File: random-generators.html

package info (click to toggle)
boost 1.27.0-3
  • links: PTS
  • area: main
  • in suites: woody
  • size: 19,908 kB
  • ctags: 26,546
  • sloc: cpp: 122,225; ansic: 10,956; python: 4,412; sh: 855; yacc: 803; makefile: 257; perl: 165; lex: 90; csh: 6
file content (1042 lines) | stat: -rw-r--r-- 34,862 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<title>Boost Random Number Library Generators</title>
</head>

<body bgcolor="#FFFFFF" text="#000000">

<h1>Random Number Library Generators</h1>

<ul>
<li><a href="#intro">Introduction</a>
<li><a href="#synopsis">Synopsis</a>
<li><a href="#const_mod">Class template
<code>random::const_mod</code></a>
<li><a href="#linear_congruential">Class template
<code>random::linear_congruential</code></a>
<li><a href="#rand48">Class <code>rand48</code></a>
<li><a href="#additive_combine">Class template
<code>random::additive_combined</code></a>
<li><a href="#shuffle_output">Class template
<code>random::shuffle_output</code></a>
<li><a href="#inversive_congruential">Class template
<code>random::inversive_congruential</code></a>
<li><a href="#mersenne_twister">Class template
<code>random::mersenne_twister</code></a>
<li><a href="#lagged_fibonacci">Class template
<code>random::lagged_fibonacci</code></a>
<li><a href="#performance">Performance</a>
</ul>

<h2><a name="intro">Introduction</a></h2>

This library provides several pseudo-random number generators.  The
quality of a pseudo-random number generator crucially depends on both
the algorithm and its parameters.  This library implements the
algorithms as class templates with template value parameters, hidden
in namespace <code>boost::random</code>.  Any particular choice of
parameters is represented as the appropriately specializing
<code>typedef</code> in namespace <code>boost</code>.
<p>

Pseudo-random number generators should not be constructed
(initialized) frequently during program execution, for two reasons.
First, initialization requires full initialization of the internal
state of the generator.  Thus, generators with a lot of internal state
(see below) are costly to initialize.  Second, initialization always
requires some value used as a "seed" for the generated sequence.  It
is usually difficult to obtain several good seed values.  For example,
one method to obtain a seed is to determine the current time at the
highest resolution available, e.g. microseconds or nanoseconds.  When
the pseudo-random number generator is initialized again with the
then-current time as the seed, it is likely that this is at a
near-constant (non-random) distance from the time given as the seed
for first initialization.  The distance could even be zero if the
resolution of the clock is low, thus the generator re-iterates the
same sequence of random numbers.  For some applications, this is
inappropriate.
<p>

Note that all pseudo-random number generators described below are
CopyConstructible and Assignable.  Copying or assigning a generator
will copy all its internal state, so the original and the copy will
generate the identical sequence of random numbers.  Often, such
behavior is not wanted.  In particular, beware of the algorithms from
the standard library such as std::generate.  They take a functor
argument by value, thereby invoking the copy constructor when called.
<p>

The following table gives an overview of some characteristics of the
generators.  The cycle length is a rough estimate of the quality of
the generator; the approximate relative speed is a performance
measure, higher numbers mean faster random number generation.

<p>
<table border="1">
<tr>
<th>generator</th>
<th>length of cycle</th>
<th>approx. memory requirements</th>
<th>approx. relative speed</th>
<th>comment</th>
</tr>

<tr>
<td><a href="#minstd_rand"><code>minstd_rand</code></a></td>
<td>2<sup>31</sup>-2</td>
<td><code>sizeof(int32_t)</code></td>
<td>40</td>
<td>-</td>
</tr>

<tr>
<td><a href="#rand48"><code>rand48</code></a></td>
<td>2<sup>48</sup>-1</td>
<td><code>sizeof(uint64_t)</code></td>
<td>80</td>
<td>-</td>
</tr>

<tr>
<td><code>lrand48</code> (C library)</td>
<td>2<sup>48</sup>-1</td>
<td>-</td>
<td>20</td>
<td>global state</td>
</tr>

<tr>
<td><a href="#ecuyer1988"><code>ecuyer1988</code></a></td>
<td>approx. 2<sup>61</sup></td>
<td><code>2*sizeof(int32_t)</code></td>
<td>20</td>
<td>-</td>
</tr>

<tr>
<td><code><a href="#kreutzer1986">kreutzer1986</a></code></td>
<td>?</td>
<td><code>1368*sizeof(uint32_t)</code></td>
<td>60</td>
<td>-</td>
</tr>

<tr>
<td><code><a href="#hellekalek1995">hellekalek1995</a></code></td>
<td>2<sup>31</sup>-1</td>
<td><code>sizeof(int32_t)</code></td>
<td>3</td>
<td>good uniform distribution in several dimensions</td>
</tr>

<tr>
<td><code><a href="#mt11213b">mt11213b</a></code></td>
<td>2<sup>11213</sup>-1</td>
<td><code>352*sizeof(uint32_t)</code></td>
<td>100</td>
<td>good uniform distribution in up to 350 dimensions</td>
</tr>

<tr>
<td><code><a href="#mt19937">mt19937</a></code></td>
<td>2<sup>19937</sup>-1</td>
<td><code>625*sizeof(uint32_t)</code></td>
<td>100</td>
<td>good uniform distribution in up to 623 dimensions</td>
</tr>

<tr>
<td><code><a href="#lagged_fibonacci_spec">lagged_fibonacci607</a></code></td>
<td>approx. 2<sup>32000</sup></td>
<td><code>607*sizeof(double)</code></td>
<td>150</td>
<td>-</td>
</tr>

<tr>
<td><code><a href="#lagged_fibonacci_spec">lagged_fibonacci1279</a></code></td>
<td>approx. 2<sup>67000</sup></td>
<td><code>1279*sizeof(double)</code></td>
<td>150</td>
<td>-</td>
</tr>

<tr>
<td><code><a href="#lagged_fibonacci_spec">lagged_fibonacci2281</a></code></td>
<td>approx. 2<sup>120000</sup></td>
<td><code>2281*sizeof(double)</code></td>
<td>150</td>
<td>-</td>
</tr>

<tr>
<td><code><a href="#lagged_fibonacci_spec">lagged_fibonacci3217</a></code></td>
<td>approx. 2<sup>170000</sup></td>
<td><code>3217*sizeof(double)</code></td>
<td>150</td>
<td>-</td>
</tr>

<tr>
<td><code><a href="#lagged_fibonacci_spec">lagged_fibonacci4423</a></code></td>
<td>approx. 2<sup>230000</sup></td>
<td><code>4423*sizeof(double)</code></td>
<td>150</td>
<td>-</td>
</tr>

<tr>
<td><code><a href="#lagged_fibonacci_spec">lagged_fibonacci9689</a></code></td>
<td>approx. 2<sup>510000</sup></td>
<td><code>9689*sizeof(double)</code></td>
<td>150</td>
<td>-</td>
</tr>

<tr>
<td><code><a href="#lagged_fibonacci_spec">lagged_fibonacci19937</a></code></td>
<td>approx. 2<sup>1050000</sup></td>
<td><code>19937*sizeof(double)</code></td>
<td>150</td>
<td>-</td>
</tr>

<tr>
<td><code><a href="#lagged_fibonacci_spec">lagged_fibonacci23209</a></code></td>
<td>approx. 2<sup>1200000</sup></td>
<td><code>23209*sizeof(double)</code></td>
<td>140</td>
<td>-</td>
</tr>

<tr>
<td><code><a href="#lagged_fibonacci_spec">lagged_fibonacci44497</a></code></td>
<td>approx. 2<sup>2300000</sup></td>
<td><code>44497*sizeof(double)</code></td>
<td>60</td>
<td>-</td>
</tr>

</table>

<p>
As observable from the table, there is generally a
quality/performance/memory trade-off to be decided upon when choosing
a random-number generator.  The multitude of generators provided in
this library allows the application programmer to optimize the
trade-off with regard to his application domain.  Additionally,
employing several fundamentally different random number generators for
a given application of Monte Carlo simulation will improve the
confidence in the results.
<p>

If the names of the generators don't ring any bell and you have no
idea which generator to use, it is reasonable to employ
<code>mt19937</code> for a start: It is fast and has acceptable
quality.

<p>
<em>Note:</em> These random number generators are not intended for use
in applications where non-deterministic random numbers are required.
See <a href="nondet_random.html">nondet_random.html</a> for a choice
of (hopefully) non-deterministic random number generators.

<p>
In this description, I have refrained from documenting those members
in detail which are already defined in the
<a href="random-concepts.html">concept documentation</a>.


<h2><a name="synopsis">Synopsis of the generators</a> available from header
<code>&lt;boost/random.hpp&gt;</code></h2>

<pre>
namespace boost {
  namespace random {
    template&lt;class IntType, IntType m&gt;
    class const_mod;
    template&lt;class IntType, IntType a, IntType c, IntType m, IntType val&gt;
    class linear_congruential;
  }
  class rand48;
  typedef random::linear_congruential&lt; /* ... */ &gt; minstd_rand0;
  typedef random::linear_congruential&lt; /* ... */ &gt; minstd_rand;

  namespace random {
    template&lt;class DataType, int n, int m, int r, DataType a, int u,
        int s, DataType b, int t, DataType c, int l, IntType val&gt;
    class mersenne_twister;
  }
  typedef random::mersenne_twister&lt; /* ... */ &gt; mt11213b;
  typedef random::mersenne_twister&lt; /* ... */ &gt; mt19937;

  namespace random {
    template&lt;class FloatType, unsigned int  p, unsigned int q&gt;
    class lagged_fibonacci;
  }
  typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci607;
  typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci1279;
  typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci2281;
  typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci3217;
  typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci4423;
  typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci9689;
  typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci19937;
  typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci23209;
  typedef random::lagged_fibonacci&lt; /* ... */ &gt; lagged_fibonacci44497;  
} // namespace boost
</pre>


<h2><a name="const_mod">Class template
<code>random::const_mod</code></a></h2>

<h3>Synopsis</h3>

<pre>
template&lt;class IntType, IntType m&gt;
class random::const_mod
{
public:
  template&lt;IntType c&gt;
  static IntType add(IntType x);

  template&lt;IntType a&gt;
  static IntType mult(IntType x);

  template&lt;IntType a, IntType c&gt;
  static IntType mult_add(IntType x);

  static IntType invert(IntType x);
private:
  const_mod();         // don't instantiate
};
</pre>

<h3>Description</h3>

Class template <code>const_mod</code> provides functions performing
modular arithmetic, carefully avoiding overflows.  All member
functions are static; there shall be no objects of type
<code>const_mod&lt;&gt;</code>.
<p>

The template parameter <code>IntType</code> shall denote an integral
type, <code>m</code> is the modulus.
<p>

<em>Note:</em> For modulo multiplications with large m, a trick allows
fast computation under certain conditions, see
<blockquote>
"A more portable FORTRAN random number generator", Linus Schrage, ACM
Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, pp. 132-138
</blockquote>


<h3>Member functions</h3>

<pre>template&lt;IntType c&gt; static IntType add(IntType x)</pre>

<strong>Returns:</strong> (x+c) mod m

<pre>template&lt;IntType a&gt; static IntType mult(IntType x)</pre>

<strong>Returns:</strong> (a*x) mod m

<pre>template&lt;IntType a, IntType c&gt; static IntType
mult_add(IntType x)</pre>

<strong>Returns:</strong> (a*x+c) mod m

<pre>static IntType invert(IntType x)</pre>

<strong>Returns:</strong> i so that (a*i) mod m == 1
<br>
<strong>Precondition:</strong> m is prime


<h2><a name="linear_congruential">Class template
<code>random::linear_congruential</code></a></h2>

<h3>Synopsis</h3>

<pre>
#include &lt;<a href="../../boost/random/linear_congruential.hpp">boost/random/linear_congruential.hpp</a>&gt;

template&lt;class IntType, IntType a, IntType c, IntType m&gt;
class linear_congruential
{
public:
  typedef IntType result_type;
  static const IntType multiplier = a;
  static const IntType increment = c;
  static const IntType modulus = m;
  static const bool has_fixed_range = true;
  static const result_type min_value;
  static const result_type max_value;
  explicit linear_congruential_fixed(IntType x0 = 1);
  // compiler-generated copy constructor and assignment operator are fine
  void seed(IntType x0);
  IntType operator()();
};

typedef random::linear_congruential&lt;long, 16807L, 0, 2147483647L,
     1043618065L&gt; minstd_rand0;
typedef random::linear_congruential&lt;long, 48271L, 0, 2147483647L,
     399268537L&gt; minstd_rand;
</pre>

<h3>Description</h3>

Instantiations of class template <code>linear_congruential</code>
model a <a href="random-concepts.html#pseudo-rng">pseudo-random number
generator</a>.  Linear congruential pseudo-random number generators
are described in:
<blockquote>
&quot;Mathematical methods in large-scale computing units&quot;, D. H. Lehmer,
Proc. 2nd Symposium on Large-Scale Digital Calculating Machines,
Harvard University Press, 1951, pp. 141-146 
</blockquote>

Let x(n) denote the sequence of numbers returned by
some pseudo-random number generator.  Then for the linear congruential
generator, x(n+1) := (a * x(n) + c) mod m.  Parameters for the
generator are x(0), a, c, m.

The template parameter <code>IntType</code> shall denote an
integral type.  It must be large enough to hold values a, c, and m.
The template parameters a and c must be smaller than m.

<p>

<em>Note:</em> The quality of the generator crucially depends on the
choice of the parameters.  User code should use one of the sensibly
parameterized generators such as <code>minstd_rand</code> instead.
<br>
For each choice of the parameters a, c, m, some distinct type is
defined, so that the <code>static</code> members do not interfere with
regard to the one definition rule.

<h3>Members</h3>

<pre>explicit linear_congruential(IntType x0 = 1)</pre>

<strong>Effects:</strong> Constructs a
<code>linear_congruential</code> generator with x(0) :=
<code>x0</code>.

<pre>void seed(IntType x0)</pre>

<strong>Effects:</strong> Changes the current value x(n) of the
generator to <code>x0</code>.

<h3><a name="minstd_rand">Specializations</a></h3>

The specialization <code>minstd_rand0</code> was originally suggested
in
<blockquote>
A pseudo-random number generator for the System/360, P.A. Lewis,
A.S. Goodman, J.M. Miller, IBM Systems Journal, Vol. 8, No. 2, 1969,
pp. 136-146
</blockquote>

It is examined more closely together with <code>minstd_rand</code> in
<blockquote>
"Random Number Generators: Good ones are hard to find", Stephen
K. Park and Keith W. Miller, Communications of the ACM, Vol. 31,
No. 10, October 1988, pp. 1192-1201
</blockquote>


<h2><a name="rand48">Class <code>rand48</code></h2>

<h3>Synopsis</h3>
<pre>
#include &lt;<a href="../../boost/random/linear_congruential.hpp">boost/random/linear_congruential.hpp</a>&gt;

class rand48 
{
public:
  typedef int32_t result_type;
  static const bool has_fixed_range = true;
  static const int32_t min_value = 0;
  static const int32_t max_value = 0x7fffffff;
  
  explicit rand48(int32_t x0 = 1);
  explicit rand48(uint64_t x0);
  // compiler-generated copy ctor and assignment operator are fine
  void seed(int32_t x0);
  void seed(uint64_t x0);
  int32_t operator()();
};
</pre>

<h3>Description</h3>

Class <code>rand48</code> models a
<a href="random-concepts.html#pseudo-rng">pseudo-random number
generator</a>.  It uses the linear congruential algorithm with the
parameters a = 0x5DEECE66D, c = 0xB, m = 2**48.  It delivers identical
results to the <code>lrand48()</code> function available on some
systems (assuming <code>lcong48</code> has not been called).
<p>
It is only available on systems where <code>uint64_t</code> is
provided as an integral type, so that for example static in-class
constants and/or enum definitions with large <code>uint64_t</code>
numbers work.

<h3>Constructors</h3>

<pre>rand48(int32_t x0)</pre>

<strong>Effects:</strong> Constructs a <code>rand48</code> generator
with x(0) := (<code>x0</code> << 16) | 0x330e.

<pre>rand48(uint64_t x0)</pre>

<strong>Effects:</strong> Constructs a <code>rand48</code> generator
with x(0) := <code>x0</code>.

<h3>Seeding</h3>
<pre>void seed(int32_t x0)</pre>

<strong>Effects:</strong> Changes the current value x(n) of the
generator to (<code>x0</code> << 16) | 0x330e.

<pre>void seed(uint64_t x0)</pre>

<strong>Effects:</strong> Changes the current value x(n) of the
generator to <code>x0</code>.


<h2><a name="additive_combine">Class template
<code>random::additive_combine</code></a></h2>

<h3>Synopsis</h3>

<pre>
#include &lt;<a href="../../boost/random/additive_combine.hpp">boost/random/additive_combine.hpp</a>&gt;

template&lt;class MLCG1, class MLCG2, typename MLCG1::result_type val&gt;
class random::additive_combine
{
public:
  typedef MLCG1 first_base;
  typedef MLCG2 second_base;
  typedef typename MLCG1::result_type result_type;
  static const bool has_fixed_range = true;
  static const result_type min_value = 1;
  static const result_type max_value = MLCG1::max_value-1;
  additive_combine();
  additive_combine(typename MLCG1::result_type seed1, 
		   typename MLCG2::result_type seed2);
  result_type operator()();
  bool validation(result_type x) const;
};

typedef random::additive_combine&lt;
    random::linear_congruential&lt;int32_t, 40014, 0, 2147483563, 0&gt;,
    random::linear_congruential&lt;int32_t, 40692, 0, 2147483399, 0&gt;,
  /* unknown */ 0&gt; ecuyer1988;

</pre>

<h3>Description</h3>

Instatiations of class template <code>additive_combine</code> model a
<a href="random-concepts.html#pseudo-rng">pseudo-random number
generator</a>.  It combines two multiplicative linear congruential
number generators, i.e. those with c = 0.  It is described in
<blockquote>
"Efficient and Portable Combined Random Number Generators", Pierre
L'Ecuyer, Communications of the ACM, Vol. 31, No. 6, June 1988,
pp. 742-749, 774
</blockquote>

The template parameters <code>MLCG1</code> and <code>MLCG2</code>
shall denote two different linear congruential number generators, each
with c = 0.  Each invocation returns a random number X(n) := (MLCG1(n)
- MLCG2(n)) mod (m1 - 1), where m1 denotes the modulus of
<code>MLCG1</code>.

<p>
The template parameter <code>val</code> is the validation value
checked by <code>validation</code>.


<h3>Members</h3>

<pre>additive_combine()</pre>

<strong>Effects:</strong> Constructs an <code>additive_combine</code>
generator using the default constructors of the two base generators.

<pre>additive_combine(typename MLCG1::result_type seed1, 
 		 typename MLCG2::result_type seed2)</pre>

<strong>Effects:</strong> Constructs an <code>additive_combine</code>
generator, using <code>seed1</code> and <code>seed2</code> as the
constructor argument to the first and second base generator,
respectively.


<h3><a name="ecuyer1988">Specialization</a></h3>

The specialization <code>ecuyer1988</code> was suggested in the above
paper.


<h2><a name="shuffle_output">Class template
<code>random::shuffle_output</code></a></h2>

<h3>Synopsis</h3>

<pre>
#include &lt;<a href="../../boost/random/shuffle_output.hpp">boost/random/shuffle_output.hpp</a>&gt;

template&lt;class UniformRandomNumberGenerator, int k, 
  class IntType = typename UniformRandomNumberGenerator::result_type,
  typename UniformRandomNumberGenerator::result_type val = 0&gt;
class random::shuffle_output
{
public:
  typedef UniformRandomNumberGenerator base_type;
  typedef typename base_type::result_type result_type;
  static const bool has_fixed_range = false;

  shuffle_output();
  template&lt;class T&gt; explicit shuffle_output(T seed);
  explicit shuffle_output(const base_type &amp; rng);
  template&lt;class T&gt; void seed(T s);

  result_type operator()();
  result_type min() const;
  result_type max() const;
  bool validation(result_type) const;
};
</pre>

<h3>Description</h3>

Instatiations of class template <code>shuffle_output</code> model a
<a href="random-concepts.html#pseudo-rng">pseudo-random number
generator</a>. It mixes the output of some (usually linear
congruential) uniform random number generator to get better
statistical properties.  According to Donald E. Knuth, "The Art of
Computer Programming, Vol. 2", the algorithm is described in
<blockquote>
"Improving a poor random number generator", Carter Bays and
S.D. Durham, ACM Transactions on Mathematical Software, Vol. 2, 1979,
pp. 59-64.
</blockquote>
The output of the base generator is buffered in an array of length
k. Every output X(n) has a second role: It gives an index into the
array where X(n+1) will be retrieved.  Used array elements are
replaced with fresh output from the base generator.

<p>

Template parameters are the base generator and the array length k,
which should be around 100.  As an implementation detail, the template
parameter <code>IntType</code> shall denote an integer-like type which
is large enough to hold integer numbers of value k *
<code>base_type::max()</code>.  The template parameter
<code>val</code> is the validation value checked by
<code>validation</code>.


<h3>Members</h3>

<pre>shuffle_output()</pre>

<strong>Effects:</strong> Constructs a <code>shuffle_output</code>
generator by invoking the default constructor of the base generator.
<p>
<strong>Complexity:</strong> Exactly k+1 invocations of the base
generator.

<pre>template&lt;class T&gt; explicit shuffle_output(T seed)</pre>

<strong>Effects:</strong> Constructs a <code>shuffle_output</code>
generator by invoking the one-argument constructor of the base
generator with the parameter <code>seed</code>.
<p>
<strong>Complexity:</strong> Exactly k+1 invocations of the base
generator.

<pre>explicit shuffle_output(const base_type & rng)</pre>

<strong>Precondition:</strong> The template argument
<code>UniformRandomNumberGenerator</code> shall denote a
CopyConstructible type.
<p>
<strong>Effects:</strong> Constructs a <code>shuffle_output</code>
generator by using a copy of the provided generator.
<p>
<strong>Complexity:</strong> Exactly k+1 invocations of the base
generator.

<pre>template&lt;class T&gt; void seed(T s)</pre>

<strong>Effects:</strong> Invokes the one-argument <code>seed</code>
method of the base generator with the parameter <code>seed</code> and
re-initializes the internal buffer array.
<p>
<strong>Complexity:</strong> Exactly k+1 invocations of the base
generator.


<h3><a name="kreutzer1986">Specializations</a></h3>

According to Harry Erwin (private e-mail), the specialization
<code>kreutzer1986</code> was suggested in:
<blockquote>
"System Simulation: programming Styles and Languages (International
Computer Science Series)", Wolfgang Kreutzer, Addison-Wesley, December
1986.
</blockquote>


<h2><a name="inversive_congruential">Class template
<code>random::inversive_congruential</code></a></h2> 

<h3>Synopsis</h3>

<pre>
#include &lt;<a href="../../boost/random/inversive_congruential.hpp">boost/random/inversive_congruential.hpp</a>&gt;

template&lt;class IntType, IntType a, IntType b, IntType p&gt;
class random::inversive_congruential
{
public:
  typedef IntType result_type;
  static const bool has_fixed_range = true;
  static const result_type min_value = (b == 0 ? 1 : 0);
  static const result_type max_value = p-1;
  static const result_type multiplier = a;
  static const result_type increment = b;
  static const result_type modulus = p;
  explicit inversive_congruential(IntType y0 = 1);
  void seed(IntType y0);
  IntType operator()();
};

typedef random::inversive_congruential&lt;int32_t, 9102, 2147483647-36884165, 2147483647&gt; hellekalek1995;
</pre>

<h3>Description</h3>

Instantiations of class template <code>inversive_congruential</code> model a
<a href="random-concepts.html#pseudo-rng">pseudo-random number
generator</a>.  It uses the inversive congruential algorithm (ICG)
described in
<blockquote>
"Inversive pseudorandom number generators: concepts, results and
links", Peter Hellekalek, In: "Proceedings of the 1995 Winter
Simulation Conference", C. Alexopoulos, K. Kang, W.R. Lilegdon, and
D. Goldsman (editors), 1995, pp. 255-262.
<a href="ftp://random.mat.sbg.ac.at/pub/data/wsc95.ps">ftp://random.mat.sbg.ac.at/pub/data/wsc95.ps</a>
</blockquote>

The output sequence is defined by x(n+1) = (a*inv(x(n)) - b) (mod p),
where x(0), a, b, and the prime number p are parameters of the
generator.  The expression inv(k) denotes the multiplicative inverse
of k in the field of integer numbers modulo p, with inv(0) := 0.

<p>

The template parameter <code>IntType</code> shall denote a signed
integral type large enough to hold p; a, b, and p are the parameters
of the generators.
<p>
<em>Note:</em> The implementation currently uses the Euclidian
Algorithm to compute the multiplicative inverse.  Therefore, the
inversive generators are about 10-20 times slower than the others (see
section"<a href="#performance">performance</a>").  However, the paper
talks of only 3x slowdown, so the Euclidian Algorithm is probably not
optimal for calculating the multiplicative inverse.


<h3>Members</h3>

<pre>inversive_congruential(IntType y0 = 1)</pre>

<strong>Effects:</strong> Constructs an
<code>inversive_congruential</code> generator with
<code>y0</code> as the initial state.

<pre>void seed(IntType y0)</pre>

<strong>Effects:</strong>
Changes the current state to <code>y0</code>.


<h3><a name="hellekalek1995">Specialization</a></h3>

The specialization <code>hellekalek1995</code> was suggested in the
above paper.


<h2><a name="mersenne_twister">Class template
<code>random::mersenne_twister</code></a></h2>

<h3>Synopsis</h3>

<pre>
#include &lt;<a href="../../boost/random/mersenne_twister.hpp">boost/random/mersenne_twister.hpp</a>&gt;

template&lt;class DataType, int n, int m, int r, DataType a, int u,
int s, DataType b, int t, DataType c, int l, IntType val&gt;
class random::mersenne_twister
{
public:
  typedef DataType result_type;
  static const bool has_fixed_range = true;
  static const result_type min_value;
  static const result_type max_value;
  mersenne_twister();
  explicit mersenne_twister(DataType value);
  template&lt;class Generator&gt; explicit mersenne_twister(Generator &amp; gen);
  // compiler-generated copy ctor and assignment operator are fine
  void seed();
  void seed(DataType value);
  template&lt;class Generator&gt; void seed(Generator &amp; gen);
  result_type operator()();
  bool validation(result_type) const;
};

typedef mersenne_twister&lt;uint32_t,351,175,19,0xccab8ee7,11,7,0x31b6ab00,15,0xffe50000,17, /* unknown */ 0&gt; mt11213b;
typedef mersenne_twister&lt;uint32_t,624,397,31,0x9908b0df,11,7,0x9d2c5680,15,0xefc60000,18, 3346425566U&gt; mt19937;
</pre>

<h3>Description</h3>

Instantiations of class template <code>mersenne_twister</code> model a
<a href="random-concepts.html#pseudo-rng">pseudo-random number
generator</a>.  It uses the algorithm described in

<blockquote>
"Mersenne Twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator", Makoto Matsumoto and Takuji Nishimura,
ACM Transactions on Modeling and Computer Simulation: Special Issue
on Uniform Random Number Generation, Vol. 8, No. 1, January 1998,
pp. 3-30.
<a href="http://www.math.keio.ac.jp/matumoto/emt.html">http://www.math.keio.ac.jp/matumoto/emt.html</a>
</blockquote>

<em>Note:</em> The boost variant has been implemented from scratch
and does not derive from or use mt19937.c provided on the above WWW
site. However, it was verified that both produce identical output.
<br>
The quality of the generator crucially depends on the choice of the
parameters.  User code should employ one of the sensibly parameterized
generators such as <code>mt19937</code> instead.
<br>
The generator requires considerable amounts of memory for the storage
of its state array.  For example, <code>mt11213b</code> requires about
1408 bytes and <code>mt19937</code> requires about 2496 bytes.

<h3>Constructors</h3>

<pre>mersenne_twister()</pre>

<strong>Effects:</strong> Constructs a <code>mersenne_twister</code>
and calls <code>seed()</code>.

<pre>explicit mersenne_twister(result_type value)</pre>

<strong>Effects:</strong> Constructs a <code>mersenne_twister</code>
and calls <code>seed(value)</code>.

<pre>template&lt;class Generator&gt; explicit mersenne_twister(Generator &amp; gen)</pre>

<strong>Effects:</strong> Constructs a <code>mersenne_twister</code>
and calls <code>seed(gen)</code>.
<p>
<em>Note:</em> When using direct-initialization syntax with an lvalue
(e.g. in the variable definition <code>Gen gen2(gen);</code>), this
templated constructor will be preferred over the compiler-generated
copy constructor.  For variable definitions which should copy the
state of another <code>mersenne_twister</code>, use e.g. <code>Gen
gen2 = gen;</code>, which is copy-initialization syntax and guaranteed
to invoke the copy constructor.

<h3>Seeding</h3>

<pre>void seed()</pre>

<strong>Effects:</strong> Calls <code>seed(result_type(4357))</code>.

<pre>void seed(result_type value)</pre>

<strong>Effects:</strong> Constructs a
<code>linear_congruential&lt;uint32_t, 69069, 0, 0, 0&gt;</code>
generator with the constructor parameter
<code>value</code> and calls <code>seed</code> with it.

<pre>template&lt;class Generator&gt; void seed(Generator &amp; gen)</pre>

<strong>Effects:</strong> Sets the state of this
<code>mersenne_twister</code> to the values returned by <code>n</code>
invocations of <code>gen</code>.

<p>

<strong>Complexity:</strong> Exactly <code>n</code> invocations of
<code>gen</code>.
<p>
<em>Note:</em> When invoking <code>seed</code> with an lvalue,
overload resolution chooses the function template unless the type of
the argument exactly matches <code>result_type</code>.  For other
integer types, you should convert the argument to
<code>result_type</code> explicitly.

<h3><a name="mt11213b"></a><a name="mt19937">Specializations</a></h3>

The specializations <code>mt11213b</code> and <code>mt19937</code> are
from the paper cited above.

<h2><a name="lagged_fibonacci">Class template
<code>random::lagged_fibonacci</code></a></h2>

<h3>Synopsis</h3>

<pre>
#include &lt;<a href="../../boost/random/lagged_fibonacci.hpp">boost/random/lagged_fibonacci.hpp</a>&gt;

template&lt;class FloatType, unsigned int p, unsigned int q&gt;
class lagged_fibonacci
{
public:
  typedef FloatType result_type;
  static const bool has_fixed_range = false;
  static const unsigned int long_lag = p;
  static const unsigned int short_lag = q;
  result_type min() const { return 0.0; }
  result_type max() const { return 1.0; }
  lagged_fibonacci();
  explicit lagged_fibonacci(uint32_t value);
  template&lt;class Generator&gt;
  explicit lagged_fibonacci(Generator & gen);
  // compiler-generated copy ctor and assignment operator are fine
  void seed(uint32_t value = 331u);
  template&lt;class Generator&gt; void seed(Generator & gen);
  result_type operator()();
  bool validation(result_type x) const;
};

typedef random::lagged_fibonacci&lt;double, 607, 273&gt; lagged_fibonacci607;
typedef random::lagged_fibonacci&lt;double, 1279, 418&gt; lagged_fibonacci1279;
typedef random::lagged_fibonacci&lt;double, 2281, 1252&gt; lagged_fibonacci2281;
typedef random::lagged_fibonacci&lt;double, 3217, 576&gt; lagged_fibonacci3217;
typedef random::lagged_fibonacci&lt;double, 4423, 2098&gt; lagged_fibonacci4423;
typedef random::lagged_fibonacci&lt;double, 9689, 5502&gt; lagged_fibonacci9689;
typedef random::lagged_fibonacci&lt;double, 19937, 9842&gt; lagged_fibonacci19937;
typedef random::lagged_fibonacci&lt;double, 23209, 13470&gt; lagged_fibonacci23209;
typedef random::lagged_fibonacci&lt;double, 44497, 21034&gt; lagged_fibonacci44497;
</pre>

<h3>Description</h3>

Instantiations of class template <code>lagged_fibonacci</code> model a
<a href="random-concepts.html#pseudo-rng">pseudo-random number
generator</a>.  It uses a lagged Fibonacci algorithm with two lags p
and q, evaluated in floating-point arithmetic:  x(i) = x(i-p) + x(i-q)
(mod 1) with p > q.  See

<blockquote>
"Uniform random number generators for supercomputers", Richard Brent,
Proc. of Fifth Australian Supercomputer Conference, Melbourne,
Dec. 1992, pp. 704-706.
</blockquote>

<p>
<em>Note:</em> The quality of the generator crucially depends on the
choice of the parameters.  User code should employ one of the sensibly
parameterized generators such as <code>lagged_fibonacci607</code>
instead.
<br>
The generator requires considerable amounts of memory for the storage
of its state array.  For example, <code>lagged_fibonacci607</code>
requires about 4856 bytes and <code>lagged_fibonacci44497</code>
requires about 350 KBytes.

<h3>Constructors</h3>

<pre>lagged_fibonacci()</pre>
<strong>Effects:</strong> Constructs a <code>lagged_fibonacci</code>
generator and calls <code>seed()</code>.

<pre>explicit lagged_fibonacci(uint32_t value)</pre>
<strong>Effects:</strong> Constructs a <code>lagged_fibonacci</code>
generator and calls <code>seed(value)</code>.

<pre>template&lt;class Generator&gt; explicit lagged_fibonacci(Generator &amp; gen)</pre>
<strong>Effects:</strong> Constructs a <code>lagged_fibonacci</code>
generator and calls <code>seed(gen)</code>.

<h3>Seeding</h3>

<pre>void seed()</pre>
<strong>Effects:</strong> Calls <code>seed(331u)</code>.

<pre>void seed(uint32_t value)</pre>
<strong>Effects:</strong> Constructs a <code>minstd_rand0</code>
generator with the constructor parameter <code>value</code> and calls
<code>seed</code> with it.

<pre>template&lt;class Generator&gt; void seed(Generator &amp; gen)</pre>
<strong>Effects:</strong> Sets the state of this
<code>lagged_fibonacci</code> to the values returned by <code>p</code>
invocations of <code>uniform_01&lt;gen, FloatType&gt;</code>.
<br>
<strong>Complexity:</strong> Exactly <code>p</code> invocations of
<code>gen</code>.

<h3><a name="lagged_fibonacci_spec"></a>Specializations</h3>
The specializations <code>lagged_fibonacci607</code>
... <code>lagged_fibonacci44497</code> (see above) use well tested
lags. (References will be added later.)


<h2><a name="performance">Performance</a></h2>

The test program <a href="random_speed.cpp">random_speed.cpp</a>
measures the execution times of the
<a href="../../boost/random.hpp">random.hpp</a> implementation of the above
algorithms in a tight loop.  The performance has been evaluated on a
Pentium Pro 200 MHz with gcc 2.95.2, Linux 2.2.13, glibc 2.1.2.

<p>

<table border=1>
<tr><th>class</th><th>time per invocation [usec]</th></tr>
<tr><td>rand48</td><td>0.096</td></tr>
<tr><td>rand48 run-time configurable</td><td>0.697</td></tr>
<tr><td>lrand48 glibc 2.1.2</td><td>0.844</td></tr>
<tr><td>minstd_rand</td><td>0.174</td></tr>
<tr><td>ecuyer1988</td><td>0.445</td></tr>
<tr><td>kreutzer1986</td><td>0.249</td></tr>
<tr><td>hellekalek1995 (inversive)</td><td>4.895</td></tr>
<tr><td>mt11213b</td><td>0.165</td></tr>
<tr><td>mt19937</td><td>0.165</td></tr>
<tr><td>mt19937 original</td><td>0.185</td></tr>
<tr><td>lagged_fibonacci607</td><td>0.111</td></tr>
<tr><td>lagged_fibonacci4423</td><td>0.112</td></tr>
<tr><td>lagged_fibonacci19937</td><td>0.113</td></tr>
<tr><td>lagged_fibonacci23209</td><td>0.122</td></tr>
<tr><td>lagged_fibonacci44497</td><td>0.263</td></tr>
</table>

<p>
The measurement error is estimated at +/- 10 nsec.

<p>
<hr>
Jens Maurer, 2001-04-15

</body>
</html>