1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
<HTML>
<!--
-- Copyright (c) Jeremy Siek 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
-->
<!--
-- Copyright (c) 1996-1999
-- Silicon Graphics Computer Systems, Inc.
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
--
-- Copyright (c) 1994
-- Hewlett-Packard Company
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Hewlett-Packard Company makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
--
-->
<Head>
<Title>LessThanComparable</Title>
</Head>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
<!--end header-->
<BR Clear>
<H1>LessThanComparable</H1>
<h3>Description</h3>
A type is LessThanComparable if it is ordered: it must
be possible to compare two objects of that type using <tt>operator<</tt>, and
<tt>operator<</tt> must be a strict weak ordering relation.
<h3>Refinement of</h3>
<h3>Associated types</h3>
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign=top>
<tt>X</tt>
</TD>
<TD VAlign=top>
A type that is a model of LessThanComparable
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>x</tt>, <tt>y</tt>, <tt>z</tt>
</TD>
<TD VAlign=top>
Object of type <tt>X</tt>
</TD>
</tr>
</table>
<h3>Definitions</h3>
Consider the relation <tt>!(x < y) && !(y < x)</tt>. If this relation is
transitive (that is, if <tt>!(x < y) && !(y < x) && !(y < z) && !(z < y)</tt>
implies <tt>!(x < z) && !(z < x)</tt>), then it satisfies the mathematical
definition of an equivalence relation. In this case, <tt>operator<</tt>
is a <i>strict weak ordering</i>.
<P>
If <tt>operator<</tt> is a strict weak ordering, and if each equivalence class
has only a single element, then <tt>operator<</tt> is a <i>total ordering</i>.
<h3>Valid expressions</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Type requirements
</TH>
<TH>
Return type
</TH>
</TR>
<TR>
<TD VAlign=top>
Less
</TD>
<TD VAlign=top>
<tt>x < y</tt>
</TD>
<TD VAlign=top>
</TD>
<TD VAlign=top>
Convertible to <tt>bool</tt>
</TD>
</TR>
</table>
<h3>Expression semantics</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Precondition
</TH>
<TH>
Semantics
</TH>
<TH>
Postcondition
</TH>
</TR>
<TR>
<TD VAlign=top>
Less
</TD>
<TD VAlign=top>
<tt>x < y</tt>
</TD>
<TD VAlign=top>
<tt>x</tt> and <tt>y</tt> are in the domain of <tt><</tt>
</TD>
<TD VAlign=top>
</TD>
</table>
<h3>Complexity guarantees</h3>
<h3>Invariants</h3>
<Table border>
<TR>
<TD VAlign=top>
Irreflexivity
</TD>
<TD VAlign=top>
<tt>x < x</tt> must be false.
</TD>
</TR>
<TR>
<TD VAlign=top>
Antisymmetry
</TD>
<TD VAlign=top>
<tt>x < y</tt> implies !(y < x) <A href="#2">[2]</A>
</TD>
</TR>
<TR>
<TD VAlign=top>
Transitivity
</TD>
<TD VAlign=top>
<tt>x < y</tt> and <tt>y < z</tt> implies <tt>x < z</tt> <A href="#3">[3]</A>
</TD>
</tr>
</table>
<h3>Models</h3>
<UL>
<LI>
int
</UL>
<h3>Notes</h3>
<P><A name="1">[1]</A>
Only <tt>operator<</tt> is fundamental; the other inequality operators
are essentially syntactic sugar.
<P><A name="2">[2]</A>
Antisymmetry is a theorem, not an axiom: it follows from
irreflexivity and transitivity.
<P><A name="3">[3]</A>
Because of irreflexivity and transitivity, <tt>operator<</tt> always
satisfies the definition of a <i>partial ordering</i>. The definition of
a <i>strict weak ordering</i> is stricter, and the definition of a
<i>total ordering</i> is stricter still.
<h3>See also</h3>
<A href="http://www.sgi.com/tech/stl/EqualityComparable.html">EqualityComparable</A>, <A href="http://www.sgi.com/tech/stl/StrictWeakOrdering.html">StrictWeakOrdering</A>
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright © 2000</TD><TD>
<A HREF=http://www.lsc.nd.edu/~jsiek>Jeremy Siek</A>, Univ.of Notre Dame (<A HREF="mailto:jsiek@lsc.nd.edu">jsiek@lsc.nd.edu</A>)
</TD></TR></TABLE>
</BODY>
</HTML>
|