1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<title>Boost GCD & LCM Library</title>
</head>
<body bgcolor="white" text="black" link="blue" alink="red" vlink="purple">
<h1>
<img src="../../../c++boost.gif" alt="c++boost.gif (8819 bytes)"
align="left" width="277" height="86">Greatest Common Divisor<br>
Least
Common Multiple<br>
</h1>
<p>The class and function templates in <cite><a
href="../../../boost/math/common_factor.hpp"><boost/math/common_factor.hpp></a>
</cite> provide run-time and compile-time evaluation of the greatest
common divisor (GCD) or least common multiple (LCM) of two integers.
These facilities are useful for many numeric-oriented generic
programming problems.</p>
<h2><a name="contents">Contents</a></h2>
<ul>
<li><a href="#contents">Contents</a></li>
<li><a href="#synopsis">Synopsis</a></li>
<li><a href="#gcd_obj">GCD Function Object</a></li>
<li><a href="#lcm_obj">LCM Function Object</a></li>
<li><a href="#run_gcd_lcm">Run-time GCD & LCM
Determination</a></li>
<li><a href="#ct_gcd_lcm">Compile-time GCD & LCM
Determination</a></li>
<li><a href="#example">Example</a></li>
<li><a href="#demo">Demonstration Program</a></li>
<li><a href="#rationale">Rationale</a></li>
<li><a href="#credits">Credits</a></li>
</ul>
<h2><a name="synopsis">Synopsis</a></h2>
<blockquote><pre>namespace boost
{
namespace math
{
template < typename IntegerType >
class gcd_evaluator;
template < typename IntegerType >
class lcm_evaluator;
template < typename IntegerType >
IntegerType gcd( IntegerType const &a, IntegerType const &b );
template < typename IntegerType >
IntegerType lcm( IntegerType const &a, IntegerType const &b );
template < unsigned long Value1, unsigned long Value2 >
struct static_gcd;
template < unsigned long Value1, unsigned long Value2 >
struct static_lcm;
}
}
</pre></blockquote>
<h2><a name="gcd_obj">GCD Function Object</a></h2>
<blockquote><pre>template < typename IntegerType >
class boost::math::gcd_evaluator
{
public:
// Types
typedef IntegerType result_type;
typedef IntegerType first_argument_type;
typedef IntegerType second_argument_type;
// Function object interface
result_type operator ()( first_argument_type const &a,
second_argument_type const &b ) const;
};
</pre></blockquote>
<p>The <code>boost::math::gcd_evaluator</code> class template defines
a function object class to return the greatest common divisor of two
integers. The template is parameterized by a single type, called
<code>IntegerType</code> here. This type should be a numeric type
that represents integers. The result of the function object is always
nonnegative, even if either of the operator arguments is negative.</p>
<p>This function object class template is used in the corresponding
version of the <a href="#run_gcd_lcm">GCD function template</a>. If
a numeric type wants to customize evaluations of its greatest common
divisors, then the type should specialize on the <code>gcd_evaluator</code>
class template.</p>
<h2><a name="lcm_obj">LCM Function Object</a></h2>
<blockquote><pre>template < typename IntegerType >
class boost::math::lcm_evaluator
{
public:
// Types
typedef IntegerType result_type;
typedef IntegerType first_argument_type;
typedef IntegerType second_argument_type;
// Function object interface
result_type operator ()( first_argument_type const &a,
second_argument_type const &b ) const;
};
</pre></blockquote>
<p>The <code>boost::math::lcm_evaluator</code> class template defines
a function object class to return the least common multiple of two
integers. The template is parameterized by a single type, called
<code>IntegerType</code> here. This type should be a numeric type
that represents integers. The result of the function object is always
nonnegative, even if either of the operator arguments is negative.
If the least common multiple is beyond the range of the integer type,
the results are undefined.</p>
<p>This function object class template is used in the corresponding
version of the <a href="#run_gcd_lcm">LCM function template</a>. If a
numeric type wants to customize evaluations of its least common
multiples, then the type should specialize on the <code>lcm_evaluator</code>
class template.</p>
<h2><a name="run_gcd_lcm">Run-time GCD & LCM Determination</a></h2>
<blockquote><pre>template < typename IntegerType >
IntegerType boost::math::gcd( IntegerType const &a, IntegerType const &b );
template < typename IntegerType >
IntegerType boost::math::lcm( IntegerType const &a, IntegerType const &b );
</pre></blockquote>
<p>The <code>boost::math::gcd</code> function template returns the greatest
common (nonnegative) divisor of the two integers passed to it. The
<code>boost::math::lcm</code> function template returns the least common
(nonnegative) multiple of the two integers passed to it. The function
templates are parameterized on the function arguments' <var>IntegerType</var>,
which is also the return type. Internally, these function templates use
an object of the corresponding version of the <code><a
href="#gcd_obj">gcd_evaluator</a></code> and <code><a
href="#lcm_obj">lcm_evaluator</a></code> class templates, respectively.</p>
<h2><a name="ct_gcd_lcm">Compile-time GCD & LCM Determination</a></h2>
<blockquote><pre>template < unsigned long Value1, unsigned long Value2 >
struct boost::math::static_gcd
{
static unsigned long const value = <em>implementation_defined</em>;
};
template < unsigned long Value1, unsigned long Value2 >
struct boost::math::static_lcm
{
static unsigned long const value = <em>implementation_defined</em>;
};
</pre></blockquote>
<p>The <code>boost::math::static_gcd</code> and <code>boost::math::static_lcm</code>
class templates take two value-based template parameters of the
<code>unsigned long</code> type and have a single static constant data
member, <code>value</code>, of that same type. The value of that member
is the greatest common factor or least common multiple, respectively, of
the template arguments. A compile-time error will occur if the least common
multiple is beyond the range of an <code>unsigned long</code>.</p>
<h2><a name="example">Example</a></h2>
<blockquote><pre>#include <boost/math/common_factor.hpp>
#include <algorithm>
#include <iterator>
int main()
{
using std::cout;
using std::endl;
cout << "The GCD and LCM of 6 and 15 are "
<< boost::math::gcd(6, 15) << " and "
<< boost::math::lcm(6, 15) << ", respectively."
<< endl;
cout << "The GCD and LCM of 8 and 9 are "
<< boost::math::static_gcd<8, 9>::value
<< " and "
<< boost::math::static_lcm<8, 9>::value
<< ", respectively." << endl;
int a[] = { 4, 5, 6 }, b[] = { 7, 8, 9 }, c[3];
std::transform( a, a + 3, b, c, boost::math::gcd_evaluator<int>() );
std::copy( c, c + 3, std::ostream_iterator<int>(cout, " ") );
}
</pre></blockquote>
<h2><a name="demo">Demonstration Program</a></h2>
<p>The program <a
href="../test/common_factor_test.cpp">common_factor_test.cpp</a> is a
demonstration of the results from instantiating various examples of the
run-time GCD and LCM function templates and the compile-time GCD and
LCM class templates. (The run-time GCD and LCM class templates are
tested indirectly through the run-time function templates.)</p>
<h2><a name="rationale">Rationale</a></h2>
<p>The greatest common divisor and least common multiple functions are
greatly used in some numeric contexts, including some of the other Boost
libraries. Centralizing these functions to one header improves code
factoring and eases maintainence.</p>
<h2><a name="credits">Credits</a></h2>
<p>The author of the Boost compilation of GCD and LCM computations is <a
href="../../../people/daryle_walker.html">Daryle Walker</a>. The code was
prompted by existing code hiding in the implementations of <a
href="../../../people/paul_moore.htm">Paul Moore</a>'s <a
href="../../rational/index.html">rational</a> library and Steve Cleary's <a
href="../../pool/doc/index.html">pool</a> library. The code had updates by
Helmut Zeisel.</p>
<hr>
<p>Revised November 7, 2001</p>
<p>© Copyright Daryle Walker 2001. Permission to copy, use,
modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided
"as is" without express or implied warranty, and with no claim
as to its suitability for any purpose.</p>
</body>
</html>
|