1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Header <boost/operators.hpp> Documentation</title>
</head>
<body text="black" bgcolor="white" link="blue" vlink="purple" alink="red">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)"
align="middle" width="277" height="86">Header <cite><<a
href="../../boost/operators.hpp">boost/operators.hpp</a>></cite></h1>
<p>The header <cite><<a
href="../../boost/operators.hpp">boost/operators.hpp</a>></cite>
supplies several sets of class templates (in namespace
<code>boost</code>). These templates define operators at namespace
scope in terms of a minimal number of fundamental operators
provided by the class.</p>
<h2><a name="contents">Contents</a></h2>
<ul>
<li><a href="#contents">Contents</a></li>
<li><a href="#rationale">Rationale</a>
<ul>
<li><a href="#semantics">Summary of Template Semantics</a></li>
<li><a href="#concepts_note">Use of <i>concepts</i></a></li>
</ul></li>
<li><a href="#usage">Usage</a>
<ul>
<li><a href="#two_arg">Two-Argument Template Forms</a>
<ul>
<li><a href="#two_arg_gen">General Considerations</a></li>
<li><a href="#mixed_arithmetics">Mixed arithmetics</a></li>
</ul></li>
<li><a href="#chaining">Base Class Chaining and Object Size</a></li>
<li><a href="#explicit_instantiation">Separate, Explicit
Instantiation</a></li>
<li><a href="#portability">Requirement Portability</a></li>
</ul></li>
<li><a href="#example">Example</a></li>
<li><a href="#arithmetic">Arithmetic operators</a>
<ul>
<li><a href="#smpl_oprs">Simple Arithmetic Operators</a>
<ul>
<li><a href="#ordering">Ordering Note</a></li>
</ul></li>
<li><a href="#grpd_oprs">Grouped Arithmetic Operators</a></li>
<li><a href="#ex_oprs">Example Templates</a></li>
<li><a href="#a_demo">Arithmetic Operators Demonstration
and Test Program</a></li>
</ul></li>
<li><a href="#deref">Dereference Operators and Iterator
Helpers</a>
<ul>
<li><a href="#dereference">Dereference operators</a></li>
<li><a href="#grpd_iter_oprs">Grouped Iterator Operators</a></li>
<li><a href="#iterator">Iterator Helpers</a>
<ul>
<li><a href="#iterator_helpers_notes">Iterator Helper
Notes</a></li>
</ul></li>
<li><a href="#i_demo">Iterator Demonstration and Test
Program</a></li>
</ul></li>
<li><a href="#contributors">Contributors</a></li>
<li><a href="#old_lib_note">Note for Users of Older Versions</a></li>
</ul>
<h2><a name="rationale">Rationale</a></h2>
<p>Overloaded operators for class types typically occur in groups. If
you can write <code>x + y</code>, you probably also want to be able to
write <code>x += y</code>. If you can write <code>x < y,</code> you
also want <code>x > y, x >= y,</code> and <code>x <= y</code>.
Moreover, unless your class has really surprising behavior, some of
these related operators can be defined in terms of others (e.g. <code>x
>= y <=> !(x < y)</code>). Replicating this boilerplate for
multiple classes is both tedious and error-prone. The <cite><a
href="../../boost/operators.hpp">boost/operators.hpp</a></cite>
templates help by generating operators for you at namespace scope based
on other operators you've defined in your class.</p>
<p>If, for example, you declare a class like this:</p>
<blockquote>
<pre>class MyInt
: boost::operators<MyInt>
{
bool operator<(const MyInt& x) const;
bool operator==(const MyInt& x) const;
MyInt& operator+=(const MyInt& x);
MyInt& operator-=(const MyInt& x);
MyInt& operator*=(const MyInt& x);
MyInt& operator/=(const MyInt& x);
MyInt& operator%=(const MyInt& x);
MyInt& operator|=(const MyInt& x);
MyInt& operator&=(const MyInt& x);
MyInt& operator^=(const MyInt& x);
MyInt& operator++();
MyInt& operator--();
};</pre>
</blockquote>
<p>then the <code><a href="#operators1">operators<></a></code>
template adds more than a dozen additional operators, such as
<code>operator></code>, <code><=</code>, <code>>=</code>, and
(binary) <code>+</code>. <a href="#two_arg">Two-argument forms</a> of
the templates are also provided to allow interaction with other types.</p>
<h3>Summary of Template <a name="semantics">Semantics</a></h3>
<ol>
<li>Each operator template completes the concept(s) it describes by
defining overloaded operators for its target class.</li>
<li>The name of an operator class template indicates the <a
href="#concepts_note">concept</a> that its target class will
model.</li>
<li>Usually, the target class uses an instantation of the operator class
template as a base class. Some operator templates support an
<a href="#explicit_instantiation">alternate method</a>.</li>
<li>The concept can be compound, <i>i.e.</i> it may represent a
common combination of other, simpler concepts.</li>
<li>Most operator templates require their target class to support
operations related to the operators supplied by the template. In
accordance with widely accepted <a
href="http://www.gotw.ca/gotw/004.htm">coding style
recommendations</a>, the target class is often required to
supply the assignment counterpart operator of the concept's
"main operator." For example, the <code>addable</code>
template requires <code>operator+=(T const&)</code> and
in turn supplies <code>operator+(T const&, T
const&)</code>.</li>
</ol>
<h3>Use of <i><a name="concepts_note">concepts</a></i></h3>
<p>The discussed concepts are not necessarily the standard library's
concepts (CopyConstructible, <i>etc.</i>), although some of them could
be; they are what we call <i>concepts with a small 'c'</i>. In
particular, they are different from the former ones in that they <em>do
not</em> describe precise semantics of the operators they require to
be defined, except the requirements that (a) the semantics of the
operators grouped in one concept should be consistent (<i>e.g.</i>
effects of evaluating of <code>a += b</code> and <code>a = a + b</code>
expressions should be the same), and (b) that the return types of the
operators should follow semantics of return types of corresponding
operators for built-in types (<i>e.g.</i> <code>operator<</code>
should return a type convertible to <code>bool</code>, and
<code>T::operator-=</code> should return type convertible to
<code>T</code>). Such "loose" requirements make operators
library applicable to broader set of target classes from different
domains, <i>i.e.</i> eventually more useful.</p>
<h2><a name="usage">Usage</a></h2>
<h3><a name="two_arg">Two-Argument</a> Template Forms</h3>
<h4><a name="two_arg_gen">General Considerations</a></h4>
<p>The arguments to a binary operator commonly have identical types, but
it is not unusual to want to define operators which combine different
types. For <a href="#example">example</a>, one might want to multiply a
mathematical vector by a scalar. The two-argument template forms of the
arithmetic operator templates are supplied for this purpose. When
applying the two-argument form of a template, the desired return type of
the operators typically determines which of the two types in question
should be derived from the operator template. For example, if the
result of <code>T + U</code> is of type <code>T</code>, then
<code>T</code> (not <code>U</code>) should be derived from <code><a
href="#addable2">addable<T, U></a></code>. The comparison
templates (<code><a href="#less_than_comparable2">less_than_comparable<T,
U></a></code>, <code><a href="#equality_comparable2">equality_comparable<T,
U></a></code>, <code><a href="#equivalent2">equivalent<T, U></a></code>,
and <code><a href="#partially_ordered2">partially_ordered<T, U></a></code>)
are exceptions to this guideline, since the return type of the operators
they define is <code>bool</code>.</p>
<p>On compilers which do not support partial specialization, the
two-argument forms must be specified by using the names shown below with
the trailing <code>'2'</code>. The single-argument forms with the
trailing <code>'1'</code> are provided for symmetry and to enable
certain applications of the <a href="#chaining">base class chaining</a>
technique.</p>
<h4><a name="mixed_arithmetics">Mixed Arithmetics</a></h4>
<p>Another application of the two-argument template forms is for
mixed arithmetics between a type <code>T</code> and a type <code>U</code>
that is convertible to <code>T</code>. In this case there are two ways
where the two-argument template forms are helpful: one is to provide
the respective signatures for operator overloading, the second is
performance.</p>
<p>With respect to the operator overloading assume <i>e.g.</i> that
<code>U</code> is <code>int</code>, that <code>T</code> is an user-defined
unlimited integer type, and that <code>double operator-(double, const
T&)</code> exists. If one wants to compute <code>int - T</code> and
does not provide <code>T operator-(int, const T&)</code>, the
compiler will consider <code>double operator-(double, const T&)</code>
to be a better match than <code>T operator-(const T&, const
T&)</code>, which will probably be different from the user's intention.
To define a complete set of operator signatures, additional 'left' forms
of the two-argument template forms are provided (<code><a
href="#subtractable2_left">subtractable2_left<T, U></a></code>,
<code><a href="#dividable2_left">dividable2_left<T, U></a></code>,
<code><a href="#modable2_left">modable2_left<T, U></a></code>) that
define the signatures for non-commutative operators where <code>U</code>
appears on the left hand side (<code>operator-(const U&, const
T&)</code>, <code>operator/(const U&, const T&)</code>,
<code>operator%(const U&, const T&)</code>).</p>
<p>With respect to the performance observe that when one uses the
single type binary operator for mixed type arithmetics, the type
<code>U</code> argument has to be converted to type <code>T</code>. In
practice, however, there are often more efficient implementations of,
say <code>T::operator-=(const U&)</code> that avoid unnecessary
conversions from <code>U</code> to <code>T</code>. The two-argument
template forms of the arithmetic operator create additional operator
interfaces that use these more efficient implementations. There is, however,
no performance gain in the 'left' forms: they still need a conversion
from <code>U</code> to <code>T</code> and have an implementation
equivalent to the code that would be automatically created by the compiler
if it considered the single type binary operator to be the best match.</p>
<h3>Base Class <a name="chaining">Chaining</a> and Object Size</h3>
<p>Every operator class template, except the <a href="#ex_oprs">arithmetic
examples</a> and the <a href="#iterator">iterator helpers</a>, has an
additional, but optional, template type parameter <code>B</code>. This
parameter will be a publicly-derived base class of the instantiated template.
This means it must be a class type. It can be used to avoid the bloating of
object sizes that is commonly associated with multiple-inheritance from
several empty base classes (see the <a href="#old_lib_note">note for users of
older versions</a> for more details). To provide support for a group of
operators, use the <code>B</code> parameter to chain operator templates
into a single-base class hierarchy, demostrated in the <a href="#example">usage
example</a>. The technique is also used by the composite operator templates
to group operator definitions. If a chain becomes too long for the compiler to
support, try replacing some of the operator templates with a single grouped
operator template that chains the old templates together; the length limit only
applies to the number of templates directly in the chain, not those hidden in
group templates.</p>
<p><strong>Caveat:</strong> to chain to a base class which is
<em>not</em> a Boost operator template when using the <a
href="#two_arg">single-argument form</a> of a Boost operator template,
you must specify the operator template with the trailing
<code>'1'</code> in its name. Otherwise the library will assume you
mean to define a binary operation combining the class you intend to use
as a base class and the class you're deriving.</p>
<h3>Separate, <a name="explicit_instantiation">Explicit Instantiation</a></h3>
<p>On some compilers (<i>e.g.</i> Borland, GCC) even single-inheritance seems
to cause an increase in object size in some cases. If you are not defining
a class template, you may get better object-size performance by avoiding
derivation altogether, and instead explicitly instantiating the operator
template as follows:</p>
<blockquote><pre>
class myclass // lose the inheritance...
{
//...
};
// explicitly instantiate the operators I need.
template struct less_than_comparable<myclass>;
template struct equality_comparable<myclass>;
template struct incrementable<myclass>;
template struct decrementable<myclass>;
template struct addable<myclass,long>;
template struct subtractable<myclass,long>;
</pre></blockquote>
<p>Note that some operator templates cannot use this workaround and must
be a base class of their primary operand type. Those templates define
operators which must be member functions, and the workaround needs the
operators to be independent friend functions. The relevant templates are:</p>
<ul>
<li><code><a href="#dereferenceable">dereferenceable<></a></code></li>
<li><code><a href="#indexable">indexable<></a></code></li>
<li>Any composite operator template that includes at least one of the
above</li>
</ul>
<h3>Requirement <a name="portability">Portability</a></h3>
<p>Many compilers (<i>e.g.</i> MSVC 6.3, GCC 2.95.2) will not enforce
the requirements in the operator template tables unless the operations
which depend on them are actually used. This is not standard-conforming
behavior. In particular, although it would be convenient to derive all
your classes which need binary operators from the
<code><a href="#operators1">operators<></a></code>
and <code><a href="#operators2">operators2<></a></code>
templates, regardless of whether they implement all the requirements
of those templates, this shortcut is not portable. Even if this currently
works with your compiler, it may not work later.</p>
<h2><a name="example">Example</a></h2>
<p>This example shows how some of the <a href="#arithmetic">arithmetic
operator templates</a> can be used with a geometric point class (template).</p>
<pre>
template <class T>
class point // note: private inheritance is OK here!
: boost::addable< point<T> // point + point
, boost::subtractable< point<T> // point - point
, boost::dividable2< point<T>, T // point / T
, boost::multipliable2< point<T>, T // point * T, T * point
> > > >
{
public:
point(T, T);
T x() const;
T y() const;
point operator+=(const point&);
// point operator+(point, const point&) automatically
// generated by addable.
point operator-=(const point&);
// point operator-(point, const point&) automatically
// generated by subtractable.
point operator*=(T);
// point operator*(point, const T&) and
// point operator*(const T&, point) auto-generated
// by multipliable.
point operator/=(T);
// point operator/(point, const T&) auto-generated
// by dividable.
private:
T x_;
T y_;
};
// now use the point<> class:
template <class T>
T length(const point<T> p)
{
return sqrt(p.x()*p.x() + p.y()*p.y());
}
const point<float> right(0, 1);
const point<float> up(1, 0);
const point<float> pi_over_4 = up + right;
const point<float> pi_over_4_normalized = pi_over_4 / length(pi_over_4);
</pre>
<h2><a name="arithmetic">Arithmetic</a> Operators</h2>
<p>The arithmetic operator templates ease the task of creating a custom
numeric type. Given a core set of operators, the templates add related
operators to the numeric class. These operations are like the ones the
standard arithmetic types have, and may include comparisons, adding,
incrementing, logical and bitwise manipulations, <i>etc</i>. Further, since
most numeric types need more than one of these operators, some
templates are provided to combine several of the basic operator
templates in one declaration.</p>
<p>The requirements for the types used to instantiate the simple operator
templates are specified in terms of expressions which must be valid and
the expression's return type. The composite operator templates only list
what other templates they use. The supplied operations and requirements
of the composite operator templates can be inferred from the operations and
requirements of the listed components.</p>
<h3><a name="smpl_oprs">Simple Arithmetic Operators</a></h3>
<p>These templates are "simple" since they provide operators
based on a single operation the base type has to provide. They have an
additional optional template parameter <code>B</code>, which is not shown,
for the <a href="#chaining">base class chaining</a> technique.
<table cellpadding="5" border="1" align="center">
<caption>Simple Arithmetic Operator Template Classes</caption>
<tr>
<td colspan="3"><table align="center" border="1">
<caption><em>Key</em></caption>
<tr>
<td><code>T</code>: primary operand type</td>
<td><code>U</code>: alternate operand type</td>
</tr>
<tr>
<td><code>t</code>, <code>t1</code>: values of type
<code>T</code></td>
<td><code>u</code>: value of type <code>U</code></td>
</tr>
</table></td>
</tr>
<tr>
<th>Template</th>
<th>Supplied Operations</th>
<th>Requirements</th>
</tr>
<tr>
<td><code><a name="less_than_comparable1">less_than_comparable<T></a></code><br>
<code>less_than_comparable1<T></code></td>
<td><code>bool operator>(const T&, const T&)</code><br>
<code>bool operator<=(const T&, const T&)</code><br>
<code>bool operator>=(const T&, const T&)</code></td>
<td><code>t < t1</code>.<br>
Return convertible to <code>bool</code>. See the <a
href="#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name="less_than_comparable2">less_than_comparable<T, U></a></code><br>
<code>less_than_comparable2<T, U></code></td>
<td><code>bool operator<=(const T&, const U&)</code><br>
<code>bool operator>=(const T&, const U&)</code><br>
<code>bool operator>(const U&, const T&)</code><br>
<code>bool operator<(const U&, const T&)</code><br>
<code>bool operator<=(const U&, const T&)</code><br>
<code>bool operator>=(const U&, const T&)</code></td>
<td><code>t < u</code>. <code>t > u</code>.<br>
Returns convertible to <code>bool</code>. See the <a
href="#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name="equality_comparable1">equality_comparable<T></a></code><br>
<code>equality_comparable1<T></code></td>
<td><code>bool operator!=(const T&, const T&)</code></td>
<td><code>t == t1</code>.<br>
Return convertible to <code>bool</code>.</td>
</tr>
<tr>
<td><code><a name="equality_comparable2">equality_comparable<T, U></a></code><br>
<code>equality_comparable2<T, U></code></td>
<td><code>friend bool operator==(const U&, const T&)</code><br>
<code>friend bool operator!=(const U&, const T&)</code><br>
<code>friend bool operator!=( const T&, const U&)</code></td>
<td><code>t == u</code>.<br>
Return convertible to <code>bool</code>.</td>
</tr>
<tr>
<td><code><a name="addable1">addable<T></a></code><br>
<code>addable1<T></code></td>
<td><code>T operator+(T, const T&)</code></td>
<td><code>t += t1</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="addable2">addable<T, U></a></code><br>
<code>addable2<T, U></code></td>
<td><code>T operator+(T, const U&)</code><br>
<code>T operator+(const U&, T )</code></td>
<td><code>t += u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="subtractable1">subtractable<T></a></code><br>
<code>subtractable1<T></code></td>
<td><code>T operator-(T, const T&)</code></td>
<td><code>t -= t1</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="subtractable2">subtractable<T, U></a></code><br>
<code>subtractable2<T, U></code></td>
<td><code>T operator-(T, const U&)</code></td>
<td><code>t -= u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="subtractable2_left">subtractable2_left<T, U></a></code></td>
<td><code>T operator-(const U&, const T&)</code></td>
<td><code>T temp(u); temp -= t</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="multipliable1">multipliable<T></a></code><br>
<code>multipliable1<T></code></td>
<td><code>T operator*(T, const T&)</code></td>
<td><code>t *= t1</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="multipliable2">multipliable<T, U></a></code><br>
<code>multipliable2<T, U></code></td>
<td><code>T operator*(T, const U&)</code><br>
<code>T operator*(const U&, T )</code></td>
<td><code>t *= u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="dividable1">dividable<T></a></code><br>
<code>dividable1<T></code></td>
<td><code>T operator/(T, const T&)</code></td>
<td><code>t /= t1</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="dividable2">dividable<T, U></a></code><br>
<code>dividable2<T, U></code></td>
<td><code>T operator/(T, const U&)</code></td>
<td><code>t /= u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="dividable2_left">dividable2_left<T, U></a></code></td>
<td><code>T operator/(const U&, const T&)</code></td>
<td><code>T temp(u); temp /= t</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="modable1">modable<T></a></code><br>
<code>modable1<T></code></td>
<td><code>T operator%(T, const T&)</code></td>
<td><code>t %= t1</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="modable2">modable<T, U></a></code><br>
<code>modable2<T, U></code></td>
<td><code>T operator%(T, const U&)</code></td>
<td><code>t %= u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="modable2_left">modable2_left<T, U></a></code></td>
<td><code>T operator%(const U&, const T&)</code></td>
<td><code>T temp(u); temp %= t</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="orable1">orable<T></a></code><br>
<code>orable1<T></code></td>
<td><code>T operator|(T, const T&)</code></td>
<td><code>t |= t1</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="orable2">orable<T, U></a></code><br>
<code>orable2<T, U></code></td>
<td><code>T operator|(T, const U&)</code><br>
<code>T operator|(const U&, T )</code></td>
<td><code>t |= u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="andable1">andable<T></a></code><br>
<code>andable1<T></code></td>
<td><code>T operator&(T, const T&)</code></td>
<td><code>t &= t1</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="andable2">andable<T, U></a></code><br>
<code>andable2<T, U></code></td>
<td><code>T operator&(T, const U&)</code><br>
<code>T operator&(const U&, T)</code></td>
<td><code>t &= u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="xorable1">xorable<T></a></code><br>
<code>xorable1<T></code></td>
<td><code>T operator^(T, const T&)</code></td>
<td><code>t ^= t1</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="xorable2">xorable<T, U></a></code><br>
<code>xorable2<T, U></code></td>
<td><code>T operator^(T, const U&)</code><br>
<code>T operator^(const U&, T )</code></td>
<td><code>t ^= u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="incrementable">incrementable<T></a></code></td>
<td><code>T operator++(T& x, int)</code></td>
<td><code>T temp(x); ++x; return temp;</code><br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="decrementable">decrementable<T></a></code></td>
<td><code>T operator--(T& x, int)</code></td>
<td><code>T temp(x); --x; return temp;</code><br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="left_shiftable1">left_shiftable<T></a></code><br>
<code>left_shiftable1<T></code></td>
<td><code>T operator<<(T, const T&)</code></td>
<td><code>t <<= t1</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="left_shiftable2">left_shiftable<T, U></a></code><br>
<code>left_shiftable2<T, U></code></td>
<td><code>T operator<<(T, const U&)</code></td>
<td><code>t <<= u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="right_shiftable1">right_shiftable<T></a></code><br>
<code>right_shiftable1<T></code></td>
<td><code>T operator>>(T, const T&)</code></td>
<td><code>t >>= t1</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="right_shiftable2">right_shiftable<T, U></a></code><br>
<code>right_shiftable2<T, U></code></td>
<td><code>T operator>>(T, const U&)</code></td>
<td><code>t >>= u</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="equivalent1">equivalent<T></a></code><br>
<code>equivalent1<T></code></td>
<td><code>bool operator==(const T&, const T&)</code></td>
<td><code>t < t1</code>.<br>
Return convertible to <code>bool</code>. See the <a
href="#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name="equivalent2">equivalent<T, U></a></code><br>
<code>equivalent2<T, U></code></td>
<td><code>bool operator==(const T&, const U&)</code></td>
<td><code>t < u</code>. <code>t > u</code>.<br>
Returns convertible to <code>bool</code>. See the <a
href="#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name="partially_ordered1">partially_ordered<T></a></code><br>
<code>partially_ordered1<T></code></td>
<td><code>bool operator>(const T&, const T&)</code><br>
<code>bool operator<=(const T&, const T&)</code><br>
<code>bool operator>=(const T&, const T&)</code></td>
<td><code>t < t1</code>. <code>t == t1</code>.<br>
Returns convertible to <code>bool</code>. See the <a
href="#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name="partially_ordered2">partially_ordered<T, U></a></code><br>
<code>partially_ordered2<T, U></code></td>
<td><code>bool operator<=(const T&, const U&)</code><br>
<code>bool operator>=(const T&, const U&)</code><br>
<code>bool operator>(const U&, const T&)</code><br>
<code>bool operator<(const U&, const T&)</code><br>
<code>bool operator<=(const U&, const T&)</code><br>
<code>bool operator>=(const U&, const T&)</code></td>
<td><code>t < u</code>. <code>t > u</code>. <code>t == u</code>.<br>
Returns convertible to <code>bool</code>. See the <a
href="#ordering">Ordering Note</a>.</td>
</tr>
</table>
<h4><a name="ordering">Ordering</a> Note</h4>
<p>The <code><a href="#less_than_comparable1">less_than_comparable<T></a></code>
and <code><a href="#partially_ordered1">partially_ordered<T></a></code>
templates provide the same set of operations. However, the workings of
<code><a href="#less_than_comparable1">less_than_comparable<T></a></code>
assume that all values of type <code>T</code> can be placed in a total order. If
that is not true (<i>e.g.</i> Not-a-Number values in IEEE floating point
arithmetic), then
<code><a href="#partially_ordered1">partially_ordered<T></a></code>
should be used. The
<code><a href="#partially_ordered1">partially_ordered<T></a></code>
template can be used for a totally-ordered type, but it is not as efficient as
<code><a href="#less_than_comparable1">less_than_comparable<T></a></code>.
This rule also applies for
<code><a href="#less_than_comparable2">less_than_comparable<T,
U></a></code> and <code><a href="#partially_ordered2">partially_ordered<T,
U></a></code> with respect to the ordering of all <code>T</code> and
<code>U</code> values, and for both versions of
<code><a href="#equivalent1">equivalent<></a></code>. The solution for
<code><a href="#equivalent1">equivalent<></a></code> is to write a
custom <code>operator==</code> for the target class.</p>
<h3><a name="grpd_oprs">Grouped Arithmetic Operators</a></h3>
<p>The following templates provide common groups of related operations.
For example, since a type which is addable is usually also subractable, the
<code><a href="#additive1">additive</a></code> template provides the combined
operators of both. The grouped operator templates have an additional
optional template parameter <code>B</code>, which is not shown, for the
<a href="#chaining">base class chaining</a> technique.</p>
<table cellpadding="5" border="1" align="center">
<caption>Grouped Arithmetic Operator Template Classes</caption>
<tr>
<td colspan="2"><table align="center" border="1">
<caption><em>Key</em></caption>
<tr>
<td><code>T</code>: primary operand type</td>
<td><code>U</code>: alternate operand type</td>
</tr>
</table></td>
</tr>
<tr>
<th>Template</th>
<th>Component Operator Templates</th>
</tr>
<tr>
<td><code><a name="totally_ordered1">totally_ordered<T></a></code><br>
<code>totally_ordered1<T></code></td>
<td><ul>
<li><code><a href="#less_than_comparable1">less_than_comparable<T></a></code></li>
<li><code><a href="#equality_comparable1">equality_comparable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="totally_ordered2">totally_ordered<T, U></a></code><br>
<code>totally_ordered2<T, U></code></td>
<td><ul>
<li><code><a href="#less_than_comparable2">less_than_comparable<T, U></a></code></li>
<li><code><a href="#equality_comparable2">equality_comparable<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="additive1">additive<T></a></code><br>
<code>additive1<T></code></td>
<td><ul>
<li><code><a href="#addable1">addable<T></a></code></li>
<li><code><a href="#subtractable1">subtractable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="additive2">additive<T, U></a></code><br>
<code>additive2<T, U></code></td>
<td><ul>
<li><code><a href="#addable2">addable<T, U></a></code></li>
<li><code><a href="#subtractable2">subtractable<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="multiplicative1">multiplicative<T></a></code><br>
<code>multiplicative1<T></code></td>
<td><ul>
<li><code><a href="#multipliable1">multipliable<T></a></code></li>
<li><code><a href="#dividable1">dividable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="multiplicative2">multiplicative<T, U></a></code><br>
<code>multiplicative2<T, U></code></td>
<td><ul>
<li><code><a href="#multipliable2">multipliable<T, U></a></code></li>
<li><code><a href="#dividable2">dividable<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="integer_multiplicative1">integer_multiplicative<T></a></code><br>
<code>integer_multiplicative1<T></code></td>
<td><ul>
<li><code><a href="#multiplicative1">multiplicative<T></a></code></li>
<li><code><a href="#modable1">modable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="integer_multiplicative2">integer_multiplicative<T, U></a></code><br>
<code>integer_multiplicative2<T, U></code></td>
<td><ul>
<li><code><a href="#multiplicative2">multiplicative<T, U></a></code></li>
<li><code><a href="#modable2">modable<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="arithmetic1">arithmetic<T></a></code><br>
<code>arithmetic1<T></code></td>
<td><ul>
<li><code><a href="#additive1">additive<T></a></code></li>
<li><code><a href="#multiplicative1">multiplicative<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="arithmetic2">arithmetic<T, U></a></code><br>
<code>arithmetic2<T, U></code></td>
<td><ul>
<li><code><a href="#additive2">additive<T, U></a></code></li>
<li><code><a href="#multiplicative2">multiplicative<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="integer_arithmetic1">integer_arithmetic<T></a></code><br>
<code>integer_arithmetic1<T></code></td>
<td><ul>
<li><code><a href="#additive1">additive<T></a></code></li>
<li><code><a href="#integer_multiplicative1">integer_multiplicative<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="integer_arithmetic2">integer_arithmetic<T, U></a></code><br>
<code>integer_arithmetic2<T, U></code></td>
<td><ul>
<li><code><a href="#additive2">additive<T, U></a></code></li>
<li><code><a href="#integer_multiplicative2">integer_multiplicative<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="bitwise1">bitwise<T></a></code><br>
<code>bitwise1<T></code></td>
<td><ul>
<li><code><a href="#xorable1">xorable<T></a></code></li>
<li><code><a href="#andable1">andable<T></a></code></li>
<li><code><a href="#orable1">orable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="bitwise2">bitwise<T, U></a></code><br>
<code>bitwise2<T, U></code></td>
<td><ul>
<li><code><a href="#xorable2">xorable<T, U></a></code></li>
<li><code><a href="#andable2">andable<T, U></a></code></li>
<li><code><a href="#orable2">orable<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="unit_steppable">unit_steppable<T></a></code></td>
<td><ul>
<li><code><a href="#incrementable">incrementable<T></a></code></li>
<li><code><a href="#decrementable">decrementable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="shiftable1">shiftable<T></a></code><br>
<code>shiftable1<T></code></td>
<td><ul>
<li><code><a href="#left_shiftable1">left_shiftable<T></a></code></li>
<li><code><a href="#right_shiftable1">right_shiftable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="shiftable2">shiftable<T, U></a></code><br>
<code>shiftable2<T, U></code></td>
<td><ul>
<li><code><a href="#left_shiftable2">left_shiftable<T, U></a></code></li>
<li><code><a href="#right_shiftable2">right_shiftable<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ring_operators1">ring_operators<T></a></code><br>
<code>ring_operators1<T></code></td>
<td><ul>
<li><code><a href="#additive1">additive<T></a></code></li>
<li><code><a href="#multipliable1">multipliable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ring_operators2">ring_operators<T, U></a></code><br>
<code>ring_operators2<T, U></code></td>
<td><ul>
<li><code><a href="#additive2">additive<T, U></a></code></li>
<li><code><a href="#subtractable2_left">subtractable2_left<T, U></a></code></li>
<li><code><a href="#multipliable2">multipliable<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ordered_ring_operators1">ordered_ring_operators<T></a></code><br>
<code>ordered_ring_operators1<T></code></td>
<td><ul>
<li><code><a href="#ring_operators1">ring_operators<T></a></code></li>
<li><code><a href="#totally_ordered1">totally_ordered<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ordered_ring_operators2">ordered_ring_operators<T, U></a></code><br>
<code>ordered_ring_operators2<T, U></code></td>
<td><ul>
<li><code><a href="#ring_operators2">ring_operators<T, U></a></code></li>
<li><code><a href="#totally_ordered2">totally_ordered<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="field_operators1">field_operators<T></a></code><br>
<code>field_operators1<T></code></td>
<td><ul>
<li><code><a href="#ring_operators1">ring_operators<T></a></code></li>
<li><code><a href="#dividable1">dividable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="field_operators2">field_operators<T, U></a></code><br>
<code>field_operators2<T, U></code></td>
<td><ul>
<li><code><a href="#ring_operators2">ring_operators<T, U></a></code></li>
<li><code><a href="#dividable2">dividable<T, U></a></code></li>
<li><code><a href="#dividable2_left">dividable2_left<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ordered_field_operators1">ordered_field_operators<T></a></code><br>
<code>ordered_field_operators1<T></code></td>
<td><ul>
<li><code><a href="#field_operators1">field_operators<T></a></code></li>
<li><code><a href="#totally_ordered1">totally_ordered<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ordered_field_operators2">ordered_field_operators<T, U></a></code><br>
<code>ordered_field_operators2<T, U></code></td>
<td><ul>
<li><code><a href="#field_operators2">field_operators<T, U></a></code></li>
<li><code><a href="#totally_ordered2">totally_ordered<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="euclidian_ring_operators1">euclidian_ring_operators<T></a></code><br>
<code>euclidian_ring_operators1<T></code></td>
<td><ul>
<li><code><a href="#ring_operators1">ring_operators<T></a></code></li>
<li><code><a href="#dividable1">dividable<T></a></code></li>
<li><code><a href="#modable1">modable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="euclidian_ring_operators2">euclidian_ring_operators<T, U></a></code><br>
<code>euclidian_ring_operators2<T, U></code></td>
<td><ul>
<li><code><a href="#ring_operators2">ring_operators<T, U></a></code></li>
<li><code><a href="#dividable2">dividable<T, U></a></code></li>
<li><code><a href="#dividable2_left">dividable2_left<T, U></a></code></li>
<li><code><a href="#modable2">modable<T, U></a></code></li>
<li><code><a href="#modable2_left">modable2_left<T, U></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ordered_euclidian_ring_operators1">ordered_euclidian_ring_operators<T></a></code><br>
<code>ordered_euclidian_ring_operators1<T></code></td>
<td><ul>
<li><code><a href="#euclidian_ring_operators1">euclidian_ring_operators<T></a></code></li>
<li><code><a href="#totally_ordered1">totally_ordered<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="ordered_euclidian_ring_operators2">ordered_euclidian_ring_operators<T, U></a></code><br>
<code>ordered_euclidian_ring_operators2<T, U></code></td>
<td><ul>
<li><code><a href="#euclidian_ring_operators2">euclidian_ring_operators<T, U></a></code></li>
<li><code><a href="#totally_ordered2">totally_ordered<T, U></a></code></li>
</ul></td>
</tr>
</table>
<h3><a name="ex_oprs">Example</a> Templates</h3>
<p>The arithmetic operator class templates <code><a
href="#operators1">operators<></a></code> and <code><a
href="#operators2">operators2<></a></code> are examples of
non-extensible operator grouping classes. These legacy class templates,
from previous versions of the header, cannot be used for
<a href="#chaining">base class chaining</a>.</p>
<table cellpadding="5" border="1" align="center">
<caption>Final Arithmetic Operator Template Classes</caption>
<tr>
<td colspan="2"><table align="center" border="1">
<caption><em>Key</em></caption>
<tr>
<td><code>T</code>: primary operand type</td>
<td><code>U</code>: alternate operand type</td>
</tr>
</table></td>
</tr>
<tr>
<th>Template</th>
<th>Component Operator Templates</th>
</tr>
<tr>
<td><code><a name="operators1">operators<T></a></code></td>
<td><ul>
<li><code><a href="#totally_ordered1">totally_ordered<T></a></code></li>
<li><code><a href="#integer_arithmetic1">integer_arithmetic<T></a></code></li>
<li><code><a href="#bitwise1">bitwise<T></a></code></li>
<li><code><a href="#unit_steppable">unit_steppable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="operators2">operators<T, U></a></code><br>
<code>operators2<T, U></code></td>
<td><ul>
<li><code><a href="#totally_ordered2">totally_ordered<T, U></a></code></li>
<li><code><a href="#integer_arithmetic2">integer_arithmetic<T, U></a></code></li>
<li><code><a href="#bitwise2">bitwise<T, U></a></code></li>
</ul></td>
</tr>
</table>
<h3><a name="a_demo">Arithmetic Operators Demonstration</a> and Test Program</h3>
<p>The <cite><a href="operators_test.cpp">operators_test.cpp</a></cite>
program demonstrates the use of the arithmetic operator templates, and
can also be used to verify correct operation. Check the <a
href="../../status/compiler_status.html">compiler status report</a> for the test results
with selected platforms.</p>
<h2><a name="deref">Dereference</a> Operators and Iterator Helpers</h2>
<p>The <a href="#iterator">iterator helper</a> templates ease the task
of creating a custom iterator. Similar to arithmetic types, a complete
iterator has many operators that are "redundant" and can be
implemented in terms of the core set of operators.</p>
<p>The <a href="#dereference">dereference operators</a> were motivated
by the <a href="#iterator">iterator helpers</a>, but are often useful in
non-iterator contexts as well. Many of the redundant iterator operators
are also arithmetic operators, so the iterator helper classes borrow
many of the operators defined above. In fact, only two new operators
need to be defined (the pointer-to-member <code>operator-></code> and
the subscript <code>operator[]</code>)!</p>
<p>The requirements for the types used to instantiate the dereference
operators are specified in terms of expressions which must be valid and
their return type. The composite operator templates list their component
templates, which the instantiating type must support, and possibly other
requirements.</p>
<h3><a name="dereference">Dereference</a> Operators</h3>
<p>All the dereference operator templates in this table accept an
optional template parameter (not shown) to be used for <a
href="#chaining">base class chaining</a>.</p>
<table cellpadding="5" border="1" align="center">
<caption>Dereference Operator Template Classes</caption>
<tr>
<td colspan="3"><table align="center" border="1">
<caption><em>Key</em></caption>
<tr>
<td><code>T</code>: operand type</td>
<td><code>P</code>: <code>pointer</code> type</td>
</tr>
<tr>
<td><code>D</code>: <code>difference_type</code></td>
<td><code>R</code>: <code>reference</code> type</td>
</tr>
<tr>
<td><code>i</code>: object of type <code>T</code> (an iterator)</td>
<td><code>n</code>: object of type <code>D</code> (an index)</td>
</tr>
</table></td>
</tr>
<tr>
<th>Template</th>
<th>Supplied Operations</th>
<th>Requirements</th>
</tr>
<tr>
<td><code><a name="dereferenceable">dereferenceable<T, P></a></code></td>
<td><code>P operator->() const</code></td>
<td><code>(&*i)</code>. Return convertible to <code>P</code>.</td>
</tr>
<tr>
<td><code><a name="indexable">indexable<T, D, R></a></code></td>
<td><code>R operator[](D n) const</code></td>
<td><code>*(i + n)</code>. Return of type <code>R</code>.</td>
</tr>
</table>
<h3><a name="grpd_iter_oprs">Grouped Iterator Operators</a></h3>
<p>There are five iterator operator class templates, each for a different
category of iterator. The following table shows the operator groups
for any category that a custom iterator could define. These class
templates have an additional optional template parameter <code>B</code>,
which is not shown, to support <a href="#chaining">base class chaining</a>.</p>
<table cellpadding="5" border="1" align="center">
<caption>Iterator Operator Class Templates</caption>
<tr>
<td colspan="2"><table align="center" border="1">
<caption><em>Key</em></caption>
<tr>
<td><code>T</code>: operand type</td>
<td><code>P</code>: <code>pointer</code> type</td>
</tr>
<tr>
<td><code>D</code>: <code>difference_type</code></td>
<td><code>R</code>: <code>reference</code> type</td>
</tr>
<tr>
<td><code>V</code>: <code>value_type</code></td>
<td></td>
</tr>
</table></td>
</tr>
<tr>
<th>Template</th>
<th>Component Operator Templates</th>
</tr>
<tr>
<td><code><a name="input_iteratable">input_iteratable<T, P></a></code></td>
<td><ul>
<li><code><a href="#equality_comparable1">equality_comparable<T></a></code></li>
<li><code><a href="#incrementable">incrementable<T></a></code></li>
<li><code><a href="#dereferenceable">dereferenceable<T, P></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="output_iteratable">output_iteratable<T></a></code></td>
<td><ul>
<li><code><a href="#incrementable">incrementable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="forward_iteratable">forward_iteratable<T, P></a></code></td>
<td><ul>
<li><code><a href="#input_iteratable">input_iteratable<T, P></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="bidirectional_iteratable">bidirectional_iteratable<T, P></a></code></td>
<td><ul>
<li><code><a href="#forward_iteratable">forward_iteratable<T, P></a></code></li>
<li><code><a href="#decrementable">decrementable<T></a></code></li>
</ul></td>
</tr>
<tr>
<td><code><a name="random_access_iteratable">random_access_iteratable<T, P, D, R></a></code></td>
<td><ul>
<li><code><a href="#bidirectional_iteratable">bidirectional_iteratable<T, P></a></code></li>
<li><code><a href="#totally_ordered1">totally_ordered<T></a></code></li>
<li><code><a href="#additive2">additive<T, D></a></code></li>
<li><code><a href="#indexable">indexable<T, D, R></a></code></li>
</ul></td>
</tr>
</table>
<h3><a name="iterator">Iterator</a> Helpers</h3>
<p>There are also five iterator helper class templates, each corresponding
to a different iterator category. These classes cannot be used for <a
href="#chaining">base class chaining</a>. The following summaries
show that these class templates supply both the iterator operators from
the <a href="#grpd_iter_oprs">iterator operator class templates</a> and
the iterator typedef's required by the C++ standard (<code>iterator_category</code>,
<code>value_type</code>, <i>etc.</i>).</p>
<table cellpadding="5" border="1" align="center">
<caption>Iterator Helper Class Templates</caption>
<tr>
<td colspan="2"><table align="center" border="1">
<caption><em>Key</em></caption>
<tr>
<td><code>T</code>: operand type</td>
<td><code>P</code>: <code>pointer</code> type</td>
</tr>
<tr>
<td><code>D</code>: <code>difference_type</code></td>
<td><code>R</code>: <code>reference</code> type</td>
</tr>
<tr>
<td><code>V</code>: <code>value_type</code></td>
<td><code>x1, x2</code>: objects of type <code>T</code></td>
</tr>
</table></td>
</tr>
<tr>
<th>Template</th>
<th>Operations & Requirements</th>
</tr>
<tr valign="baseline">
<td><code><a name="input_iterator_helper">input_iterator_helper<T, V, D, P, R></a></code></td>
<td>Supports the operations and has the requirements of
<ul>
<li><code><a href="#input_iteratable">input_iteratable<T, P></a></code></li>
</ul></td>
</tr>
<tr valign="baseline">
<td><code><a name="output_iterator_helper">output_iterator_helper<T></a></code></td>
<td>Supports the operations and has the requirements of
<ul>
<li><code><a href="#output_iteratable">output_iteratable<T></a></code></li>
</ul>
See also [<a href="#1">1</a>], [<a href="#2">2</a>].
</td>
</tr>
<tr valign="baseline">
<td><code><a name="forward_iterator_helper">forward_iterator_helper<T, V, D, P, R></a></code></td>
<td>Supports the operations and has the requirements of
<ul>
<li><code><a href="#forward_iteratable">forward_iteratable<T, P></a></code></li>
</ul></td>
</tr>
<tr valign="baseline">
<td><code><a name="bidirectional_iterator_helper">bidirectional_iterator_helper<T, V, D, P, R></a></code></td>
<td>Supports the operations and has the requirements of
<ul>
<li><code><a href="#bidirectional_iteratable">bidirectional_iteratable<T, P></a></code></li>
</ul></td>
</tr>
<tr valign="baseline">
<td><code><a name="random_access_iterator_helper">random_access_iterator_helper<T, V, D, P, R></a></code></td>
<td>Supports the operations and has the requirements of
<ul>
<li><code><a href="#random_access_iteratable">random_access_iteratable<T, P, D, R></a></code></li>
</ul>
To satisfy <cite><a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a></cite>,
<code>x1 - x2</code> with return convertible to <code>D</code>
is also required.</td>
</tr>
</table>
<h4><a name="iterator_helpers_notes">Iterator Helper Notes</a></h4>
<p><a name="1">[1]</a> Unlike other iterator helpers templates,
<code>output_iterator_helper</code> takes only one template parameter - the type of
its target class. Although to some it might seem like an unnecessary
restriction, the standard requires <code>difference_type</code> and
<code>value_type</code> of any output iterator to be
<code>void</code> (24.3.1 [lib.iterator.traits]), and
<code>output_iterator_helper</code> template respects this
requirement. Also, output iterators in the standard have void <code>pointer</code> and
<code>reference</code> types, so the <code>output_iterator_helper</code> does the
same.
<p><a name="2">[2]</a> As self-proxying is the easiest and most common way to
implement output iterators (see, for example, insert [24.4.2] and stream
iterators [24.5] in the standard library), <code>output_iterator_helper</code>
supports the idiom by defining <code>operator*</code>
and <code>operator++</code> member functions which just return a
non-const reference to the iterator itself. Support for
self-proxying allows us, in many cases, to reduce the task of writing an output
iterator to writing just two member functions - an appropriate
constructor and a copy-assignment operator. For example, here is a possible
implementation of <code><a href="function_output_iterator.htm">boost::function_output_iterator</a></code>
adaptor:</p>
<pre>
template<class UnaryFunction>
struct function_output_iterator
: boost::output_iterator_helper< function_output_iterator<UnaryFunction> >
{
explicit function_output_iterator(UnaryFunction const& f = UnaryFunction())
: func(f) {}
template<typename T>
function_output_iterator& operator=(T const& value)
{
this->func(value);
return *this;
}
private:
UnaryFunction func;
};
</pre>
<p>Note that support for self-proxying does not prevent you from using <code>output_iterator_helper</code> to ease any other, different kind of output iterator's implementation. If <code>output_iterator_helper</code>'s target type provides its own definition of <code>operator*</code> or/and <code>operator++</code>, then these operators will get used and the ones supplied by <code>output_iterator_helper</code> will never be instantiated.</p>
<h3><a name="i_demo">Iterator Demonstration</a> and Test Program</h3>
<p>The <cite><a href="iterators_test.cpp">iterators_test.cpp</a></cite>
program demonstrates the use of the iterator templates, and can also be
used to verify correct operation. The following is the custom iterator
defined in the test program. It demonstrates a correct (though trivial)
implementation of the core operations that must be defined in order for
the iterator helpers to "fill in" the rest of the iterator
operations.</p>
<blockquote>
<pre>template <class T, class R, class P>
struct test_iter
: public boost::random_access_iterator_helper<
test_iter<T,R,P>, T, std::ptrdiff_t, P, R>
{
typedef test_iter self;
typedef R Reference;
typedef std::ptrdiff_t Distance;
public:
explicit test_iter(T* i =0);
test_iter(const self& x);
self& operator=(const self& x);
Reference operator*() const;
self& operator++();
self& operator--();
self& operator+=(Distance n);
self& operator-=(Distance n);
bool operator==(const self& x) const;
bool operator<(const self& x) const;
friend Distance operator-(const self& x, const self& y);
};</pre>
</blockquote>
<p>Check the <a href="../../status/compiler_status.html">compiler status report</a> for
the test results with selected platforms.</p>
<hr>
<h2><a name="contributors">Contributors</a></h2>
<dl>
<dt><a href="../../people/dave_abrahams.htm">Dave Abrahams</a>
<dd>Started the library and contributed the arithmetic operators in
<cite><a
href="../../boost/operators.hpp">boost/operators.hpp</a></cite>.
<dt><a href="../../people/jeremy_siek.htm">Jeremy Siek</a>
<dd>Contributed the <a href="#deref">dereference operators and
iterator helpers</a> in <cite><a
href="../../boost/operators.hpp">boost/operators.hpp</a></cite>.
Also contributed <cite><a
href="iterators_test.cpp">iterators_test.cpp</a></cite>.
<dt><a href="../../people/aleksey_gurtovoy.htm">Aleksey Gurtovoy</a>
<dd>Contributed the code to support <a href="#chaining">base class
chaining</a> while remaining backward-compatible with old
versions of the library.
<dt><a href="../../people/beman_dawes.html">Beman Dawes</a>
<dd>Contributed <cite><a href="operators_test.cpp">operators_test.cpp</a></cite>.
<dt><a href="../../people/daryle_walker.html">Daryle Walker</a>
<dd>Contributed classes for the shift operators, equivalence,
partial ordering, and arithmetic conversions. Added the
grouped operator classes. Added helper classes for
input and output iterators.
<dt>Helmut Zeisel
<dd>Contributed the 'left' operators and added some
grouped operator classes.
</dl>
<h2>Note for Users of <a name="old_lib_note">Older Versions</a></h2>
<p>The <a href="#chaining">changes in the library interface and
recommended usage</a> were motivated by some practical issues described
below. The new version of the library is still backward-compatible with
the former one (so you're not <em>forced</em> change any existing code),
but the old usage is deprecated. Though it was arguably simpler and
more intuitive than using <a href="#chaining">base class chaining</a>,
it has been discovered that the old practice of deriving from multiple
operator templates can cause the resulting classes to be much larger
than they should be. Most modern C++ compilers significantly bloat the
size of classes derived from multiple empty base classes, even though
the base classes themselves have no state. For instance, the size of
<code>point<int></code> from the <a href="#example">example</a>
above was 12-24 bytes on various compilers for the Win32 platform,
instead of the expected 8 bytes.</p>
<p>Strictly speaking, it was not the library's fault--the language
rules allow the compiler to apply the empty base class optimization in
that situation. In principle an arbitrary number of empty base classes
can be allocated at the same offset, provided that none of them have a
common ancestor (see section 10.5 [class.derived] paragraph 5 of the
standard). But the language definition also doesn't <em>require</em>
implementations to do the optimization, and few if any of today's
compilers implement it when multiple inheritance is involved. What's
worse, it is very unlikely that implementors will adopt it as a future
enhancement to existing compilers, because it would break binary
compatibility between code generated by two different versions of the
same compiler. As Matt Austern said, "One of the few times when you
have the freedom to do this sort of thing is when you're targeting a new
architecture...". On the other hand, many common compilers will use
the empty base optimization for single inheritance hierarchies.</p>
<p>Given the importance of the issue for the users of the library (which
aims to be useful for writing light-weight classes like
<code>MyInt</code> or <code>point<></code>), and the forces
described above, we decided to change the library interface so that the
object size bloat could be eliminated even on compilers that support
only the simplest form of the empty base class optimization. The
current library interface is the result of those changes. Though the
new usage is a bit more complicated than the old one, we think it's
worth it to make the library more useful in real world. Alexy Gurtovoy
contributed the code which supports the new usage idiom while allowing
the library remain backward-compatible.</p>
<hr>
<p>Revised: 30 Oct 2001</p>
<p>Copyright © David Abrahams and Beman Dawes 1999-2001.
Permission to copy, use, modify, sell and distribute this document is
granted provided this copyright notice appears in all copies. This
document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</p>
</body>
</html>
|