File: iterator_adaptors.htm

package info (click to toggle)
boost 1.27.0-3
  • links: PTS
  • area: main
  • in suites: woody
  • size: 19,908 kB
  • ctags: 26,546
  • sloc: cpp: 122,225; ansic: 10,956; python: 4,412; sh: 855; yacc: 803; makefile: 257; perl: 165; lex: 90; csh: 6
file content (939 lines) | stat: -rw-r--r-- 38,555 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>
<head>
    <meta name="generator" content="HTML Tidy, see www.w3.org">
    <meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
    <meta name="GENERATOR" content="Microsoft FrontPage 4.0">
    <meta name="ProgId" content="FrontPage.Editor.Document">

    <title>Boost Iterator Adaptor Library</title>
</head>

<body bgcolor="#FFFFFF" text="#000000">

    <img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align=
    "center" width="277" height="86"> 

    <h1>Boost Iterator Adaptor Library</h1>

    <h2>Introduction</h2>

    <p>The Iterator Adaptor library allows you transform an arbitrary ``base''
    type into a standard-conforming iterator with the behaviors you choose.
    Doing so is especially easy if the ``base'' type is itself an iterator. The
    library also supplies several example <a href=
    "../../more/generic_programming.html#adaptors">adaptors</a> which apply
    specific useful behaviors to arbitrary base iterators.

    <h2>Backward Compatibility Note</h2>

    <p>The library's interface has changed since it was first released, breaking
    backward compatibility:

    <ol>

    <li><a href="#policies">Policies classes</a> now operate on instances of the
    whole <tt>iterator_adaptor</tt> object, rather than just operating on the
    <tt>Base</tt> object. This change not only gives the policies class access
    to both members of a pair of interacting iterators, but also eliminates the
    need for the ugly <tt>type&lt;Reference&gt;</tt> and
    <tt>type&lt;Difference&gt;</tt> parameters to various policy functions.

    <li>The <a href="#named_template_parameters">Named Template Parameter</a>
    interface has been made simpler, easier to use, and compatible with more
    compilers.

    </ol>

    <h2>Other Documentation</h2>

    <p><a href="iterator_adaptors.pdf">``Policy Adaptors and the Boost Iterator
    Adaptor Library''</a> is a technical paper describing this library and the
    powerful design pattern on which it is based. It was presented at the <a
    href="http://www.oonumerics.org/tmpw01">C++ Template Workshop</a> at OOPSLA
    2001; the slides from the talk are available <a
    href="iterator_adaptors.ppt">here</a>. Please note that while the slides
    incorporate the minor interface changes described in the previous section,
    the paper does not.

    <h2>Table of Contents</h2>

    <ul>
      <li>
        Header <tt><a href=
        "../../boost/iterator_adaptors.hpp">boost/iterator_adaptors.hpp</a></tt>
        

        <ul>
          <li>
            Generalized Iterator Adaptor 

            <ul>
              <li>Class template <tt><a href=
              "#iterator_adaptor">iterator_adaptor</a></tt>

              <li><a href="#template_parameters">Template Parameters</a>

              <li><a href="#named_template_parameters">Named Template Parameters</a>

              <li><a href="#policies">The Policies Class</a>

              <li><a href="#additional_members">Additional Class Members</a>

              <li><a href="#example">Example</a>

              <li>(<tt>const</tt>/non-<tt>const</tt>) <a href=
              "#iterator_interactions">Iterator Interactions</a>

              <li><a href="#challenge">Challenge</a>

              <li><a href="#concept_model">Concept Model</a>

              <li><a href="#declaration_synopsis">Declaration Synopsis</a>

              <li><a href="#notes">Notes</a>
            </ul>

          <li>
            <a name="specialized_adaptors">Specialized Iterator Adaptors</a> 

            <ul>
              <li><a href="indirect_iterator.htm">Indirect Iterator Adaptor</a>

              <li><a href="reverse_iterator.htm">Reverse Iterator Adaptor</a>

              <li><a href="transform_iterator.htm">Transform Iterator
              Adaptor</a>

              <li><a href="projection_iterator.htm">Projection Iterator
              Adaptor</a>

              <li><a href="filter_iterator.htm">Filter Iterator Adaptor</a>
            </ul>
        </ul>

      <li>Header <tt><a href=
      "../../boost/counting_iterator.hpp">boost/counting_iterator.hpp</a></tt><br>

       <a href="counting_iterator.htm">Counting Iterator Adaptor</a>

      <li>Header <tt><a href=
      "../../boost/function_output_iterator.hpp">boost/function_output_iterator.hpp</a></tt><br>

       <a href="function_output_iterator.htm">Function Output Iterator Adaptor</a>
      <li>Header <tt><a href="../../boost/generator_iterator.hpp">boost/generator_iterator.hpp</a></tt><br>
       <a href="generator_iterator.htm">Generator Iterator Adaptor</a>
      <li>Header <tt><a href="../../boost/permutation_iterator.hpp">boost/permutation_iterator.hpp</a></tt><br>
       <a href="permutation_iterator.htm">Permutation Iterator Adaptor</a>
    </ul>

    <p><b><a href="../../people/dave_abrahams.htm">Dave
    Abrahams</a></b> started the library, applying <a href=
    "../../more/generic_programming.html#policy">policy class</a> technique and
    handling const/non-const iterator interactions. He also contributed the
    <tt><a href="indirect_iterator.htm">indirect_</a></tt> and <tt><a href=
    "reverse_iterator.htm">reverse_</a></tt> iterator generators, and expanded
    <tt><a href="counting_iterator.htm">counting_iterator_generator</a></tt> to
    cover all incrementable types. He edited most of the documentation,
    sometimes heavily.<br>
     <b><a href="../../people/jeremy_siek.htm">Jeremy
    Siek</a></b> contributed the <a href="transform_iterator.htm">transform
    iterator</a> adaptor, the integer-only version of <tt><a href=
    "counting_iterator.htm">counting_iterator_generator</a></tt>, 
    the <a href="function_output_iterator.htm">function output iterator</a> 
    adaptor, and most of the documentation.<br>
     <b><a href="http://www.boost.org/people/john_potter.htm">John
    Potter</a></b> contributed the <tt><a href=
    "projection_iterator.htm">projection_</a></tt> and <tt><a href=
    "filter_iterator.htm">filter_</a></tt> iterator generators and made some
    simplifications to the main <tt><a href=
    "#iterator_adaptor">iterator_adaptor</a></tt> template.<br>
    <b><a href="../../people/jens_maurer.htm">Jens Maurer</a></b>
    contributed the <a href="generator_iterator.htm">generator iterator</a>
    adaptor.<br>
    Toon Knapen contributed the <a href="permutation_iterator.htm">permutation
    iterator</a> adaptor.<br>

    <h2><a name="iterator_adaptor">Class template</a>
    <tt>iterator_adaptor</tt></h2>
    Implementing standard conforming iterators is a non-trivial task. There are
    some fine points such as the interactions between an iterator and its
    corresponding const_iterator, and there are myriad operators that should be
    implemented but are easily forgotten or mishandled, such as
    <tt>operator-&gt;()</tt>. Using <tt>iterator_adaptor</tt>, you can easily
    implement an iterator class, and even more easily extend and <a href=
    "../../more/generic_programming.html#adaptors">adapt</a> existing iterator
    types. Moreover, it is easy to make a pair of interoperable <tt>const</tt>
    and <tt>non-const</tt> iterators. 

    <p><tt>iterator_adaptor</tt> is declared like this:
<pre>
template &lt;class Base, class Policies, 
    class ValueOrNamedParam = typename std::iterator_traits&lt;Base&gt;::value_type,
    class ReferenceOrNamedParam = <i>...(see below)</i>,
    class PointerOrNamedParam = <i>...(see below)</i>,
    class CategoryOrNamedParam = typename std::iterator_traits&lt;Base&gt;::iterator_category,
    class DistanceOrNamedParam = typename std::iterator_traits&lt;Base&gt;::difference_type&gt;
struct iterator_adaptor;
</pre>

    <h3><a name="template_parameters">Template Parameters</a></h3>

    <p>Although <tt>iterator_adaptor</tt> takes seven template parameters,
    defaults have been carefully chosen to minimize the number of parameters
    you must supply in most cases, especially if <tt>BaseType</tt> is an
    iterator.

    <table border="1" summary="iterator_adaptor template parameters">
      <tr>
        <th>Parameter

        <th>Description

      <tr>
        <td><tt>BaseType</tt> 

        <td>The type being wrapped.

      <tr>
        <td><tt>Policies</tt> 

        <td>A <a href="../../more/generic_programming.html#policy">policy
        class</a> that supplies core functionality to the resulting iterator. A
        detailed description can be found <a href="#policies">below</a>.

      <tr>
        <td><tt>Value</tt> 

        <td>The <tt>value_type</tt> of the resulting iterator, unless const. If
        Value is <tt>const X</tt> the
        <tt>value_type</tt> will be (<i>non-</i><tt>const</tt>) <tt>X</tt><a href=
        "#1">[1]</a>. If the <tt>value_type</tt> you wish to use is an abstract
        base class see note <a href="#5">[5]</a>.<br>
         <b>Default:</b>
        <tt>std::iterator_traits&lt;BaseType&gt;::value_type</tt> <a href=
        "#2">[2]</a>

      <tr>
        <td><tt>Reference</tt> 

        <td>The <tt>reference</tt> type of the resulting iterator, and in
        particular, the result type of <tt>operator*()</tt>.<br>
         <b>Default:</b> If <tt>Value</tt> is supplied, <tt>Value&amp;</tt> is
        used. Otherwise
        <tt>std::iterator_traits&lt;BaseType&gt;::reference</tt> is used. <a href="#7">[7]</a>

      <tr>
        <td><tt>Pointer</tt> 

        <td>The <tt>pointer</tt> type of the resulting iterator, and in
        particular, the result type of <tt>operator-&gt;()</tt>.<br>
         <b>Default:</b> If <tt>Value</tt> was supplied, then <tt>Value*</tt>,
        otherwise <tt>std::iterator_traits&lt;BaseType&gt;::pointer</tt>. <a href="#7">[7]</a>

      <tr>
        <td><tt>Category</tt> 

        <td>The <tt>iterator_category</tt> type for the resulting iterator.<br>
         <b>Default:</b>
        <tt>std::iterator_traits&lt;BaseType&gt;::iterator_category</tt> 

      <tr>
        <td><tt>Distance</tt> 

        <td>The <tt>difference_type</tt> for the resulting iterator.<br>
         <b>Default:</b>
        <tt>std::iterator_traits&lt;BaseType&gt;::difference_type</tt> 

      <tr>
         <td><tt>NamedParam</tt>

         <td>A named template parameter (see below).
    </table>

    <h3><a name="named_template_parameters">Named Template Parameters</a></h3>
    
    With seven template parameters, providing arguments for
    <tt>iterator_adaptor</tt> in the correct order can be challenging.
    Also, often times one would like to specify the sixth or seventh
    template parameter, but use the defaults for the third through
    fifth. As a solution to these problems we provide a mechanism for
    naming the last five template parameters, and providing them in
    any order through a set of named template parameters. The following
    classes are provided for specifying the parameters. Any of these
    classes can be used for any of the last five template parameters
    of <tt>iterator_adaptor</tt>.
    <blockquote>
<pre>
template &lt;class Value&gt; struct value_type_is;
template &lt;class Reference&gt; struct reference_is;
template &lt;class Pointer&gt; struct pointer_is;
template &lt;class Distance&gt; struct difference_type_is;
template &lt;class Category&gt; struct iterator_category_is;
</pre>
    </blockquote>

    For example, the following adapts <tt>foo_iterator</tt> to create
    an <a href=
    "http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>
    with <tt>reference</tt> type <tt>foo</tt>, and whose other traits
    are determined according to the defaults described <a
    href="#template_parameters">above</a>.

    <blockquote>
<pre>
typedef iterator_adaptor&lt;foo_iterator, foo_policies,
  reference_is&lt;foo&gt;, iterator_category_is&lt;std::input_iterator_tag&gt;
  &gt; MyIterator;
</pre>
    </blockquote>

    
    <h3><a name="policies">The Policies Class</a></h3>

    <p>The main task in using <tt>iterator_adaptor</tt> is creating an
    appropriate <tt>Policies</tt> class. The <tt>Policies</tt> class will become
    the functional heart of the resulting iterator, supplying the core
    operations that determine its behavior. The <tt>iterator_adaptor</tt>
    template defines all of the operators required of a <a href=
    "http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
    Iterator</a> by dispatching to a <tt>Policies</tt> object. Your
    <tt>Policies</tt> class must implement a subset of the core iterator
    operations below corresponding to the iterator categories you want it to
    support.<br>
    <br>
    

    <table border="1" summary="iterator_adaptor Policies operations">
      <caption>
        <b>Policies Class Requirements</b><br>
        <tt><b>T</b></tt>: adapted iterator type; <tt><b>x, y</b></tt>: objects of type
        T; <tt><b>p</b></tt>: <tt>T::policies_type</tt>
         <tt><b>d</b></tt>:
        <tt>T::difference_type</tt>; <tt><b>i1</b></tt>, <tt><b>i2</b></tt>:
        <tt>T::base_type</tt>
      </caption>

      <tr>
        <th>Expression

        <th>Effects

        <th>Implements Operations

        <th>Required for Iterator Categories

      <tr>
        <td nowrap><tt>p.initialize(b)</tt>

        <td>optionally modify base iterator during iterator construction

        <td>constructors

        <td rowspan="4"><a href=
        "http://www.sgi.com/tech/stl/InputIterator.html">Input</a>/ <a href=
        "http://www.sgi.com/tech/stl/OutputIterator.html">Output</a>/ <a href=
        "http://www.sgi.com/tech/stl/ForwardIterator.html">Forward</a>/ <a
        href=
        "http://www.sgi.com/tech/stl/BidirectionalIterator.html">Bidirectional</a>/
        <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random&nbsp;Access</a> 

	  
      <tr>
        <td nowrap><tt>p.dereference(x)</tt>

        <td>returns an element of the iterator's <tt>reference</tt> type
        
        <td><tt>*x</tt>, <tt>x[d]</tt>


      <tr>
        <td nowrap><tt>p.equal(x, y)</tt> 

        <td>tests the iterator for equality

        <td><tt>i1&nbsp;==&nbsp;i2</tt>, <tt>i1&nbsp;!=&nbsp;i2</tt>

      <tr>
        <td nowrap><tt>p.increment(x)</tt> 

        <td>increments the iterator

        <td><tt>++p</tt>, <tt>p++</tt>

      <tr>
        <td nowrap><tt>p.decrement(x)</tt> 

        <td>decrements the iterator

        <td><tt>--x</tt>, <tt>x--</tt>

        <td><a href=
        "http://www.sgi.com/tech/stl/BidirectionalIterator.html">Bidirectional</a>/
        <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random&nbsp;Access</a> 

      <tr>
        <td nowrap><tt>p.distance(x, y)</tt> 

        <td>measures the distance between iterators

        <td><tt>y&nbsp;-&nbsp;x</tt>, <tt>x&nbsp;&lt;&nbsp;y</tt>

       <td rowspan="2"><a href=
         "http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
         Access</a> 

      <tr>
        <td nowrap><tt>p.advance(x, n)</tt> 

        <td>adds an integer offset to iterators

        <td>
<tt>x&nbsp;+&nbsp;d</tt>,
<tt>d&nbsp;+&nbsp;x</tt>,

<br>
<tt>x&nbsp;+=&nbsp;d</tt>,
<tt>x&nbsp;-&nbsp;d</tt>,<br>
<tt>x&nbsp;-=&nbsp;d</tt>
        
    </table>

    <p>The library also supplies a "trivial" policy class,
    <tt>default_iterator_policies</tt>, which implements all seven of the core
    operations in the usual way. If you wish to create an iterator adaptor that
    only changes a few of the base type's behaviors, then you can derive your
    new policy class from <tt>default_iterator_policies</tt> to avoid retyping
    the usual behaviors. You should also look at
    <tt>default_iterator_policies</tt> as the ``boilerplate'' for your own
    policy classes, defining functions with the same interface. This is the
    definition of <tt>default_iterator_policies</tt>:<br>
    <br>

    <blockquote>
<pre>
struct <a name="default_iterator_policies">default_iterator_policies</a>
{
    // Some of these members were defined static, but Borland got confused
    // and thought they were non-const. Also, Sun C++ does not like static
    // function templates.

    template &lt;class Base&gt;
    void initialize(Base&amp;)
        { }

    template &lt;class IteratorAdaptor&gt;
    typename IteratorAdaptor::reference dereference(const IteratorAdaptor&amp; x) const
        { return *x.base(); }

    template &lt;class IteratorAdaptor&gt;
    void increment(IteratorAdaptor&amp; x)
        { ++x.base(); }

    template &lt;class IteratorAdaptor&gt;
    void decrement(IteratorAdaptor&amp; x)
        { --x.base(); }

    template &lt;class IteratorAdaptor, class DifferenceType&gt;
    void advance(IteratorAdaptor&amp; x, DifferenceType n)
        { x.base() += n; }

    template &lt;class IteratorAdaptor1, class IteratorAdaptor2&gt;
    typename IteratorAdaptor1::difference_type
    distance(const IteratorAdaptor1&amp; x, const IteratorAdaptor2&amp; y) const
        { return y.base() - x.base(); }

    template &lt;class IteratorAdaptor1, class IteratorAdaptor2&gt;
    bool equal(const IteratorAdaptor1&amp; x, const IteratorAdaptor2&amp; y) const
        { return x.base() == y.base(); }
};
</pre></blockquote>

    <p>Template member functions are used throughout
    <tt>default_iterator_policies</tt> so that it can be employed with a wide
    range of iterators. If we had used concrete types above, we'd have tied the
    usefulness of <tt>default_iterator_policies</tt> to a particular range of
    adapted iterators. If you follow the same pattern with your
    <tt>Policies</tt> classes, you can use them to generate more specialized
    adaptors along the lines of <a href="#specialized_adaptors">those supplied by this library</a>.

    <h3><a name="additional_members">Additional Members</a></h3>
    In addition to all of the member functions required of a <a href=
    "http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
    Iterator</a>, the <tt>iterator_adaptor</tt> class template defines the
    following members. <br>
     <br>
     

    <table border="1" summary="additional iterator_adaptor members">
      <tr>
        <td><tt>explicit iterator_adaptor(const Base&amp;, const Policies&amp; =
        Policies())</tt>
         <br><br>
         Construct an adapted iterator from a base object and a policies
         object. As this constructor is <tt>explicit</tt>, it does not
         provide for implicit conversions from the <tt>Base</tt> type to
         the iterator adaptor.

      <tr>
        <td><tt>template &lt;class B, class V, class R, class P&gt;<br>
         iterator_adaptor(const
        iterator_adaptor&lt;B,Policies,V,R,P,Category,Distance&gt;&amp;)</tt>
        <br><br>
         This constructor allows for conversion from mutable to
        constant adapted iterators. See <a href=
        "#iterator_interactions">below</a> for more details.<br>
         Requires: <tt>B</tt> is convertible to <tt>Base</tt>.

      <tr>
        <td><tt>const base_type& base() const;</tt>
           <br><br>
         Return a const reference to the base object.

      <tr>        <td><tt>base_type& base();</tt>
         <br><br>
         Return a reference to the base object. This is to give the policies object
         access to the base object. See <a href="#policies">above</a> for policies
         iterator_adaptor interaction.<a href="#8">[8]</a>
    </table>

    <h3><a name="example">Example</a></h3>

    <p>It is often useful to automatically apply some function to the value
    returned by dereferencing an iterator. The <a href=
    "./transform_iterator.htm">transform iterator</a> makes it easy to create
    an iterator adaptor which does just that. Here we will show how easy it is
    to implement the transform iterator using the <tt>iterator_adaptor</tt>
    template.

    <p>We want to be able to adapt a range of iterators and functions, so the
    policies class will have a template parameter for the function type and it
    will have a data member of that type. We know that the function takes one
    argument and that we'll need to be able to deduce the <tt>result_type</tt>
    of the function so we can use it for the adapted iterator's
    <tt>value_type</tt>. <a href=
    "http://www.sgi.com/Technology/STL/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>
    is the <a href="../../more/generic_programming.html#concept">Concept</a>
    that fulfills those requirements.

    <p>To implement a transform iterator we will only change one of the base
    iterator's behaviors, so the <tt>transform_iterator_policies</tt> class can
    inherit the rest from <tt>default_iterator_policies</tt>. We will define the
    <tt>dereference()</tt> member function, which is used to implement
    <tt>operator*()</tt> of the adapted iterator. The implementation will
    dereference the base iterator and apply the function object. The complete
    code for <tt>transform_iterator_policies</tt> is:<br>
    <br>

<blockquote><pre>
template &lt;class AdaptableUnaryFunction&gt;
struct transform_iterator_policies : public default_iterator_policies
{
    transform_iterator_policies() { }

    transform_iterator_policies(const AdaptableUnaryFunction&amp; f)
        : m_f(f) { }
    
    template &lt;class IteratorAdaptor&gt;
    typename IteratorAdaptor::reference
    dereference(const IteratorAdaptor&amp; iter) const
        { return m_f(*iter.base()); }

    AdaptableUnaryFunction m_f;
};

</pre></blockquote>

    <p>The next step is to use the <tt>iterator_adaptor</tt> template to
    construct the transform iterator type. The nicest way to package the
    construction of the transform iterator is to create a <a href=
    "../../more/generic_programming.html#type_generator">type generator</a>.
    The first template parameter to the generator will be the type of the
    function object and the second will be the base iterator type. We use
    <tt>iterator_adaptor</tt> to define the transform iterator type as a nested
    <tt>typedef</tt> inside the <tt>transform_iterator_generator</tt> class.
    Because the function may return by-value, we must limit the
    <tt>iterator_category</tt> to <a href=
    "http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>, and
    the iterator's <tt>reference</tt> type cannot be a true reference (the
    standard allows this for input iterators), so in this case we can use few
    of <tt>iterator_adaptor</tt>'s default template arguments.<br>
    <br>


    <blockquote>
<pre>
template &lt;class AdaptableUnaryFunction, class Iterator&gt;
struct transform_iterator_generator
{
    typedef typename AdaptableUnaryFunction::result_type value_type;
public:
    typedef iterator_adaptor&lt;Iterator, 
        transform_iterator_policies&lt;AdaptableUnaryFunction&gt;,
        value_type, value_type, value_type*, std::input_iterator_tag&gt;
      type;
};
</pre>
    </blockquote>

    <p>As a finishing touch, we will create an <a href=
    "../../more/generic_programming.html#object_generator">object generator</a>
    for the transform iterator. Our object generator makes it more
    convenient to create a transform iterator.<br>
    <br>


    <blockquote>
<pre>
template &lt;class AdaptableUnaryFunction, class Iterator&gt;
typename transform_iterator_generator&lt;AdaptableUnaryFunction,Iterator&gt;::type
make_transform_iterator(Iterator base,
                        const AdaptableUnaryFunction&amp; f = AdaptableUnaryFunction())
{
    typedef typename transform_iterator_generator&lt;AdaptableUnaryFunction,
      Iterator&gt;::type result_t;
    return result_t(base, f);
}
</pre>
    </blockquote>

    <p>Here is an example that shows how to use a transform iterator to iterate
    through a range of numbers, multiplying each of them by 2 and printing the
    result to standard output.<br>
    <br>


    <blockquote>
<pre>
#include &lt;functional&gt;
#include &lt;algorithm&gt;
#include &lt;iostream&gt;
#include &lt;boost/iterator_adaptors.hpp&gt;

int main(int, char*[])
{
  int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
  const int N = sizeof(x)/sizeof(int);
  std::cout &lt;&lt; &quot;multiplying the array by 2:&quot; &lt;&lt; std::endl;
  std::copy(boost::make_transform_iterator(x, std::bind1st(std::multiplies&lt;int&gt;(), 2)),
      boost::make_transform_iterator(x + N, std::bind1st(std::multiplies&lt;int&gt;(), 2)),
      std::ostream_iterator&lt;int&gt;(std::cout, &quot; &quot;));
  std::cout &lt;&lt; std::endl;
  return 0;
}
</pre>
      This output is: 
<pre>
2 4 6 8 10 12 14 16
</pre>
    </blockquote>

    <h3><a name="iterator_interactions">Iterator Interactions</a></h3>

    <p>C++ allows <tt>const</tt> and non-<tt>const</tt> pointers to interact in
    the following intuitive ways:

    <ul>
      <li>a non-<tt>const</tt> pointer to <tt>T</tt> can be implicitly
      converted to a <tt>const</tt> pointer to <tt>T</tt>.

      <li><tt>const</tt> and non-<tt>const</tt> pointers to <tt>T</tt> can be
      freely mixed in comparison expressions.

      <li><tt>const</tt> and non-<tt>const</tt> pointers to <tt>T</tt> can be
      freely subtracted, in any order.
    </ul>

    Getting user-defined iterators to work together that way is nontrivial (see
    <a href="reverse_iterator.htm#interactions">here</a> for an example of where
    the C++ standard got it wrong), but <tt>iterator_adaptor</tt> can make it
    easy. The rules are as follows:

    <ul>
      <li><a name="interoperable">Adapted iterators that share the same <tt>Policies</tt>,
      <tt>Category</tt>, and <tt>Distance</tt> parameters are called
      <i>interoperable</i>.</a>

      <li>An adapted iterator can be implicitly converted to any other adapted
      iterator with which it is interoperable, so long as the <tt>Base</tt>
      type of the source iterator can be converted to the <tt>Base</tt> type of
      the target iterator.

      <li>Interoperable iterators can be freely mixed in comparison expressions
      so long as the <tt>Policies</tt> class has <tt>equal</tt> (and, for
      random access iterators, <tt>distance</tt>) members that can accept both
      <tt>Base</tt> types in either order.

      <li>Interoperable iterators can be freely mixed in subtraction
      expressions so long as the <tt>Policies</tt> class has a
      <tt>distance</tt> member that can accept both <tt>Base</tt> types in
      either order.
    </ul>

    <h4>Example</h4>
    
    <p>The <a href="projection_iterator.htm">Projection Iterator</a> adaptor is similar to the <a
href="./transform_iterator.htm">transform iterator adaptor</a> in that
its <tt>operator*()</tt> applies some function to the result of
dereferencing the base iterator and then returns the result. The
difference is that the function must return a reference to some
existing object (for example, a data member within the
<tt>value_type</tt> of the base iterator). 

    <p>
The <a
    href="projection_iterator.htm#projection_iterator_pair_generator">projection_iterator_pair_generator</a> template
    is a special two-<a href="../../more/generic_programming.html#type_generator">type generator</a> for mutable and constant versions of a
    projection iterator. It is defined as follows:
<blockquote>
<pre>
template &lt;class AdaptableUnaryFunction, class Iterator, class ConstIterator&gt;
struct projection_iterator_pair_generator {
    typedef typename AdaptableUnaryFunction::result_type value_type;
    typedef projection_iterator_policies&lt;AdaptableUnaryFunction&gt; policies;
public:
    typedef iterator_adaptor&lt;Iterator,policies,value_type&gt; iterator;
    typedef iterator_adaptor&lt;ConstIterator,policies,value_type,
        const value_type&amp;,const value_type*&gt; const_iterator;
};
</pre>
</blockquote>

<p>It is assumed that the <tt>Iterator</tt> and <tt>ConstIterator</tt> arguments are corresponding mutable
and constant iterators. <ul>
<li>
Clearly, then, the
<tt>projection_iterator_pair_generator</tt>'s <tt>iterator</tt> and
<tt>const_iterator</tt> are <a href="#interoperable">interoperable</a>, since
they share the same <tt>Policies</tt> and since <tt>Category</tt> and
<tt>Distance</tt> as supplied by <tt>std::iterator_traits</tt> through the
<a href="#template_parameters">default template parameters</a> to
<tt>iterator_adaptor</tt> should be the same.

<li>Since <tt>Iterator</tt> can presumably be converted to
<tt>ConstIterator</tt>, the projection <tt>iterator</tt> will be convertible to
the projection <tt>const_iterator</tt>.

<li> Since <tt>projection_iterator_policies</tt> implements only the
<tt>dereference</tt> operation, and inherits all other behaviors from
<tt><a
href="#default_iterator_policies">default_iterator_policies</a></tt>,
which has fully-templatized <tt>equal</tt> and <tt>distance</tt>
operations, the <tt>iterator</tt> and <tt>const_iterator</tt> can be
freely mixed in comparison and subtraction expressions.

</ul>

    <h3><a name="challenge">Challenge</a></h3>

    <p>There is an unlimited number of ways the <tt>iterator_adaptors</tt>
    class can be used to create iterators. One interesting exercise would be to
    re-implement the iterators of <tt>std::list</tt> and <tt>slist</tt>
    using <tt>iterator_adaptors</tt>, where the adapted <tt>Iterator</tt> types
    would be node pointers.

    <h3><a name="concept_model">Concept Model</a></h3>
    Depending on the <tt>Base</tt> and <tt>Policies</tt> template parameters,
    an <tt>iterator_adaptor</tt> can be a <a href=
    "http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>, <a
    href="http://www.sgi.com/tech/stl/ForwardIterator.html">Forward
    Iterator</a>, <a href=
    "http://www.sgi.com/tech/stl/BidirectionalIterator.html">Bidirectional
    Iterator</a>, or <a href=
    "http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
    Iterator</a>. 

    <h3><a name="declaration_synopsis">Declaration Synopsis</a></h3>
<pre>
template &lt;class Base, class Policies, 
    class Value = typename std::iterator_traits&lt;Base&gt;::value_type,
    class Reference = <i>...(see below)</i>,
    class Pointer = <i>...(see below)</i>,
    class Category = typename std::iterator_traits&lt;Base&gt;::iterator_category,
    class Distance = typename std::iterator_traits&lt;Base&gt;::difference_type
         &gt;
struct iterator_adaptor
{
    typedef Distance difference_type;
    typedef typename boost::remove_const&lt;Value&gt;::type value_type;
    typedef Pointer pointer;
    typedef Reference reference;
    typedef Category iterator_category;
    typedef Base base_type;
    typedef Policies policies_type;

    iterator_adaptor();
    explicit iterator_adaptor(const Base&amp;, const Policies&amp; = Policies());

    base_type&       base();
    const base_type& base() const;

    template &lt;class B, class V, class R, class P&gt;
    iterator_adaptor(
        const iterator_adaptor&lt;B,Policies,V,R,P,Category,Distance&gt;&amp;);

    reference operator*() const; <a href="#6">[6]</a>
    <i>operator_arrow_result_type</i> operator-&gt;() const; <a href=
"#3">[3]</a>
    <i>value_type</i> operator[](difference_type n) const; <a href="#3">[4]</a>, <a href="#6">[6]</a>

    iterator_adaptor&amp; operator++();
    iterator_adaptor&amp; operator++(int);
    iterator_adaptor&amp; operator--();
    iterator_adaptor&amp; operator--(int);

    iterator_adaptor&amp; operator+=(difference_type n);
    iterator_adaptor&amp; operator-=(difference_type n);

    iterator_adaptor&amp; operator-(Distance x) const;
};

template &lt;class B, class P, class V, class R, class Ptr, 
    class C, class D1, class D2&gt;
iterator_adaptor&lt;B,P,V,R,Ptr,C,D1&gt;
operator+(iterator_adaptor&lt;B,P,V,R,Ptr,C,D1&gt;, D2);

template &lt;class B, class P, class V, class R, class Ptr,
    class C, class D1, class D2&gt;
iterator_adaptor&lt;B,P,V,R,P,C,D1&gt;
operator+(D2, iterator_adaptor&lt;B,P,V,R,Ptr,C,D1&gt; p);

template &lt;class B1, class B2, class P, class V1, class V2,
    class R1, class R2, class P1, class P2, class C, class D&gt;
Distance operator-(const iterator_adaptor&lt;B1,P,V1,R1,P1,C,D&gt;&amp;, 
                   const iterator_adaptor&lt;B2,P,V2,R2,P2,C,D&gt;&amp;);

template &lt;class B1, class B2, class P, class V1, class V2,
    class R1, class R2, class P1, class P2, class C, class D&gt;
bool operator==(const iterator_adaptor&lt;B1,P,V1,R1,P1,C,D&gt;&amp;, 
                const iterator_adaptor&lt;B2,P,V2,R2,P2,C,D&gt;&amp;);

// and similarly for operators !=, &lt;, &lt;=, &gt;=, &gt;
</pre>

    <h3><a name="notes">Notes</a></h3>

    <p><a name="1">[1]</a> The standard specifies that the <tt>value_type</tt>
    of <tt>const</tt> iterators to <tt>T</tt> (e.g. <tt>const T*</tt>) is
    <tt><i>non-</i>const T</tt>, while the <tt>pointer</tt> and
    <tt>reference</tt> types for all <a href=
    "http://www.sgi.com/tech/stl/ForwardIterator.html">Forward Iterators</a> are
    <tt>const T*</tt> and <tt>const T&amp;</tt>, respectively. Stripping the
    <tt>const</tt>-ness of <tt>Value</tt> allows you to easily make a constant
    iterator by supplying a <tt>const</tt> type for <tt>Value</tt>, and allowing
    the defaults for the <tt>Pointer</tt> and <tt>Reference</tt> parameters to
    take effect. Although compilers that don't support partial specialization
    won't strip <tt>const</tt> for you, having a <tt>const value_type</tt> is
    often harmless in practice.

    <p><a name="2">[2]</a> If your compiler does not support partial
    specialization and the base iterator is a builtin pointer type, you
    will not be able to use the default for <tt>Value</tt> and will have to
    specify this type explicitly.

    <p><a name="3">[3]</a> The result type for the <tt>operator-&gt;()</tt>
    depends on the category and value type of the iterator and is somewhat
    complicated to describe. But be assured, it works in a stardard conforming
    fashion, providing access to members of the objects pointed to by the
    iterator.

    <p><a name="4">[4]</a> The result type of <tt>operator[]()</tt> is
    <tt>value_type</tt> instead of <tt>reference</tt> as might be expected.
    There are two reasons for this choice. First, the C++ standard only
    requires that the return type of an arbitrary <a href=
    "http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
    Iterator</a>'s <tt>operator[]</tt>be ``convertible to T'' (Table 76), so
    when adapting an arbitrary base iterator we may not have a reference to
    return. Second, and more importantly, for certain kinds of iterators,
    returning a reference could cause serious memory problems due to the
    reference being bound to a temporary object whose lifetime ends inside of
    the <tt>operator[]</tt>.

    <p><a name="5">[5]</a>
    The <tt>value_type</tt> of an iterator may not be
    an abstract base class, however many common uses of iterators
    never need the <tt>value_type</tt>, only the <tt>reference</tt> type.
    If you wish to create such an iterator adaptor, use a dummy
    type such as <tt>char</tt> for the <tt>Value</tt> parameter,
    and use a reference to your abstract base class for
    the <tt>Reference</tt> parameter. Note that such an iterator
    does not fulfill the C++ standards requirements for a
    <a href= "http://www.sgi.com/tech/stl/ForwardIterator.html">
    Forward Iterator</a>, so you will need to use a less restrictive
    iterator category such as <tt>std::input_iterator_tag</tt>.

    <p><a name="6">[6]</a>
    There is a common misconception that an iterator should have two
    versions of <tt>operator*</tt> and of <tt>operator[]</tt>, one
    version that is a <tt>const</tt> member function and one version
    that is non-<tt>const</tt>. Perhaps the source of this
    misconception is that containers typically have const and
    non-const versions of many of their member functions.  Iterators,
    however, are different. A particular iterator type can be either
    <i>mutable</i> or <i>constant</i> (but not both).  One can assign
    to and change the object pointed to by a mutable iterator whereas a
    constant iterator returns constant objects when dereferenced. Whether
    the iterator object itself is <tt>const</tt> has nothing to do with
    whether the iterator is mutable or constant.  This is analogous to
    the way built-in pointer types behave.  For example, one can
    modify objects pointed to by a <tt>const</tt> pointer
<pre>
    int* const x = new int;
    int i = 3;
    *x = i;
</pre>
    but one cannot modify objects pointed to by a pointer
    to <tt>const</tt>
<pre>
    int const* x = new int;
    int i = 3;
    *x = i;
</pre>

    <p><a name="7">[7]</a>
    If you are using a compiler that does not have a version of
    <tt>std::iterator_traits</tt> that works for pointers (i.e., if your
    compiler does not support partial specialization) then if the
    <tt>Base</tt> type is a const pointer, then the correct defaults
    for the <tt>reference</tt> and <tt>pointer</tt> types can not be
    deduced. You must specify these types explicitly.
    <p><a name="8">[8]</a>
    Exposing the base object might be considered as being dangerous.
    A possible fix would require compiler support for template friends. 
    As this is not widely available today, the base object remains exposed for now.

    <hr>

    <p>Revised 
    <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->30 Nov 2001<!--webbot bot="Timestamp" endspan i-checksum="15239" -->


    <p>&copy; Copyright Dave Abrahams and Jeremy Siek 2001. Permission to copy,
    use, modify, sell and distribute this document is granted provided this
    copyright notice appears in all copies. This document is provided "as is"
    without express or implied warranty, and with no claim as to its
    suitability for any purpose. 

</body>

    <!--  LocalWords:  HTML html charset alt gif abrahams htm const iterator
        incrementable david abrahams
         -->
     
    <!--  LocalWords:  jeremy siek mishandled interoperable typename struct Iter iter src
         -->
     
    <!--  LocalWords:  int bool ForwardIterator BidirectionalIterator BaseIterator
         -->
     
    <!--  LocalWords:  RandomAccessIterator DifferenceType AdaptableUnaryFunction
         -->
     
    <!--  LocalWords:  iostream hpp sizeof InputIterator constness ConstIterator
         David Abrahams
         -->
<!--  LocalWords:  Iterators dereferenced
 -->
</html>