1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Boost Random Number Library Performance</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1>Random Number Library Performance</h1>
For some people, performance of random number generation is an
important consideration when choosing a random number generator or a
particular distribution function. This page provides numerous
performance tests with the wide variety of generators and
distributions available in the boost library.
<p>
The performance has been evaluated on a Pentium Pro 200 MHz with gcc
2.95.2, Linux 2.2.13, glibc 2.1.2. The speed is reported in million
random numbers per second (M rn/sec), generated in a tight loop.
<p>
<h2>Basic Generators</h2>
<table border="1">
<tr>
<th>generator</th>
<th>M rn/sec</th>
<th>time per random number [usec]</th>
<th>relative speed compared to fastest [percent]</th>
</tr>
<tr>
<td>rand48</td>
<td>5.38</td>
<td>0.183</td>
<td>61%</td>
</tr>
<tr>
<td>rand48 run-time configurable</td>
<td>1.48</td>
<td>0.677</td>
<td>17%</td>
</tr>
<tr>
<td>lrand48 glibc 2.1.2</td>
<td>1.19</td>
<td>0.843</td>
<td>13%</td>
</tr>
<tr>
<td>minstd_rand</td>
<td>2.39</td>
<td>0.318</td>
<td>35%</td>
</tr>
<tr>
<td>ecuyer1988</td>
<td>1.12</td>
<td>0.892</td>
<td>13%</td>
</tr>
<tr>
<td>kreutzer1986</td>
<td>3.87</td>
<td>0.258</td>
<td>43%</td>
</tr>
<tr>
<td>hellekalek1995 (inversive)</td>
<td>0.20</td>
<td>5.12</td>
<td>2%</td>
</tr>
<tr>
<td>mt11213b</td>
<td>6.07</td>
<td>0.165</td>
<td>68%</td>
</tr>
<tr>
<td>mt19937</td>
<td>6.06</td>
<td>0.165</td>
<td>68%</td>
</tr>
<tr>
<td>mt19937 original</td>
<td>5.33</td>
<td>0.188</td>
<td>60%</td>
</tr>
<tr>
<td>lagged_fibonacci607</td>
<td>8.90</td>
<td>0.112</td>
<td>100%</td>
</tr>
<tr>
<td>lagged_fibonacci4423</td>
<td>8.54</td>
<td>0.117</td>
<td>96%</td>
</tr>
<tr>
<td>lagged_fibonacci19937</td>
<td>7.49</td>
<td>0.133</td>
<td>84%</td>
</tr>
<tr>
<td>lagged_fibonacci23209</td>
<td>6.63</td>
<td>0.151</td>
<td>74%</td>
</tr>
<tr>
<td>lagged_fibonacci44497</td>
<td>4.01</td>
<td>0.250</td>
<td>45%</td>
</tr>
</table>
<p>
Note that the lagged Fibonacci generators produce floating-point
numbers, whereas all others produce integers.
<h2>Distributions</h2>
<table border="1">
<tr>
<th>[M rn/sec]</th>
<th>minstd_rand</th>
<th>kreutzer1986</th>
<th>mt19937</th>
<th>lagged_fibonacci607</th>
</tr>
<tr>
<th>uniform_smallint</th>
<td>1.26</td>
<td>1.55</td>
<td>1.93</td>
<td>-</td>
</tr>
<tr>
<th>uniform_01</th>
<td>1.79</td>
<td>1.88</td>
<td>3.03</td>
<td>7.74</td>
</tr>
<tr>
<th>uniform_real</th>
<td>1.74</td>
<td>1.56</td>
<td>2.34</td>
<td>6.62</td>
</tr>
<tr>
<th>geometric</th>
<td>0.593</td>
<td>0.629</td>
<td>0.753</td>
<td>0.916</td>
</tr>
<tr>
<th>triangle</th>
<td>0.97</td>
<td>1.02</td>
<td>1.35</td>
<td>1.31</td>
</tr>
<tr>
<th>exponential</th>
<td>0.849</td>
<td>0.828</td>
<td>0.887</td>
<td>1.53</td>
</tr>
<tr>
<th>normal (polar method)</th>
<td>0.608</td>
<td>0.626</td>
<td>0.738</td>
<td>0.755</td>
</tr>
<tr>
<th>lognormal</th>
<td>0.417</td>
<td>0.442</td>
<td>0.470</td>
<td>0.481</td>
</tr>
<tr>
<th>uniform_on_sphere</th>
<td>0.154</td>
<td>0.155</td>
<td>0.174</td>
<td>0.218</td>
</tr>
</table>
<p>
Note that the lagged Fibonacci generator is at least 2.5 times faster
than the Mersenne twister when generating uniformly distributed
floating-point numbers. For more sophisticated distributions, the
speed improvement is less. Note however that these distributions have
not been optimized for speed, yet.
<p>
<hr>
Jens Maurer, 2001-04-15
</body>
</html>
|