.inc, orbf.ecc
(<Quantity 0.34719734 rad>, <Quantity 0.00894513>)
```

For more available thrust guidance laws options, see the
{py:mod}`boinor.twobody.thrust` module.

### Changing the orbit: {py:class}`~boinor.maneuver.Maneuver` objects

boinor helps defining several in-plane and general out-of-plane
maneuvers with the {py:class}`~boinor.maneuver.Maneuver` class.

Each `Maneuver` consists on a list of impulses $\Delta v_i$ (changes in velocity),
each one applied at a certain instant $t_i$. The simplest maneuver is
a single change of velocity without delay:
you can recreate it either using the {py:meth}`~boinor.maneuver.Maneuver.impulse` method
or instantiating it directly.

```python
from boinor.maneuver import Maneuver

dv = [5, 0, 0] << (u.m / u.s)

imp = Maneuver.impulse(dv)
imp = Maneuver((0 << u.s, dv))  # Equivalent
```

There are other useful methods you can use to compute common in-plane maneuvers,
notably {py:meth} `~boinor.maneuver.Maneuver.hohmann` and
{py:meth}`~boinor.maneuver.Maneuver.bielliptic` for
[Hohmann](https://en.wikipedia.org/wiki/Hohmann_transfer_orbit)
and [bielliptic](https://en.wikipedia.org/wiki/Bi-elliptic_transfer) transfers respectively.
Both return the corresponding `Maneuver` object, which in turn you can use to calculate
the total cost in terms of velocity change $\sum |\Delta v_i|$ and the transfer time:

```python
>>> orb_i = Orbit.circular(Earth, alt=700 << u.km)
>>> orb_i
7078 x 7078 km x 0.0 deg (GCRS) orbit around Earth (♁)
>>> hoh = Maneuver.hohmann(orb_i, 36000 << u.km)
>>> hoh.get_total_cost()
<Quantity 3.6173981270031357 km / s>
>>> hoh.get_total_time()
<Quantity 15729.741535747102 s>
```

You can also retrieve the individual vectorial impulses:

```python
>>> hoh.impulses[0]
(<Quantity 0 s>, <Quantity [ 0.        , 2.19739818, 0.        ] km / s>)
>>> hoh[0]  # Equivalent
(<Quantity 0 s>, <Quantity [ 0.        , 2.19739818, 0.        ] km / s>)
>>> tuple(val.decompose([u.km, u.s]) for val in hoh[1])
(<Quantity 15729.741535747102 s>, <Quantity [ 0.        , 1.41999995, 0.        ] km / s>)
```

To actually retrieve the resulting {{ Orbit }} after performing a maneuver, use
the method {py:meth}`~boinor.twobody.orbit.scalar.Orbit.apply_maneuver`:

```python
>>> orb_f = orb_i.apply_maneuver(hoh)
>>> orb_f
36000 x 36000 km x 0.0 deg (GCRS) orbit around Earth (♁)
```

### More advanced plotting: `OrbitPlotter` objects

You previously saw the {py:meth}`~boinor.twobody.orbit.scalar.Orbit.plot`
method to easily plot orbits. Now you might want to plot several orbits in one
graph (for example, the maneuver you computed in the previous section). For this
purpose, boinor has an `OrbitPlotter` object in the
{py:mod}`~boinor.plotting` module.

The advantage of this object is that it allows you to select the desired drawing
backend. All the supported backends are specified in the dictionary
{py:class}`~boinor.plotting.orbit.backens.SUPPORTED_ORBIT_PLOTTER_BACKENDS`.

If you would like to know which 2D check the
{py:class}`~boinor.plotting.orbit.backens.SUPPORTED_ORBIT_PLOTTER_BACKENDS_2D`.
For 3D backends, refer to
{py:class}`~boinor.plotting.orbit.backens.SUPPORTED_ORBIT_PLOTTER_BACKENDS_3D`.

Note that some backends are interactive, meaning that you can move the scene or
even rotate the three-dimensional view in a dynamic way.

To easily visualize several orbits in two dimensions, you can run this code:

```python
from boinor.plotting import OrbitPlotter

op = OrbitPlotter(backend_name="matplotlib2D")
orb_a, orb_f = orb_i.apply_maneuver(hoh, intermediate=True)
op.plot(orb_i, label="Initial orbit")
op.plot(orb_a, label="Transfer orbit")
op.plot(orb_f, label="Final orbit")
op.show()
```

which produces this beautiful plot:

```{figure} _static/hohmann.png
---
align: center
alt: Hohmann transfer
---   
Plot of a Hohmann transfer.
```

### Where are the planets? Computing celestial ephemerides

```{eval-rst}
.. versionadded:: 0.14.0
```

Thanks to Astropy and jplephem, boinor can read Satellite Planet Kernel (SPK) files,
part of NASA's SPICE toolkit. This means that you can query the position and velocity
of the planets of the Solar system.

The {py:class}`boinor.ephem.Ephem` class allows you to retrieve a planetary orbit
using low precision ephemerides available in Astropy:

```python
>>> from astropy.time import Time
>>> epoch = time.Time("2020-04-29 10:43")  # UTC by default
>>> from boinor.ephem import Ephem
>>> earth = Ephem.from_body(Earth, epoch.tdb)
>>> earth
Ephemerides at 1 epochs from 2020-04-29 10:44:09.186 (TDB) to 2020-04-29 10:44:09.186 (TDB)
```

This does not require any external download. If on the other hand you
want to use higher precision ephemerides, you can tell Astropy to do so:

```python
>>> from astropy.coordinates import solar_system_ephemeris
>>> solar_system_ephemeris.set("jpl")
Downloading http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430.bsp
|==========>-------------------------------|  23M/119M (19.54%) ETA    59s22ss23
```

This in turn will download the ephemerides files from NASA and use them for future computations.
For more information, check out
[Astropy documentation on ephemerides](https://docs.astropy.org/en/stable/coordinates/solarsystem.html).

If you want to retrieve the **osculating orbit** at a given epoch,
you can do so using {py:meth}`~boinor.twobody.orbit.scalar.Orbit.from_ephem`:

```python
>>> Orbit.from_ephem(Sun, earth, epoch)
1 x 1 AU x 23.4 deg (HCRS) orbit around Sun (☉) at epoch 2020-04-29 10:43:00.000 (UTC)
```

```{note}
Notice that the position and velocity vectors are given with respect to the
**Heliocentric Celestial Reference System** (HCRS)
which means equatorial coordinates centered on the Sun.
```

In addition, boinor supports fetching orbital information from 2 online databases:
Small Body Database Browser (SBDB) and JPL HORIZONS.

HORIZONS can be used to generate ephemerides for solar-system bodies,
while SBDB provides model orbits for all known asteroids and many comets.
The data is fetched using the wrappers to these services provided by
[astroquery](https://astroquery.readthedocs.io/):

```python
epoch = Time("2020-04-29 10:43")

ephem_ceres = Ephem.from_horizons("Ceres", epoch)
orbit_apophis = Orbit.from_sbdb("Apophis")
```

## Traveling through space: solving the Lambert problem

The determination of an orbit given two position vectors and the time of flight
is known in celestial mechanics as **Lambert's problem**, also known as the
two body boundary value problem. This contrasts with Kepler's problem or propagation,
which is rather an initial value problem.

boinor allows you to solve Lambert's problem by passing the initial and final orbits
to {py:meth}`boinor.maneuver.Maneuver.lambert` instance.
The time of flight is computed internally since orbits epochs are known.

For instance, this is a simplified version of the example
"Going to Mars with Python using boinor", where the orbit of the
Mars Science Laboratory mission (rover Curiosity) is determined:

```python
date_launch = Time('2011-11-26 15:02', scale='tdb')
date_arrival = Time('2012-08-06 05:17', scale='tdb')

orb0 = Orbit.from_ephem(Sun, Ephem.from_body(Earth, date_launch), date_launch)
orbf = Orbit.from_ephem(Sun, Ephem.from_body(Mars, date_arrival), date_arrival)

man_lambert = Maneuver.lambert(orb0, orbf)
dv_a, dv_b = man_lambert.impulses
```

And these are the results:

```python
>>> dv_a
(<Quantity 0. s>, <Quantity [-2.06420561,  2.58796837,  0.23911543] km / s>)
>>> dv_b
(<Quantity 21910501.00019529 s>, <Quantity [287832.91384349,  58935.96079319, -94156.93383463] km / s>)
```

```{figure} _static/msl.png
---
align: center
width: 350px
alt: Plot of the orbit
---
```

## Creating a CZML document

You can create CZML documents which can then be visualized with the help of
[Cesium](https://cesium.com/platform/cesiumjs/).

First, load the orbital data and the CZML Extractor:

```python
from boinor.examples import molniya, iss
from boinor.czml.extract_czml import CZMLExtractor
```

Then, specify the starting and ending epoch, as well as the number of
sample points (the higher the number, the more accurate the trajectory):

```python
start_epoch = iss.epoch
end_epoch = iss.epoch + molniya.period
sample_points = 10

extractor = CZMLExtractor(start_epoch, end_epoch, sample_points)

extractor.add_orbit(molniya, label_text="Molniya")
extractor.add_orbit(iss, label_text="ISS")
```

Finaly, generate the CZML file by calling `extractor.packets`.
There is more information in
[this sample Cesium application](https://github.com/poliastro/cesium-app/blob/master/README.md).

*Per Python ad astra* ;)