File: operators.htm

package info (click to toggle)
boost 1.27.0-3
  • links: PTS
  • area: main
  • in suites: woody
  • size: 19,908 kB
  • ctags: 26,546
  • sloc: cpp: 122,225; ansic: 10,956; python: 4,412; sh: 855; yacc: 803; makefile: 257; perl: 165; lex: 90; csh: 6
file content (1387 lines) | stat: -rw-r--r-- 60,414 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Header &lt;boost/operators.hpp&gt; Documentation</title>
</head>

<body text="black" bgcolor="white" link="blue" vlink="purple" alink="red">

<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)"
align="middle" width="277" height="86">Header <cite>&lt;<a
href="../../boost/operators.hpp">boost/operators.hpp</a>&gt;</cite></h1>

<p>The header <cite>&lt;<a
href="../../boost/operators.hpp">boost/operators.hpp</a>&gt;</cite>
supplies several sets of class templates (in namespace
<code>boost</code>).  These templates define operators at namespace
scope in terms of a minimal number of fundamental operators
provided by the class.</p>

<h2><a name="contents">Contents</a></h2>

<ul>
	<li><a href="#contents">Contents</a></li>
	<li><a href="#rationale">Rationale</a>
	<ul>
		<li><a href="#semantics">Summary of Template Semantics</a></li>
		<li><a href="#concepts_note">Use of <i>concepts</i></a></li>
	</ul></li>
	<li><a href="#usage">Usage</a>
	<ul>
		<li><a href="#two_arg">Two-Argument Template Forms</a>
		<ul>
			<li><a href="#two_arg_gen">General Considerations</a></li>
			<li><a href="#mixed_arithmetics">Mixed arithmetics</a></li>
		</ul></li>
		<li><a href="#chaining">Base Class Chaining and Object Size</a></li>
		<li><a href="#explicit_instantiation">Separate, Explicit
			Instantiation</a></li>
		<li><a href="#portability">Requirement Portability</a></li>
	</ul></li>
	<li><a href="#example">Example</a></li>
	<li><a href="#arithmetic">Arithmetic operators</a>
	<ul>
		<li><a href="#smpl_oprs">Simple Arithmetic Operators</a>
		<ul>
			<li><a href="#ordering">Ordering Note</a></li>
		</ul></li>
		<li><a href="#grpd_oprs">Grouped Arithmetic Operators</a></li>
		<li><a href="#ex_oprs">Example Templates</a></li>
		<li><a href="#a_demo">Arithmetic Operators Demonstration
			and Test Program</a></li>
	</ul></li>
	<li><a href="#deref">Dereference Operators and Iterator
		Helpers</a>
	<ul>
		<li><a href="#dereference">Dereference operators</a></li>
		<li><a href="#grpd_iter_oprs">Grouped Iterator Operators</a></li>
		<li><a href="#iterator">Iterator Helpers</a>
		<ul>
			<li><a href="#iterator_helpers_notes">Iterator Helper
				Notes</a></li>
		</ul></li>
		<li><a href="#i_demo">Iterator Demonstration and Test
			Program</a></li>
	</ul></li>
	<li><a href="#contributors">Contributors</a></li>
	<li><a href="#old_lib_note">Note for Users of Older Versions</a></li>
</ul>

<h2><a name="rationale">Rationale</a></h2>

<p>Overloaded operators for class types typically occur in groups.  If
you can write <code>x + y</code>, you probably also want to be able to
write <code>x += y</code>.  If you can write <code>x &lt; y,</code> you
also want <code>x &gt; y, x &gt;= y,</code> and <code>x &lt;= y</code>. 
Moreover, unless your class has really surprising behavior, some of
these related operators can be defined in terms of others (e.g. <code>x
&gt;= y &lt;=&gt; !(x &lt; y)</code>).  Replicating this boilerplate for
multiple classes is both tedious and error-prone.  The <cite><a
href="../../boost/operators.hpp">boost/operators.hpp</a></cite>
templates help by generating operators for you at namespace scope based
on other operators you've defined in your class.</p>

<p>If, for example, you declare a class like this:</p>

<blockquote>
<pre>class MyInt
    : boost::operators&lt;MyInt&gt;
{
    bool operator&lt;(const MyInt&amp; x) const; 
    bool operator==(const MyInt&amp; x) const;
    MyInt&amp; operator+=(const MyInt&amp; x);    
    MyInt&amp; operator-=(const MyInt&amp; x);    
    MyInt&amp; operator*=(const MyInt&amp; x);    
    MyInt&amp; operator/=(const MyInt&amp; x);    
    MyInt&amp; operator%=(const MyInt&amp; x);    
    MyInt&amp; operator|=(const MyInt&amp; x);    
    MyInt&amp; operator&amp;=(const MyInt&amp; x);    
    MyInt&amp; operator^=(const MyInt&amp; x);    
    MyInt&amp; operator++();    
    MyInt&amp; operator--();    
};</pre>
</blockquote>

<p>then the <code><a href="#operators1">operators&lt;&gt;</a></code>
template adds more than a dozen additional operators, such as
<code>operator&gt;</code>, <code>&lt;=</code>, <code>&gt;=</code>, and
(binary) <code>+</code>.  <a href="#two_arg">Two-argument forms</a> of
the templates are also provided to allow interaction with other types.</p>

<h3>Summary of Template <a name="semantics">Semantics</a></h3>

<ol>
	<li>Each operator template completes the concept(s) it describes by
		defining overloaded operators for its target class.</li>

	<li>The name of an operator class template indicates the <a
		href="#concepts_note">concept</a> that its target class will
		model.</li>

	<li>Usually, the target class uses an instantation of the operator class
		template as a base class.  Some operator templates support an
		<a href="#explicit_instantiation">alternate method</a>.</li>

	<li>The concept can be compound, <i>i.e.</i> it may represent a
		common combination of other, simpler concepts.</li>

	<li>Most operator templates require their target class to support
		operations related to the operators supplied by the template. In
		accordance with widely accepted <a
		href="http://www.gotw.ca/gotw/004.htm">coding style
		recommendations</a>, the target class is often required to
		supply the assignment counterpart operator of the concept's
		&quot;main operator.&quot;  For example, the <code>addable</code>
		template requires <code>operator+=(T const&amp;)</code> and
		in turn supplies <code>operator+(T const&amp;, T
		const&amp;)</code>.</li>
</ol>

<h3>Use of <i><a name="concepts_note">concepts</a></i></h3>

<p>The discussed concepts are not necessarily the standard library's
concepts (CopyConstructible, <i>etc.</i>), although some of them could
be; they are what we call <i>concepts with a small 'c'</i>.  In
particular, they are different from the former ones in that they <em>do
not</em> describe precise semantics of the operators they require to
be defined, except the requirements that (a) the semantics of the
operators grouped in one concept should be consistent (<i>e.g.</i>
effects of evaluating of <code>a += b</code> and <code>a = a + b</code>
expressions should be the same), and (b) that the return types of the
operators should follow semantics of return types of corresponding
operators for built-in types (<i>e.g.</i> <code>operator&lt;</code>
should return a type convertible to <code>bool</code>, and
<code>T::operator-=</code> should return type convertible to
<code>T</code>). Such &quot;loose&quot; requirements make operators
library applicable to broader set of target classes from different
domains, <i>i.e.</i> eventually more useful.</p>

<h2><a name="usage">Usage</a></h2>

<h3><a name="two_arg">Two-Argument</a> Template Forms</h3>

<h4><a name="two_arg_gen">General Considerations</a></h4>

<p>The arguments to a binary operator commonly have identical types, but
it is not unusual to want to define operators which combine different
types.  For <a href="#example">example</a>, one might want to multiply a
mathematical vector by a scalar.  The two-argument template forms of the
arithmetic operator templates are supplied for this purpose.  When
applying the two-argument form of a template, the desired return type of
the operators typically determines which of the two types in question
should be derived from the operator template.  For example, if the
result of <code>T + U</code> is of type <code>T</code>, then
<code>T</code> (not <code>U</code>) should be derived from <code><a
href="#addable2">addable&lt;T, U&gt;</a></code>.  The comparison
templates (<code><a href="#less_than_comparable2">less_than_comparable&lt;T,
U&gt;</a></code>, <code><a href="#equality_comparable2">equality_comparable&lt;T,
U&gt;</a></code>, <code><a href="#equivalent2">equivalent&lt;T, U&gt;</a></code>,
and <code><a href="#partially_ordered2">partially_ordered&lt;T, U&gt;</a></code>)
are exceptions to this guideline, since the return type of the operators
they define is <code>bool</code>.</p>

<p>On compilers which do not support partial specialization, the
two-argument forms must be specified by using the names shown below with
the trailing <code>'2'</code>.  The single-argument forms with the
trailing <code>'1'</code> are provided for symmetry and to enable
certain applications of the <a href="#chaining">base class chaining</a>
technique.</p>

<h4><a name="mixed_arithmetics">Mixed Arithmetics</a></h4>

<p>Another application of the two-argument template forms is for
mixed arithmetics between a type <code>T</code> and a type <code>U</code>
that is convertible to <code>T</code>.  In this case there are two ways
where the two-argument template forms are helpful: one is to provide
the respective signatures for operator overloading, the second is
performance.</p>

<p>With respect to the operator overloading assume <i>e.g.</i> that
<code>U</code> is <code>int</code>, that <code>T</code> is an user-defined
unlimited integer type, and that <code>double operator-(double, const
T&amp;)</code> exists.  If one wants to compute <code>int - T</code> and
does not provide <code>T operator-(int, const T&amp;)</code>, the
compiler will consider <code>double operator-(double, const T&amp;)</code>
to be a better match than <code>T operator-(const T&amp;, const
T&amp;)</code>, which will probably be different from the user's intention.
To define a complete set of operator signatures, additional 'left' forms
of the two-argument template forms are provided (<code><a
href="#subtractable2_left">subtractable2_left&lt;T, U&gt;</a></code>,
<code><a href="#dividable2_left">dividable2_left&lt;T, U&gt;</a></code>,
<code><a href="#modable2_left">modable2_left&lt;T, U&gt;</a></code>) that
define the signatures for non-commutative operators where <code>U</code>
appears on the left hand side (<code>operator-(const U&amp;, const
T&amp;)</code>, <code>operator/(const U&amp;, const T&amp;)</code>,
<code>operator%(const U&amp;, const T&amp;)</code>).</p>

<p>With respect to the performance observe that when one uses the
single type binary operator for mixed type arithmetics, the type
<code>U</code> argument has to be converted to type <code>T</code>.  In
practice, however, there are often more efficient implementations of,
say <code>T::operator-=(const U&amp;)</code> that avoid unnecessary
conversions from <code>U</code> to <code>T</code>.  The two-argument
template forms of the arithmetic operator create additional operator
interfaces that use these more efficient implementations.  There is, however,
no performance gain in the 'left' forms: they still need a conversion
from <code>U</code> to <code>T</code> and have an implementation
equivalent to the code that would be automatically created by the compiler
if it considered the single type binary operator to be the best match.</p>

<h3>Base Class <a name="chaining">Chaining</a> and Object Size</h3>

<p>Every operator class template, except the <a href="#ex_oprs">arithmetic
examples</a> and the <a href="#iterator">iterator helpers</a>, has an
additional, but optional, template type parameter <code>B</code>.  This
parameter will be a publicly-derived base class of the instantiated template.
This means it must be a class type.  It can be used to avoid the bloating of
object sizes that is commonly associated with multiple-inheritance from
several empty base classes (see the <a href="#old_lib_note">note for users of
older versions</a> for more details).  To provide support for a group of
operators, use the <code>B</code> parameter to chain operator templates
into a single-base class hierarchy, demostrated in the <a href="#example">usage
example</a>.  The technique is also used by the composite operator templates
to group operator definitions.  If a chain becomes too long for the compiler to
support, try replacing some of the operator templates with a single grouped
operator template that chains the old templates together; the length limit only
applies to the number of templates directly in the chain, not those hidden in
group templates.</p>

<p><strong>Caveat:</strong> to chain to a base class which is
<em>not</em> a Boost operator template when using the <a
href="#two_arg">single-argument form</a> of a Boost operator template,
you must specify the operator template with the trailing
<code>'1'</code> in its name.  Otherwise the library will assume you
mean to define a binary operation combining the class you intend to use
as a base class and the class you're deriving.</p>

<h3>Separate, <a name="explicit_instantiation">Explicit Instantiation</a></h3>

<p>On some compilers (<i>e.g.</i> Borland, GCC) even single-inheritance seems
to cause an increase in object size in some cases.  If you are not defining
a class template, you may get better object-size performance by avoiding
derivation altogether, and instead explicitly instantiating the operator
template as follows:</p>

<blockquote><pre>
    class myclass // lose the inheritance...
    {
        //...
    };

    // explicitly instantiate the operators I need.
    template struct less_than_comparable&lt;myclass&gt;;
    template struct equality_comparable&lt;myclass&gt;;
    template struct incrementable&lt;myclass&gt;;
    template struct decrementable&lt;myclass&gt;;
    template struct addable&lt;myclass,long&gt;;
    template struct subtractable&lt;myclass,long&gt;;
</pre></blockquote>

<p>Note that some operator templates cannot use this workaround and must
be a base class of their primary operand type.  Those templates define
operators which must be member functions, and the workaround needs the
operators to be independent friend functions.  The relevant templates are:</p>

<ul>
	<li><code><a href="#dereferenceable">dereferenceable&lt;&gt;</a></code></li>
	<li><code><a href="#indexable">indexable&lt;&gt;</a></code></li>
	<li>Any composite operator template that includes at least one of the
	    above</li>
</ul>

<h3>Requirement <a name="portability">Portability</a></h3>

<p>Many compilers (<i>e.g.</i> MSVC 6.3, GCC 2.95.2) will not enforce
the requirements in the operator template tables unless the operations
which depend on them are actually used.  This is not standard-conforming
behavior.  In particular, although it would be convenient to derive all
your classes which need binary operators from the
<code><a href="#operators1">operators&lt;&gt;</a></code>
and <code><a href="#operators2">operators2&lt;&gt;</a></code>
templates, regardless of whether they implement all the requirements
of those templates, this shortcut is not portable.  Even if this currently
works with your compiler, it may not work later.</p>

<h2><a name="example">Example</a></h2>

<p>This example shows how some of the <a href="#arithmetic">arithmetic
operator templates</a> can be used with a geometric point class (template).</p>

<pre>
template &lt;class T&gt;
class point    // note: private inheritance is OK here!
    : boost::addable&lt; point&lt;T&gt;          // point + point
    , boost::subtractable&lt; point&lt;T&gt;     // point - point
    , boost::dividable2&lt; point&lt;T&gt;, T    // point / T
    , boost::multipliable2&lt; point&lt;T&gt;, T // point * T, T * point
      &gt; &gt; &gt; &gt;
{
public:
    point(T, T);
    T x() const;
    T y() const;

    point operator+=(const point&amp;);
    // point operator+(point, const point&amp;) automatically
    // generated by addable.

    point operator-=(const point&amp;);
    // point operator-(point, const point&amp;) automatically
    // generated by subtractable.

    point operator*=(T);
    // point operator*(point, const T&amp;) and
    // point operator*(const T&amp;, point) auto-generated
    // by multipliable.

    point operator/=(T);
    // point operator/(point, const T&amp;) auto-generated
    // by dividable.
private:
    T x_;
    T y_;
};

// now use the point&lt;&gt; class:

template &lt;class T&gt;
T length(const point&lt;T&gt; p)
{
    return sqrt(p.x()*p.x() + p.y()*p.y());
}

const point&lt;float&gt; right(0, 1);
const point&lt;float&gt; up(1, 0);
const point&lt;float&gt; pi_over_4 = up + right;
const point&lt;float&gt; pi_over_4_normalized = pi_over_4 / length(pi_over_4);
</pre>

<h2><a name="arithmetic">Arithmetic</a> Operators</h2>

<p>The arithmetic operator templates ease the task of creating a custom
numeric type.  Given a core set of operators, the templates add related
operators to the numeric class.  These operations are like the ones the
standard arithmetic types have, and may include comparisons, adding,
incrementing, logical and bitwise manipulations, <i>etc</i>.  Further, since
most numeric types need more than one of these operators, some
templates are provided to combine several of the basic operator
templates in one declaration.</p>

<p>The requirements for the types used to instantiate the simple operator
templates are specified in terms of expressions which must be valid and
the expression's return type.  The composite operator templates only list
what other templates they use.  The supplied operations and requirements
of the composite operator templates can be inferred from the operations and
requirements of the listed components.</p>

<h3><a name="smpl_oprs">Simple Arithmetic Operators</a></h3>

<p>These templates are &quot;simple&quot; since they provide operators
based on a single operation the base type has to provide.  They have an
additional optional template parameter <code>B</code>, which is not shown,
for the <a href="#chaining">base class chaining</a> technique.

<table cellpadding="5" border="1" align="center">
	<caption>Simple Arithmetic Operator Template Classes</caption>
	<tr>
		<td colspan="3"><table align="center" border="1">
			<caption><em>Key</em></caption>
			<tr>
				<td><code>T</code>: primary operand type</td>
				<td><code>U</code>: alternate operand type</td>
			</tr>
			<tr>
				<td><code>t</code>, <code>t1</code>: values of type
				 <code>T</code></td>
				<td><code>u</code>: value of type <code>U</code></td>
			</tr>
		</table></td>
	</tr>
	<tr>
		<th>Template</th>
		<th>Supplied Operations</th>
		<th>Requirements</th>
	</tr>
	<tr>
		<td><code><a name="less_than_comparable1">less_than_comparable&lt;T&gt;</a></code><br>
		    <code>less_than_comparable1&lt;T&gt;</code></td>
		<td><code>bool operator&gt;(const T&amp;, const T&amp;)</code><br>
		    <code>bool operator&lt;=(const T&amp;, const T&amp;)</code><br>
		    <code>bool operator&gt;=(const T&amp;, const T&amp;)</code></td>
		<td><code>t &lt; t1</code>.<br>
		    Return convertible to <code>bool</code>.  See the <a
		    href="#ordering">Ordering Note</a>.</td>
	</tr>
	<tr>
		<td><code><a name="less_than_comparable2">less_than_comparable&lt;T, U&gt;</a></code><br>
		    <code>less_than_comparable2&lt;T, U&gt;</code></td>
		<td><code>bool operator&lt;=(const T&amp;, const U&amp;)</code><br>
		    <code>bool operator&gt;=(const T&amp;, const U&amp;)</code><br>
		    <code>bool operator&gt;(const U&amp;, const T&amp;)</code><br>
		    <code>bool operator&lt;(const U&amp;, const T&amp;)</code><br>
		    <code>bool operator&lt;=(const U&amp;, const T&amp;)</code><br>
		    <code>bool operator&gt;=(const U&amp;, const T&amp;)</code></td>
		<td><code>t &lt; u</code>.  <code>t &gt; u</code>.<br>
		    Returns convertible to <code>bool</code>.  See the <a
		    href="#ordering">Ordering Note</a>.</td>
	</tr>
	<tr>
		<td><code><a name="equality_comparable1">equality_comparable&lt;T&gt;</a></code><br>
		    <code>equality_comparable1&lt;T&gt;</code></td>
		<td><code>bool operator!=(const T&amp;, const T&amp;)</code></td>
		<td><code>t == t1</code>.<br>
		    Return convertible to <code>bool</code>.</td>
	</tr>
	<tr>
		<td><code><a name="equality_comparable2">equality_comparable&lt;T, U&gt;</a></code><br>
		    <code>equality_comparable2&lt;T, U&gt;</code></td>
		<td><code>friend bool operator==(const U&amp;, const T&amp;)</code><br>
		   <code>friend bool operator!=(const U&amp;, const T&amp;)</code><br>
		    <code>friend bool operator!=( const T&amp;, const U&amp;)</code></td>
		<td><code>t == u</code>.<br>
		    Return convertible to <code>bool</code>.</td>
	</tr>
	<tr>
		<td><code><a name="addable1">addable&lt;T&gt;</a></code><br>
		    <code>addable1&lt;T&gt;</code></td>
		<td><code>T operator+(T, const T&amp;)</code></td>
		<td><code>t += t1</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="addable2">addable&lt;T, U&gt;</a></code><br>
		    <code>addable2&lt;T, U&gt;</code></td>
		<td><code>T operator+(T, const U&amp;)</code><br>
		    <code>T operator+(const U&amp;, T )</code></td>
		<td><code>t += u</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="subtractable1">subtractable&lt;T&gt;</a></code><br>
		    <code>subtractable1&lt;T&gt;</code></td>
		<td><code>T operator-(T, const T&amp;)</code></td>
		<td><code>t -= t1</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="subtractable2">subtractable&lt;T, U&gt;</a></code><br>
		    <code>subtractable2&lt;T, U&gt;</code></td>
		<td><code>T operator-(T, const U&amp;)</code></td>
		<td><code>t -= u</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="subtractable2_left">subtractable2_left&lt;T, U&gt;</a></code></td>
		<td><code>T operator-(const U&amp;, const T&amp;)</code></td>
		<td><code>T temp(u); temp -= t</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="multipliable1">multipliable&lt;T&gt;</a></code><br>
		    <code>multipliable1&lt;T&gt;</code></td>
		<td><code>T operator*(T, const T&amp;)</code></td>
		<td><code>t *= t1</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="multipliable2">multipliable&lt;T, U&gt;</a></code><br>
		    <code>multipliable2&lt;T, U&gt;</code></td>
		<td><code>T operator*(T, const U&amp;)</code><br>
		    <code>T operator*(const U&amp;, T )</code></td>
		<td><code>t *= u</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="dividable1">dividable&lt;T&gt;</a></code><br>
		    <code>dividable1&lt;T&gt;</code></td>
		<td><code>T operator/(T, const T&amp;)</code></td>
		<td><code>t /= t1</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="dividable2">dividable&lt;T, U&gt;</a></code><br>
		    <code>dividable2&lt;T, U&gt;</code></td>
		<td><code>T operator/(T, const U&amp;)</code></td>
		<td><code>t /= u</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="dividable2_left">dividable2_left&lt;T, U&gt;</a></code></td>
		<td><code>T operator/(const U&amp;, const T&amp;)</code></td>
		<td><code>T temp(u); temp /= t</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="modable1">modable&lt;T&gt;</a></code><br>
		    <code>modable1&lt;T&gt;</code></td>
		<td><code>T operator%(T, const T&amp;)</code></td>
		<td><code>t %= t1</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="modable2">modable&lt;T, U&gt;</a></code><br>
		    <code>modable2&lt;T, U&gt;</code></td>
		<td><code>T operator%(T, const U&amp;)</code></td>
		<td><code>t %= u</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="modable2_left">modable2_left&lt;T, U&gt;</a></code></td>
		<td><code>T operator%(const U&amp;, const T&amp;)</code></td>
		<td><code>T temp(u); temp %= t</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="orable1">orable&lt;T&gt;</a></code><br>
		    <code>orable1&lt;T&gt;</code></td>
		<td><code>T operator|(T, const T&amp;)</code></td>
		<td><code>t |= t1</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="orable2">orable&lt;T, U&gt;</a></code><br>
		    <code>orable2&lt;T, U&gt;</code></td>
		<td><code>T operator|(T, const U&amp;)</code><br>
		    <code>T operator|(const U&amp;, T )</code></td>
		<td><code>t |= u</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="andable1">andable&lt;T&gt;</a></code><br>
		    <code>andable1&lt;T&gt;</code></td>
		<td><code>T operator&amp;(T, const T&amp;)</code></td>
		<td><code>t &amp;= t1</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="andable2">andable&lt;T, U&gt;</a></code><br>
		    <code>andable2&lt;T, U&gt;</code></td>
		<td><code>T operator&amp;(T, const U&amp;)</code><br>
		    <code>T operator&amp;(const U&amp;, T)</code></td>
		<td><code>t &amp;= u</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="xorable1">xorable&lt;T&gt;</a></code><br>
		    <code>xorable1&lt;T&gt;</code></td>
		<td><code>T operator^(T, const T&amp;)</code></td>
		<td><code>t ^= t1</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="xorable2">xorable&lt;T, U&gt;</a></code><br>
		    <code>xorable2&lt;T, U&gt;</code></td>
		<td><code>T operator^(T, const U&amp;)</code><br>
		    <code>T operator^(const U&amp;, T )</code></td>
		<td><code>t ^= u</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="incrementable">incrementable&lt;T&gt;</a></code></td>
		<td><code>T operator++(T&amp; x, int)</code></td>
		<td><code>T temp(x); ++x; return temp;</code><br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="decrementable">decrementable&lt;T&gt;</a></code></td>
		<td><code>T operator--(T&amp; x, int)</code></td>
		<td><code>T temp(x); --x; return temp;</code><br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="left_shiftable1">left_shiftable&lt;T&gt;</a></code><br>
		   <code>left_shiftable1&lt;T&gt;</code></td>
		<td><code>T operator&lt;&lt;(T, const T&amp;)</code></td>
		<td><code>t &lt;&lt;= t1</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="left_shiftable2">left_shiftable&lt;T, U&gt;</a></code><br>
		   <code>left_shiftable2&lt;T, U&gt;</code></td>
		<td><code>T operator&lt;&lt;(T, const U&amp;)</code></td>
		<td><code>t &lt;&lt;= u</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="right_shiftable1">right_shiftable&lt;T&gt;</a></code><br>
		   <code>right_shiftable1&lt;T&gt;</code></td>
		<td><code>T operator&gt;&gt;(T, const T&amp;)</code></td>
		<td><code>t &gt;&gt;= t1</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="right_shiftable2">right_shiftable&lt;T, U&gt;</a></code><br>
		   <code>right_shiftable2&lt;T, U&gt;</code></td>
		<td><code>T operator&gt;&gt;(T, const U&amp;)</code></td>
		<td><code>t &gt;&gt;= u</code>.<br>
		    Return convertible to <code>T</code>.</td>
	</tr>
	<tr>
		<td><code><a name="equivalent1">equivalent&lt;T&gt;</a></code><br>
		    <code>equivalent1&lt;T&gt;</code></td>
		<td><code>bool operator==(const T&amp;, const T&amp;)</code></td>
		<td><code>t &lt; t1</code>.<br>
		    Return convertible to <code>bool</code>.  See the <a
		    href="#ordering">Ordering Note</a>.</td>
	</tr>
	<tr>
		<td><code><a name="equivalent2">equivalent&lt;T, U&gt;</a></code><br>
		    <code>equivalent2&lt;T, U&gt;</code></td>
		<td><code>bool operator==(const T&amp;, const U&amp;)</code></td>
		<td><code>t &lt; u</code>.  <code>t &gt; u</code>.<br>
		    Returns convertible to <code>bool</code>.  See the <a
		    href="#ordering">Ordering Note</a>.</td>
	</tr>
	<tr>
		<td><code><a name="partially_ordered1">partially_ordered&lt;T&gt;</a></code><br>
		    <code>partially_ordered1&lt;T&gt;</code></td>
		<td><code>bool operator&gt;(const T&amp;, const T&amp;)</code><br>
		    <code>bool operator&lt;=(const T&amp;, const T&amp;)</code><br>
		    <code>bool operator&gt;=(const T&amp;, const T&amp;)</code></td>
		<td><code>t &lt; t1</code>.  <code>t == t1</code>.<br>
		    Returns convertible to <code>bool</code>.  See the <a
		    href="#ordering">Ordering Note</a>.</td>
	</tr>
	<tr>
		<td><code><a name="partially_ordered2">partially_ordered&lt;T, U&gt;</a></code><br>
		    <code>partially_ordered2&lt;T, U&gt;</code></td>
		<td><code>bool operator&lt;=(const T&amp;, const U&amp;)</code><br>
		    <code>bool operator&gt;=(const T&amp;, const U&amp;)</code><br>
		    <code>bool operator&gt;(const U&amp;, const T&amp;)</code><br>
		    <code>bool operator&lt;(const U&amp;, const T&amp;)</code><br>
		    <code>bool operator&lt;=(const U&amp;, const T&amp;)</code><br>
		    <code>bool operator&gt;=(const U&amp;, const T&amp;)</code></td>
		<td><code>t &lt; u</code>.  <code>t &gt; u</code>.  <code>t == u</code>.<br>
		    Returns convertible to <code>bool</code>.  See the <a
		    href="#ordering">Ordering Note</a>.</td>
	</tr>
</table>

<h4><a name="ordering">Ordering</a> Note</h4>

<p>The <code><a href="#less_than_comparable1">less_than_comparable&lt;T&gt;</a></code>
and <code><a href="#partially_ordered1">partially_ordered&lt;T&gt;</a></code>
templates provide the same set of operations.  However, the workings of
<code><a href="#less_than_comparable1">less_than_comparable&lt;T&gt;</a></code>
assume that all values of type <code>T</code> can be placed in a total order.  If
that is not true (<i>e.g.</i> Not-a-Number values in IEEE floating point
arithmetic), then
<code><a href="#partially_ordered1">partially_ordered&lt;T&gt;</a></code>
should be used.  The
<code><a href="#partially_ordered1">partially_ordered&lt;T&gt;</a></code>
template can be used for a totally-ordered type, but it is not as efficient as
<code><a href="#less_than_comparable1">less_than_comparable&lt;T&gt;</a></code>.
This rule also applies for
<code><a href="#less_than_comparable2">less_than_comparable&lt;T,
U&gt;</a></code> and <code><a href="#partially_ordered2">partially_ordered&lt;T,
U&gt;</a></code> with respect to the ordering of all <code>T</code> and
<code>U</code> values, and for both versions of
<code><a href="#equivalent1">equivalent&lt;&gt;</a></code>.  The solution for
<code><a href="#equivalent1">equivalent&lt;&gt;</a></code> is to write a
custom <code>operator==</code> for the target class.</p>

<h3><a name="grpd_oprs">Grouped Arithmetic Operators</a></h3>

<p>The following templates provide common groups of related operations.
For example, since a type which is addable is usually also subractable, the
<code><a href="#additive1">additive</a></code> template provides the combined
operators of both.  The grouped operator templates have an additional
optional template parameter <code>B</code>, which is not shown, for the
<a href="#chaining">base class chaining</a> technique.</p>

<table cellpadding="5" border="1" align="center">
	<caption>Grouped Arithmetic Operator Template Classes</caption>
	<tr>
		<td colspan="2"><table align="center" border="1">
			<caption><em>Key</em></caption>
			<tr>
				<td><code>T</code>: primary operand type</td>
				<td><code>U</code>: alternate operand type</td>
			</tr>
		</table></td>
	</tr>
	<tr>
		<th>Template</th>
		<th>Component Operator Templates</th>
	</tr>
	<tr>
		<td><code><a name="totally_ordered1">totally_ordered&lt;T&gt;</a></code><br>
		   <code>totally_ordered1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#less_than_comparable1">less_than_comparable&lt;T&gt;</a></code></li>
			   <li><code><a href="#equality_comparable1">equality_comparable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="totally_ordered2">totally_ordered&lt;T, U&gt;</a></code><br>
		   <code>totally_ordered2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#less_than_comparable2">less_than_comparable&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#equality_comparable2">equality_comparable&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="additive1">additive&lt;T&gt;</a></code><br>
		   <code>additive1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#addable1">addable&lt;T&gt;</a></code></li>
			   <li><code><a href="#subtractable1">subtractable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="additive2">additive&lt;T, U&gt;</a></code><br>
		   <code>additive2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#addable2">addable&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#subtractable2">subtractable&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="multiplicative1">multiplicative&lt;T&gt;</a></code><br>
		   <code>multiplicative1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#multipliable1">multipliable&lt;T&gt;</a></code></li>
			   <li><code><a href="#dividable1">dividable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="multiplicative2">multiplicative&lt;T, U&gt;</a></code><br>
		   <code>multiplicative2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#multipliable2">multipliable&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#dividable2">dividable&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="integer_multiplicative1">integer_multiplicative&lt;T&gt;</a></code><br>
		   <code>integer_multiplicative1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#multiplicative1">multiplicative&lt;T&gt;</a></code></li>
			   <li><code><a href="#modable1">modable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="integer_multiplicative2">integer_multiplicative&lt;T, U&gt;</a></code><br>
		   <code>integer_multiplicative2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#multiplicative2">multiplicative&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#modable2">modable&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="arithmetic1">arithmetic&lt;T&gt;</a></code><br>
		   <code>arithmetic1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#additive1">additive&lt;T&gt;</a></code></li>
			   <li><code><a href="#multiplicative1">multiplicative&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="arithmetic2">arithmetic&lt;T, U&gt;</a></code><br>
		   <code>arithmetic2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#additive2">additive&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#multiplicative2">multiplicative&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="integer_arithmetic1">integer_arithmetic&lt;T&gt;</a></code><br>
		   <code>integer_arithmetic1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#additive1">additive&lt;T&gt;</a></code></li>
			   <li><code><a href="#integer_multiplicative1">integer_multiplicative&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="integer_arithmetic2">integer_arithmetic&lt;T, U&gt;</a></code><br>
		   <code>integer_arithmetic2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#additive2">additive&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#integer_multiplicative2">integer_multiplicative&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="bitwise1">bitwise&lt;T&gt;</a></code><br>
		   <code>bitwise1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#xorable1">xorable&lt;T&gt;</a></code></li>
			   <li><code><a href="#andable1">andable&lt;T&gt;</a></code></li>
			   <li><code><a href="#orable1">orable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="bitwise2">bitwise&lt;T, U&gt;</a></code><br>
		   <code>bitwise2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#xorable2">xorable&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#andable2">andable&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#orable2">orable&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="unit_steppable">unit_steppable&lt;T&gt;</a></code></td>
		<td><ul>
			   <li><code><a href="#incrementable">incrementable&lt;T&gt;</a></code></li>
			   <li><code><a href="#decrementable">decrementable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="shiftable1">shiftable&lt;T&gt;</a></code><br>
		   <code>shiftable1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#left_shiftable1">left_shiftable&lt;T&gt;</a></code></li>
			   <li><code><a href="#right_shiftable1">right_shiftable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="shiftable2">shiftable&lt;T, U&gt;</a></code><br>
		   <code>shiftable2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#left_shiftable2">left_shiftable&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#right_shiftable2">right_shiftable&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="ring_operators1">ring_operators&lt;T&gt;</a></code><br>
		   <code>ring_operators1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#additive1">additive&lt;T&gt;</a></code></li>
			   <li><code><a href="#multipliable1">multipliable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="ring_operators2">ring_operators&lt;T, U&gt;</a></code><br>
		   <code>ring_operators2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#additive2">additive&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#subtractable2_left">subtractable2_left&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#multipliable2">multipliable&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="ordered_ring_operators1">ordered_ring_operators&lt;T&gt;</a></code><br>
		   <code>ordered_ring_operators1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#ring_operators1">ring_operators&lt;T&gt;</a></code></li>
			   <li><code><a href="#totally_ordered1">totally_ordered&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="ordered_ring_operators2">ordered_ring_operators&lt;T, U&gt;</a></code><br>
		   <code>ordered_ring_operators2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#ring_operators2">ring_operators&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#totally_ordered2">totally_ordered&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="field_operators1">field_operators&lt;T&gt;</a></code><br>
		   <code>field_operators1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#ring_operators1">ring_operators&lt;T&gt;</a></code></li>
			   <li><code><a href="#dividable1">dividable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="field_operators2">field_operators&lt;T, U&gt;</a></code><br>
		   <code>field_operators2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#ring_operators2">ring_operators&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#dividable2">dividable&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#dividable2_left">dividable2_left&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="ordered_field_operators1">ordered_field_operators&lt;T&gt;</a></code><br>
		   <code>ordered_field_operators1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#field_operators1">field_operators&lt;T&gt;</a></code></li>
			   <li><code><a href="#totally_ordered1">totally_ordered&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="ordered_field_operators2">ordered_field_operators&lt;T, U&gt;</a></code><br>
		   <code>ordered_field_operators2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#field_operators2">field_operators&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#totally_ordered2">totally_ordered&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="euclidian_ring_operators1">euclidian_ring_operators&lt;T&gt;</a></code><br>
		   <code>euclidian_ring_operators1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#ring_operators1">ring_operators&lt;T&gt;</a></code></li>
			   <li><code><a href="#dividable1">dividable&lt;T&gt;</a></code></li>
			   <li><code><a href="#modable1">modable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="euclidian_ring_operators2">euclidian_ring_operators&lt;T, U&gt;</a></code><br>
		   <code>euclidian_ring_operators2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#ring_operators2">ring_operators&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#dividable2">dividable&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#dividable2_left">dividable2_left&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#modable2">modable&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#modable2_left">modable2_left&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="ordered_euclidian_ring_operators1">ordered_euclidian_ring_operators&lt;T&gt;</a></code><br>
		   <code>ordered_euclidian_ring_operators1&lt;T&gt;</code></td>
		<td><ul>
			   <li><code><a href="#euclidian_ring_operators1">euclidian_ring_operators&lt;T&gt;</a></code></li>
			   <li><code><a href="#totally_ordered1">totally_ordered&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="ordered_euclidian_ring_operators2">ordered_euclidian_ring_operators&lt;T, U&gt;</a></code><br>
		   <code>ordered_euclidian_ring_operators2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#euclidian_ring_operators2">euclidian_ring_operators&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#totally_ordered2">totally_ordered&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>

</table>

<h3><a name="ex_oprs">Example</a> Templates</h3>

<p>The arithmetic operator class templates <code><a
href="#operators1">operators&lt;&gt;</a></code> and <code><a
href="#operators2">operators2&lt;&gt;</a></code> are examples of
non-extensible operator grouping classes.  These legacy class templates,
from previous versions of the header, cannot be used for
<a href="#chaining">base class chaining</a>.</p>

<table cellpadding="5" border="1" align="center">
	<caption>Final Arithmetic Operator Template Classes</caption>
	<tr>
		<td colspan="2"><table align="center" border="1">
			<caption><em>Key</em></caption>
			<tr>
				<td><code>T</code>: primary operand type</td>
				<td><code>U</code>: alternate operand type</td>
			</tr>
		</table></td>
	</tr>
	<tr>
		<th>Template</th>
		<th>Component Operator Templates</th>
	</tr>
	<tr>
		<td><code><a name="operators1">operators&lt;T&gt;</a></code></td>
		<td><ul>
			   <li><code><a href="#totally_ordered1">totally_ordered&lt;T&gt;</a></code></li>
			   <li><code><a href="#integer_arithmetic1">integer_arithmetic&lt;T&gt;</a></code></li>
			   <li><code><a href="#bitwise1">bitwise&lt;T&gt;</a></code></li>
			   <li><code><a href="#unit_steppable">unit_steppable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="operators2">operators&lt;T, U&gt;</a></code><br>
		   <code>operators2&lt;T, U&gt;</code></td>
		<td><ul>
			   <li><code><a href="#totally_ordered2">totally_ordered&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#integer_arithmetic2">integer_arithmetic&lt;T, U&gt;</a></code></li>
			   <li><code><a href="#bitwise2">bitwise&lt;T, U&gt;</a></code></li>
		   </ul></td>
	</tr>
</table>

<h3><a name="a_demo">Arithmetic Operators Demonstration</a> and Test Program</h3>

<p>The <cite><a href="operators_test.cpp">operators_test.cpp</a></cite>
program demonstrates the use of the arithmetic operator templates, and
can also be used to verify correct operation.  Check the <a
href="../../status/compiler_status.html">compiler status report</a> for the test results
with selected platforms.</p>

<h2><a name="deref">Dereference</a> Operators and Iterator Helpers</h2>

<p>The <a href="#iterator">iterator helper</a> templates ease the task
of creating a custom iterator.  Similar to arithmetic types, a complete
iterator has many operators that are &quot;redundant&quot; and can be
implemented in terms of the core set of operators.</p>

<p>The <a href="#dereference">dereference operators</a> were motivated
by the <a href="#iterator">iterator helpers</a>, but are often useful in
non-iterator contexts as well.  Many of the redundant iterator operators
are also arithmetic operators, so the iterator helper classes borrow
many of the operators defined above.  In fact, only two new operators
need to be defined (the pointer-to-member <code>operator-&gt;</code> and
the subscript <code>operator[]</code>)!</p>

<p>The requirements for the types used to instantiate the dereference
operators are specified in terms of expressions which must be valid and
their return type.  The composite operator templates list their component
templates, which the instantiating type must support, and possibly other
requirements.</p>

<h3><a name="dereference">Dereference</a> Operators</h3>

<p>All the dereference operator templates in this table accept an
optional template parameter (not shown) to be used for <a
href="#chaining">base class chaining</a>.</p>

<table cellpadding="5" border="1" align="center">
	<caption>Dereference Operator Template Classes</caption>
	<tr>
		<td colspan="3"><table align="center" border="1">
			<caption><em>Key</em></caption>
			<tr>
				<td><code>T</code>: operand type</td>
				<td><code>P</code>: <code>pointer</code> type</td>
			</tr>
			<tr>
				<td><code>D</code>: <code>difference_type</code></td>
				<td><code>R</code>: <code>reference</code> type</td>
			</tr>
			<tr>
				<td><code>i</code>: object of type <code>T</code> (an iterator)</td>
				<td><code>n</code>: object of type <code>D</code> (an index)</td>
			</tr>
		</table></td>
	</tr>
	<tr>
		<th>Template</th>
		<th>Supplied Operations</th>
		<th>Requirements</th>
	</tr>
	<tr>
		<td><code><a name="dereferenceable">dereferenceable&lt;T, P&gt;</a></code></td>
		<td><code>P operator-&gt;() const</code></td>
		<td><code>(&amp;*i)</code>. Return convertible to <code>P</code>.</td>
	</tr>
	<tr>
		<td><code><a name="indexable">indexable&lt;T, D, R&gt;</a></code></td>
		<td><code>R operator[](D n) const</code></td>
		<td><code>*(i + n)</code>. Return of type <code>R</code>.</td>
	</tr>
</table>

<h3><a name="grpd_iter_oprs">Grouped Iterator Operators</a></h3>

<p>There are five iterator operator class templates, each for a different
category of iterator.  The following table shows the operator groups
for any category that a custom iterator could define.  These class
templates have an additional optional template parameter <code>B</code>,
which is not shown, to support <a href="#chaining">base class chaining</a>.</p>

<table cellpadding="5" border="1" align="center">
	<caption>Iterator Operator Class Templates</caption>
	<tr>
		<td colspan="2"><table align="center" border="1">
			<caption><em>Key</em></caption>
			<tr>
				<td><code>T</code>: operand type</td>
				<td><code>P</code>: <code>pointer</code> type</td>
			</tr>
			<tr>
				<td><code>D</code>: <code>difference_type</code></td>
				<td><code>R</code>: <code>reference</code> type</td>
			</tr>
			<tr>
				<td><code>V</code>: <code>value_type</code></td>
				<td></td>
			</tr>
		</table></td>
	</tr>
	<tr>
		<th>Template</th>
		<th>Component Operator Templates</th>
	</tr>
	<tr>
		<td><code><a name="input_iteratable">input_iteratable&lt;T, P&gt;</a></code></td>
		<td><ul>
			   <li><code><a href="#equality_comparable1">equality_comparable&lt;T&gt;</a></code></li>
			   <li><code><a href="#incrementable">incrementable&lt;T&gt;</a></code></li>
			   <li><code><a href="#dereferenceable">dereferenceable&lt;T, P&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="output_iteratable">output_iteratable&lt;T&gt;</a></code></td>
		<td><ul>
			   <li><code><a href="#incrementable">incrementable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="forward_iteratable">forward_iteratable&lt;T, P&gt;</a></code></td>
		<td><ul>
			   <li><code><a href="#input_iteratable">input_iteratable&lt;T, P&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="bidirectional_iteratable">bidirectional_iteratable&lt;T, P&gt;</a></code></td>
		<td><ul>
			   <li><code><a href="#forward_iteratable">forward_iteratable&lt;T, P&gt;</a></code></li>
			   <li><code><a href="#decrementable">decrementable&lt;T&gt;</a></code></li>
		   </ul></td>
	</tr>
	<tr>
		<td><code><a name="random_access_iteratable">random_access_iteratable&lt;T, P, D, R&gt;</a></code></td>
		<td><ul>
			   <li><code><a href="#bidirectional_iteratable">bidirectional_iteratable&lt;T, P&gt;</a></code></li>
			   <li><code><a href="#totally_ordered1">totally_ordered&lt;T&gt;</a></code></li>
			   <li><code><a href="#additive2">additive&lt;T, D&gt;</a></code></li>
			   <li><code><a href="#indexable">indexable&lt;T, D, R&gt;</a></code></li>
		   </ul></td>
	</tr>
</table>

<h3><a name="iterator">Iterator</a> Helpers</h3>

<p>There are also five iterator helper class templates, each corresponding
to a different iterator category.  These classes cannot be used for <a
href="#chaining">base class chaining</a>.  The following summaries
show that these class templates supply both the iterator operators from
the <a href="#grpd_iter_oprs">iterator operator class templates</a> and
the iterator typedef's required by the C++ standard (<code>iterator_category</code>,
<code>value_type</code>, <i>etc.</i>).</p>

<table cellpadding="5" border="1" align="center">
	<caption>Iterator Helper Class Templates</caption>
	<tr>
		<td colspan="2"><table align="center" border="1">
			<caption><em>Key</em></caption>
			<tr>
				<td><code>T</code>: operand type</td>
				<td><code>P</code>: <code>pointer</code> type</td>
			</tr>
			<tr>
				<td><code>D</code>: <code>difference_type</code></td>
				<td><code>R</code>: <code>reference</code> type</td>
			</tr>
			<tr>
				<td><code>V</code>: <code>value_type</code></td>
				<td><code>x1, x2</code>: objects of type <code>T</code></td>
			</tr>
		</table></td>
	</tr>
	<tr>
		<th>Template</th>
		<th>Operations &amp; Requirements</th>
	</tr>
	<tr valign="baseline">
		<td><code><a name="input_iterator_helper">input_iterator_helper&lt;T, V, D, P, R&gt;</a></code></td>
		<td>Supports the operations and has the requirements of
		    <ul>
			   <li><code><a href="#input_iteratable">input_iteratable&lt;T, P&gt;</a></code></li>
		    </ul></td>
	</tr>
	<tr valign="baseline">
		<td><code><a name="output_iterator_helper">output_iterator_helper&lt;T&gt;</a></code></td>
		<td>Supports the operations and has the requirements of
		    <ul>
			   <li><code><a href="#output_iteratable">output_iteratable&lt;T&gt;</a></code></li>
		    </ul>
        See also [<a href="#1">1</a>], [<a href="#2">2</a>].
        </td>
	</tr>
	<tr valign="baseline">
		<td><code><a name="forward_iterator_helper">forward_iterator_helper&lt;T, V, D, P, R&gt;</a></code></td>
		<td>Supports the operations and has the requirements of
		    <ul>
			   <li><code><a href="#forward_iteratable">forward_iteratable&lt;T, P&gt;</a></code></li>
		    </ul></td>
	</tr>
	<tr valign="baseline">
		<td><code><a name="bidirectional_iterator_helper">bidirectional_iterator_helper&lt;T, V, D, P, R&gt;</a></code></td>
		<td>Supports the operations and has the requirements of
		    <ul>
			   <li><code><a href="#bidirectional_iteratable">bidirectional_iteratable&lt;T, P&gt;</a></code></li>
		    </ul></td>
	</tr>
	<tr valign="baseline">
		<td><code><a name="random_access_iterator_helper">random_access_iterator_helper&lt;T, V, D, P, R&gt;</a></code></td>
		<td>Supports the operations and has the requirements of
		    <ul>
			   <li><code><a href="#random_access_iteratable">random_access_iteratable&lt;T, P, D, R&gt;</a></code></li>
		   </ul>
		   To satisfy <cite><a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a></cite>,
		    <code>x1 - x2</code> with return convertible to <code>D</code>
		    is also required.</td>
	</tr>
</table>

<h4><a name="iterator_helpers_notes">Iterator Helper Notes</a></h4>

<p><a name="1">[1]</a> Unlike other iterator helpers templates,
<code>output_iterator_helper</code> takes only one template parameter - the type of
its target class. Although to some it might seem like an unnecessary
restriction, the standard requires <code>difference_type</code> and
<code>value_type</code> of any output iterator to be 
<code>void</code> (24.3.1 [lib.iterator.traits]), and
<code>output_iterator_helper</code> template respects this
requirement. Also, output iterators in the standard have void <code>pointer</code> and
<code>reference</code> types, so the <code>output_iterator_helper</code> does the
same.

<p><a name="2">[2]</a> As self-proxying is the easiest and most common way to 
implement output iterators (see, for example, insert [24.4.2] and stream 
iterators [24.5] in the standard library), <code>output_iterator_helper</code>
supports the idiom by defining <code>operator*</code> 
and <code>operator++</code> member functions which just return a 
non-const reference to the iterator itself. Support for 
self-proxying allows us, in many cases, to reduce the task of writing an output 
iterator to writing just two member functions - an appropriate 
constructor and a copy-assignment operator. For example, here is a possible
implementation of <code><a href="function_output_iterator.htm">boost::function_output_iterator</a></code>
adaptor:</p>

<pre>
template&lt;class UnaryFunction&gt;
struct function_output_iterator
    : boost::output_iterator_helper&lt; function_output_iterator&lt;UnaryFunction&gt; &gt;
{
    explicit function_output_iterator(UnaryFunction const&amp; f = UnaryFunction())
        : func(f) {}

    template&lt;typename T&gt;
    function_output_iterator&amp; operator=(T const&amp; value)
    {
        this-&gt;func(value); 
        return *this; 
    }

 private:
    UnaryFunction func;
};
</pre>

<p>Note that support for self-proxying does not prevent you from using <code>output_iterator_helper</code> to ease any other, different kind of output iterator's implementation. If <code>output_iterator_helper</code>'s target type provides its own definition of <code>operator*</code> or/and <code>operator++</code>, then these operators will get used and the ones supplied by <code>output_iterator_helper</code> will never be instantiated.</p>

<h3><a name="i_demo">Iterator Demonstration</a> and Test Program</h3>

<p>The <cite><a href="iterators_test.cpp">iterators_test.cpp</a></cite>
program demonstrates the use of the iterator templates, and can also be
used to verify correct operation.  The following is the custom iterator
defined in the test program.  It demonstrates a correct (though trivial)
implementation of the core operations that must be defined in order for
the iterator helpers to &quot;fill in&quot; the rest of the iterator
operations.</p>

<blockquote>
<pre>template &lt;class T, class R, class P&gt;
struct test_iter
  : public boost::random_access_iterator_helper&lt;
     test_iter&lt;T,R,P&gt;, T, std::ptrdiff_t, P, R&gt;
{
  typedef test_iter self;
  typedef R Reference;
  typedef std::ptrdiff_t Distance;

public:
  explicit test_iter(T* i =0);
  test_iter(const self&amp; x);
  self&amp; operator=(const self&amp; x);
  Reference operator*() const;
  self&amp; operator++();
  self&amp; operator--();
  self&amp; operator+=(Distance n);
  self&amp; operator-=(Distance n);
  bool operator==(const self&amp; x) const;
  bool operator&lt;(const self&amp; x) const;
  friend Distance operator-(const self&amp; x, const self&amp; y);
};</pre>
</blockquote>

<p>Check the <a href="../../status/compiler_status.html">compiler status report</a> for
the test results with selected platforms.</p>

<hr>

<h2><a name="contributors">Contributors</a></h2>

<dl>
	<dt><a href="../../people/dave_abrahams.htm">Dave Abrahams</a>
	<dd>Started the library and contributed the arithmetic operators in
		<cite><a
		href="../../boost/operators.hpp">boost/operators.hpp</a></cite>.

	<dt><a href="../../people/jeremy_siek.htm">Jeremy Siek</a>
	<dd>Contributed the <a href="#deref">dereference operators and
		iterator helpers</a> in <cite><a
		href="../../boost/operators.hpp">boost/operators.hpp</a></cite>.
		 Also contributed <cite><a
		href="iterators_test.cpp">iterators_test.cpp</a></cite>.

	<dt><a href="../../people/aleksey_gurtovoy.htm">Aleksey Gurtovoy</a>
	<dd>Contributed the code to support <a href="#chaining">base class
		chaining</a> while remaining backward-compatible with old
		versions of the library.

	<dt><a href="../../people/beman_dawes.html">Beman Dawes</a>
	<dd>Contributed <cite><a href="operators_test.cpp">operators_test.cpp</a></cite>.

	<dt><a href="../../people/daryle_walker.html">Daryle Walker</a>
	<dd>Contributed classes for the shift operators, equivalence,
		partial ordering, and arithmetic conversions.  Added the
		grouped operator classes.  Added helper classes for
		input and output iterators.

	<dt>Helmut Zeisel
	<dd>Contributed the 'left' operators and added some
		grouped operator classes.
</dl>

<h2>Note for Users of <a name="old_lib_note">Older Versions</a></h2>

<p>The <a href="#chaining">changes in the library interface and
recommended usage</a> were motivated by some practical issues described
below.  The new version of the library is still backward-compatible with
the former one (so you're not <em>forced</em> change any existing code),
but the old usage is deprecated.  Though it was arguably simpler and
more intuitive than using <a href="#chaining">base class chaining</a>,
it has been discovered that the old practice of deriving from multiple
operator templates can cause the resulting classes to be much larger
than they should be.  Most modern C++ compilers significantly bloat the
size of classes derived from multiple empty base classes, even though
the base classes themselves have no state.  For instance, the size of
<code>point&lt;int&gt;</code> from the <a href="#example">example</a>
above was 12-24 bytes on various compilers for the Win32 platform,
instead of the expected 8 bytes.</p>

<p>Strictly speaking, it was not the library's fault--the language
rules allow the compiler to apply the empty base class optimization in
that situation.  In principle an arbitrary number of empty base classes
can be allocated at the same offset, provided that none of them have a
common ancestor (see section 10.5 [class.derived] paragraph 5 of the
standard).  But the language definition also doesn't <em>require</em>
implementations to do the optimization, and few if any of today's
compilers implement it when multiple inheritance is involved.  What's
worse, it is very unlikely that implementors will adopt it as a future
enhancement to existing compilers, because it would break binary
compatibility between code generated by two different versions of the
same compiler.  As Matt Austern said, &quot;One of the few times when you
have the freedom to do this sort of thing is when you're targeting a new
architecture...&quot;.  On the other hand, many common compilers will use
the empty base optimization for single inheritance hierarchies.</p>

<p>Given the importance of the issue for the users of the library (which
aims to be useful for writing light-weight classes like
<code>MyInt</code> or <code>point&lt;&gt;</code>), and the forces
described above, we decided to change the library interface so that the
object size bloat could be eliminated even on compilers that support
only the simplest form of the empty base class optimization.  The
current library interface is the result of those changes.  Though the
new usage is a bit more complicated than the old one, we think it's
worth it to make the library more useful in real world.  Alexy Gurtovoy
contributed the code which supports the new usage idiom while allowing
the library remain backward-compatible.</p>

<hr>

<p>Revised: 30 Oct 2001</p>

<p>Copyright &copy; David Abrahams and Beman Dawes 1999-2001. 
Permission to copy, use, modify, sell and distribute this document is
granted provided this copyright notice appears in all copies.  This
document is provided &quot;as is&quot; without express or implied
warranty, and with no claim as to its suitability for any purpose.</p>

</body>
</html>