1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
# Copyright 2003 Dave Abrahams
# Copyright 2002, 2003 Rene Rivera
# Copyright 2002, 2003, 2004 Vladimir Prus
# Distributed under the Boost Software License, Version 1.0.
# (See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
# Various container classes.
import "class" : * ;
# Base for container objects. This lets us construct recursive structures.
# That is containers with containers in them, specifically so we can tell
# literal values from node values.
#
class node
{
rule __init__ (
value ? # Optional value to set node to initially.
)
{
self.value = $(value) ;
}
# Set the value of this node, passing nothing will clear it.
#
rule set ( value * )
{
self.value = $(value) ;
}
# Get the value of this node.
#
rule get ( )
{
return $(self.value) ;
}
}
# A simple vector. Interface mimics the C++ std::vector and std::list,
# with the exception that indices are one (1) based to follow Jam standard.
#
# TODO: Possibly add assertion checks.
#
class vector : node
{
import numbers : range ;
import utility ;
import sequence ;
rule __init__ (
values * # Initial contents of vector.
)
{
node.__init__ ;
self.value = $(values) ;
}
# Get the value of the first element.
#
rule front ( )
{
return $(self.value[1]) ;
}
# Get the value of the last element.
#
rule back ( )
{
return $(self.value[-1]) ;
}
# Get the value of the element at the given index, one based.
# Access to elements of recursive structures is supported directly.
# Specifying additional index values recursively accesses the elements as
# containers. For example: [ $(v).at 1 : 2 ] would retrieve the second element
# of our first element. This assuming the first element is a container.
#
rule at (
index # The element index, one based.
: * # Additional indices to access recursively.
)
{
local r = $(self.value[$(index)]) ;
if $(2)
{
r = [ $(r).at $(2) : $(3) : $(4) : $(5) : $(6) : $(7) : $(8) : $(9) ] ;
}
return $(r) ;
}
# Get the value contained in the given element. This has the same
# functionality and interface as "at" but in addition gets the value
# of the referenced element, assuming it's a "node".
#
rule get-at (
index # The element index, one based.
: * # Additional indices to access recursively.
)
{
local r = $(self.value[$(index)]) ;
if $(2)
{
r = [ $(r).at $(2) : $(3) : $(4) : $(5) : $(6) : $(7) : $(8) : $(9) ] ;
}
return [ $(r).get ] ;
}
# Insert the given value into the front of the vector pushing the
# rest of the elements back.
#
rule push-front (
value # Value to become first element.
)
{
self.value = $(value) $(self.value) ;
}
# Remove the front element from the vector. Does not return the value.
# No effect if vector is empty.
#
rule pop-front ( )
{
self.value = $(self.value[2-]) ;
}
# Add the given value at the end of the vector.
#
rule push-back (
value # Value to become back element.
)
{
self.value += $(value) ;
}
# Remove the back element from the vector. Does not return the value.
# No effect if vector is empty.
#
rule pop-back ( )
{
self.value = $(self.value[1--2]) ;
}
# Insert the given value at the given index, one based. The values
# at and to the right of the of the index are push back to make room
# for the new value.
#
rule insert (
index # The index to insert at, one based.
: value # The value to insert.
)
{
local left = $(self.value[1-$(index)]) ;
left = $(left[1--2]) ;
local right = $(self.value[$(index)-]) ;
self.value = $(left) $(value) $(right) ;
}
# Remove one or more elements from the vector. The range is inclusive,
# and not specifying an end is equivalent to the [start,start] range.
#
rule erase (
start # Index of first element ro remove.
end ? # Optional, index of last element to remove.
)
{
end ?= $(start) ;
local left = $(self.value[1-$(start)]) ;
left = $(left[1--2]) ;
local right = $(self.value[$(end)-]) ;
right = $(right[2-]) ;
self.value = $(left) $(right) ;
}
# Remove all elements from the vector.
#
rule clear ( )
{
self.value = ;
}
# The number of elements in the vector.
#
rule size ( )
{
return [ sequence.length $(self.value) ] ;
}
# Returns "true" if there are NO elements in the vector, empty
# otherwise.
#
rule empty ( )
{
if ! $(self.value)
{
return true ;
}
}
# Returns the list of all valid indices for this vector.
rule indices ( )
{
if ! [ empty ]
{
local size = [ size ] ;
return [ range 1 : $(size) ] $(size) ;
}
}
# Returns the textual representation of content.
rule str ( )
{
return "[" [ sequence.transform utility.str : $(self.value) ] "]" ;
}
# Sorts the vector inplace, calling 'utility.less' for
# comparisons.
# NOTE: this rule is unused at the moment.
rule sort ( )
{
self.value =
[ sequence.insertion-sort $(self.value) : utility.less ] ;
}
# Returns true if content is equal to the content of other vector.
# Uses 'utility.equal' for comparison.
rule equal ( another )
{
local mismatch ;
if [ size ] = [ $(another).size ]
{
for local i in [ indices ]
{
if ! [ utility.equal [ at $(i) ] [ $(another).at $(i) ] ]
{
mismatch = true ;
}
}
}
else
{
mismatch = true ;
}
if ! $(mismatch)
{
return true ;
}
}
}
local rule __test__ ( )
{
import assert ;
import "class" : new ;
local l = [ new vector ] ;
assert.result 0 : $(l).size ;
assert.result : $(l).indices ;
assert.result "[" "]" : $(l).str ;
$(l).push-back b ;
$(l).push-front a ;
assert.result 1 2 : $(l).indices ;
assert.result "[" a b "]" : $(l).str ;
assert.result a : $(l).front ;
assert.result b : $(l).back ;
$(l).insert 2 : d ;
$(l).insert 2 : c ;
$(l).insert 4 : f ;
$(l).insert 4 : e ;
$(l).pop-back ;
assert.result 5 : $(l).size ;
assert.result d : $(l).at 3 ;
$(l).pop-front ;
assert.result c : $(l).front ;
assert.false $(l).empty ;
$(l).erase 3 4 ;
assert.result 2 : $(l).size ;
local l2 = [ new vector q w e r t y ] ;
assert.result 6 : $(l2).size ;
$(l).push-back $(l2) ;
assert.result 3 : $(l).size ;
local l2-alias = [ $(l).back ] ;
assert.result e : $(l2-alias).at 3 ;
$(l).clear ;
assert.true $(l).empty ;
assert.false $(l2-alias).empty ;
$(l2).pop-back ;
assert.result t : $(l2-alias).back ;
local l3 = [ new vector ] ;
$(l3).push-back [ new vector 1 2 3 4 5 ] ;
$(l3).push-back [ new vector a b c ] ;
assert.result "[" "[" 1 2 3 4 5 "]" "[" a b c "]" "]" : $(l3).str ;
$(l3).push-back [ new vector [ new vector x y z ] [ new vector 7 8 9 ] ] ;
assert.result 1 : $(l3).at 1 : 1 ;
assert.result b : $(l3).at 2 : 2 ;
assert.result a b c : $(l3).get-at 2 ;
assert.result 7 8 9 : $(l3).get-at 3 : 2 ;
local l4 = [ new vector 4 3 6 ] ;
$(l4).sort ;
assert.result 3 4 6 : $(l4).get ;
assert.false $(l4).equal $(l3) ;
local l5 = [ new vector 3 4 6 ] ;
assert.true $(l4).equal $(l5) ;
# Check that vectors of different sizes are considered non-equal
$(l5).pop-back ;
assert.false $(l4).equal $(l5) ;
local l6 = [ new vector [ new vector 1 2 3 ] ] ;
assert.true $(l6).equal [ new vector [ new vector 1 2 3 ] ] ;
}
|