1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Iterator concept and adapter issues</title>
<meta name="date" content="2004-01-27" />
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Iterator concept and adapter issues</h1>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Date:</th>
<td>2004-01-27</td></tr>
</tbody>
</table>
<div class="document" id="iterator-concept-and-adapter-issues">
<div class="contents topic" id="index">
<p class="topic-title first"><a name="index">Index</a></p>
<ul class="simple">
<li><a class="reference" href="#issues-from-matt-s-tr-issues-list" id="id1" name="id1">Issues from Matt's TR issues list</a><ul>
<li><a class="reference" href="#iterator-access-overspecified" id="id2" name="id2">9.1 iterator_access overspecified?</a></li>
<li><a class="reference" href="#operators-of-iterator-facade-overspecified" id="id3" name="id3">9.2 operators of iterator_facade overspecified</a></li>
<li><a class="reference" href="#enable-if-interoperable-needs-standardese" id="id4" name="id4">9.3 enable_if_interoperable needs standardese</a></li>
<li><a class="reference" href="#enable-if-convertible-unspecified-conflicts-with-requires" id="id5" name="id5">9.4 enable_if_convertible unspecified, conflicts with requires</a></li>
<li><a class="reference" href="#iterator-adaptor-has-an-extraneous-bool-at-the-start-of-the-template-definition" id="id6" name="id6">9.5 iterator_adaptor has an extraneous 'bool' at the start of the template definition</a></li>
<li><a class="reference" href="#name-of-private-member-shouldn-t-be-normative" id="id7" name="id7">9.6 Name of private member shouldn't be normative</a></li>
<li><a class="reference" href="#iterator-adaptor-operations-specifications-are-a-bit-inconsistent" id="id8" name="id8">9.7 iterator_adaptor operations specifications are a bit inconsistent</a></li>
<li><a class="reference" href="#specialized-adaptors-text-should-be-normative" id="id9" name="id9">9.8 Specialized adaptors text should be normative</a></li>
<li><a class="reference" href="#reverse-iterator-text-is-too-informal" id="id10" name="id10">9.9 Reverse_iterator text is too informal</a></li>
<li><a class="reference" href="#prior-is-undefined" id="id11" name="id11">9.10 'prior' is undefined</a></li>
<li><a class="reference" href="#in-other-words-is-bad-wording" id="id12" name="id12">9.11 "In other words" is bad wording</a></li>
<li><a class="reference" href="#transform-iterator-shouldn-t-mandate-private-member" id="id13" name="id13">9.12 Transform_iterator shouldn't mandate private member</a></li>
<li><a class="reference" href="#unclear-description-of-counting-iterator" id="id14" name="id14">9.13 Unclear description of counting iterator</a></li>
<li><a class="reference" href="#counting-iterator-s-difference-type" id="id15" name="id15">9.14 Counting_iterator's difference type</a></li>
<li><a class="reference" href="#how-to-detect-lvalueness" id="id16" name="id16">9.15 How to detect lvalueness?</a></li>
<li><a class="reference" href="#is-writable-iterator-returns-false-positives" id="id17" name="id17">9.16 is_writable_iterator returns false positives</a></li>
<li><a class="reference" href="#is-swappable-iterator-returns-false-positives" id="id18" name="id18">9.17 is_swappable_iterator returns false positives</a></li>
<li><a class="reference" href="#are-is-readable-is-writable-and-is-swappable-useful" id="id19" name="id19">9.18 Are is_readable, is_writable, and is_swappable useful?</a></li>
<li><a class="reference" href="#non-uniformity-of-the-lvalue-iterator-bit" id="id20" name="id20">9.19 Non-Uniformity of the "lvalue_iterator Bit"</a></li>
<li><a class="reference" href="#traversal-concepts-and-tags" id="id21" name="id21">9.20 Traversal Concepts and Tags</a></li>
<li><a class="reference" href="#iterator-facade-derived-template-argument-underspecified" id="id22" name="id22">9.21 iterator_facade Derived template argument underspecified</a></li>
<li><a class="reference" href="#return-type-of-iterator-difference-for-iterator-facade" id="id23" name="id23">9.22 return type of Iterator difference for iterator facade</a></li>
<li><a class="reference" href="#iterator-facade-minor-wording-issue" id="id24" name="id24">9.23 Iterator_facade: minor wording Issue</a></li>
<li><a class="reference" href="#use-of-undefined-name-in-iterator-facade-table" id="id25" name="id25">9.24 Use of undefined name in iterator_facade table</a></li>
<li><a class="reference" href="#iterator-facade-wrong-return-type" id="id26" name="id26">9.25 Iterator_facade: wrong return type</a></li>
<li><a class="reference" href="#iterator-facade-unclear-returns-clause-for-operator" id="id27" name="id27">9.26 Iterator_facade: unclear returns clause for operator[]</a></li>
<li><a class="reference" href="#iterator-facade-redundant-clause" id="id28" name="id28">9.27 Iterator_facade: redundant clause</a></li>
<li><a class="reference" href="#indirect-iterator-incorrect-specification-of-default-constructor" id="id29" name="id29">9.28 indirect_iterator: incorrect specification of default constructor</a></li>
<li><a class="reference" href="#indirect-iterator-unclear-specification-of-template-constructor" id="id30" name="id30">9.29 indirect_iterator: unclear specification of template constructor</a></li>
<li><a class="reference" href="#transform-iterator-argument-irregularity" id="id31" name="id31">9.30 transform_iterator argument irregularity</a></li>
<li><a class="reference" href="#function-output-iterator-overconstrained" id="id32" name="id32">9.31 function_output_iterator overconstrained</a></li>
<li><a class="reference" href="#should-output-proxy-really-be-a-named-type" id="id33" name="id33">9.32 Should output_proxy really be a named type?</a></li>
<li><a class="reference" href="#istreambuf-iterator-isn-t-a-readable-iterator" id="id34" name="id34">9.33 istreambuf_iterator isn't a Readable Iterator</a></li>
<li><a class="reference" href="#iterator-facade-free-functions-unspecified" id="id35" name="id35">9.34 iterator_facade free functions unspecified</a></li>
<li><a class="reference" href="#iterator-facade-too-many-equals" id="id36" name="id36">9.35 iterator_facade: too many equals?</a></li>
<li><a class="reference" href="#iterator-facade-function-requirements" id="id37" name="id37">9.36 iterator_facade function requirements</a></li>
</ul>
</li>
<li><a class="reference" href="#more-issues-not-from-matt-s-list" id="id38" name="id38">More Issues (not from Matt's list)</a><ul>
<li><a class="reference" href="#x-inheritance-in-iterator-adaptor-and-other-adaptors-is-an-overspecification" id="id39" name="id39">9.37x Inheritance in iterator_adaptor and other adaptors is an overspecification</a></li>
<li><a class="reference" href="#x-problem-with-specification-of-a-m-in-readable-iterator" id="id40" name="id40">9.38x Problem with specification of a->m in Readable Iterator</a></li>
<li><a class="reference" href="#x-counting-iterator-traversal-argument-unspecified" id="id41" name="id41">9.39x counting_iterator Traversal argument unspecified</a></li>
<li><a class="reference" href="#x-indirect-iterator-requirements-muddled" id="id42" name="id42">9.40x indirect_iterator requirements muddled</a></li>
<li><a class="reference" href="#x-problem-with-transform-iterator-requirements" id="id43" name="id43">9.41x Problem with transform_iterator requirements</a></li>
<li><a class="reference" href="#x-filter-iterator-details-unspecified" id="id44" name="id44">9.42x filter_iterator details unspecified</a></li>
<li><a class="reference" href="#x-transform-iterator-interoperability-too-restrictive" id="id45" name="id45">9.43x transform_iterator interoperability too restrictive</a></li>
<li><a class="reference" href="#y-indirect-iterator-and-smart-pointers" id="id46" name="id46">9.44y <tt class="literal"><span class="pre">indirect_iterator</span></tt> and smart pointers</a></li>
<li><a class="reference" href="#y-n1530-typos-and-editorial-changes-in-proposal-text-not-standardese" id="id47" name="id47">9.45y N1530: Typos and editorial changes in proposal text (not standardese)</a></li>
<li><a class="reference" href="#y-n1530-base-return-by-value-is-costly" id="id48" name="id48">9.46y N1530: <tt class="literal"><span class="pre">base()</span></tt> return-by-value is costly</a></li>
<li><a class="reference" href="#x-forgot-default-constructible-in-forward-traversal-iterator" id="id49" name="id49">9.47x Forgot default constructible in Forward Traversal Iterator</a></li>
<li><a class="reference" href="#x-editorial-changes-non-normative-text" id="id50" name="id50">9.48x Editorial changes (non-normative text)</a></li>
<li><a class="reference" href="#x-clarification-of-iterator-facade-requirements-and-type-members" id="id51" name="id51">9.49x Clarification of iterator_facade requirements and type members</a></li>
</ul>
</li>
</ul>
</div>
<div class="section" id="issues-from-matt-s-tr-issues-list">
<h1><a class="toc-backref" href="#id1" name="issues-from-matt-s-tr-issues-list">Issues from Matt's TR issues list</a></h1>
<div class="section" id="iterator-access-overspecified">
<h2><a class="toc-backref" href="#id2" name="iterator-access-overspecified">9.1 iterator_access overspecified?</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>The proposal includes:</p>
<pre class="literal-block">
enum iterator_access {
readable_iterator = 1, writable_iterator = 2,
swappable_iterator = 4, lvalue_iterator = 8
};
</pre>
<p>In general, the standard specifies thing like this as a bitmask
type with a list of defined names, and specifies neither the exact
type nor the specific values. Is there a reason for iterator_access
to be more specific?</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body">The <tt class="literal"><span class="pre">iterator_access</span></tt> enum will be removed,
so this is no longer an issue. See the resolution to 9.15.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="operators-of-iterator-facade-overspecified">
<h2><a class="toc-backref" href="#id3" name="operators-of-iterator-facade-overspecified">9.2 operators of iterator_facade overspecified</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>In general, we've provided operational semantics for things like
operator++. That is, we've said that ++iter must work, without
requiring either a member function or a non-member function.
iterator_facade specifies most operators as member
functions. There's no inherent reason for these to be members, so
we should remove this requirement. Similarly, some operations are
specified as non-member functions but could be implemented as
members. Again, the standard doesn't make either of these choices,
and TR1 shouldn't, either. So: <tt class="literal"><span class="pre">operator*()</span></tt>, <tt class="literal"><span class="pre">operator++()</span></tt>,
<tt class="literal"><span class="pre">operator++(int)</span></tt>, <tt class="literal"><span class="pre">operator--()</span></tt>, <tt class="literal"><span class="pre">operator--(int)</span></tt>,
<tt class="literal"><span class="pre">operator+=</span></tt>, <tt class="literal"><span class="pre">operator-=</span></tt>, <tt class="literal"><span class="pre">operator-(difference_type)</span></tt>,
<tt class="literal"><span class="pre">operator-(iterator_facade</span> <span class="pre">instance)</span></tt>, and <tt class="literal"><span class="pre">operator+</span></tt> should
be specified with operational semantics and not explicitly required
to be members or non-members.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body">Not a defect.</td>
</tr>
<tr class="field"><th class="field-name">Rationale:</th><td class="field-body">The standard uses valid expressions such as <tt class="literal"><span class="pre">++iter</span></tt>
in requirements tables, such as for input iterator. However, for
classes, such as <tt class="literal"><span class="pre">reverse_iterator</span></tt>, the standard uses function
prototypes, as we have done here for
<tt class="literal"><span class="pre">iterator_facade</span></tt>. Further, the prototype specification does
not prevent the implementor from using members or non-members,
since nothing the user can do in a conforming program can detect
how the function is implemented.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="enable-if-interoperable-needs-standardese">
<h2><a class="toc-backref" href="#id4" name="enable-if-interoperable-needs-standardese">9.3 enable_if_interoperable needs standardese</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>The only discussion of what this means is in a note, so is
non-normative. Further, the note seems to be incorrect. It says
that enable_if_interoperable only works for types that "are
interoperable, by which we mean they are convertible to each
other." This requirement is too strong: it should be that one of
the types is convertible to the other. N1541 48</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Add normative text. Relax requirements in the
proposed way.</p>
<p>Change:</p>
<blockquote>
[<em>Note:</em> The <tt class="literal"><span class="pre">enable_if_interoperable</span></tt> template used above is
for exposition purposes. The member operators should be only be
in an overload set provided the derived types <tt class="literal"><span class="pre">Dr1</span></tt> and
<tt class="literal"><span class="pre">Dr2</span></tt> are interoperable, by which we mean they are
convertible to each other. The <tt class="literal"><span class="pre">enable_if_interoperable</span></tt>
approach uses SFINAE to take the operators out of the overload
set when the types are not interoperable.]</blockquote>
<p>To:</p>
<blockquote class="last">
<p>The <tt class="literal"><span class="pre">enable_if_interoperable</span></tt> template used above is for
exposition purposes. The member operators should only be in an
overload set provided the derived types <tt class="literal"><span class="pre">Dr1</span></tt> and <tt class="literal"><span class="pre">Dr2</span></tt> are
interoperable, meaning that at least one of the types is
convertible to the other. The <tt class="literal"><span class="pre">enable_if_interoperable</span></tt>
approach uses SFINAE to take the operators out of the overload
set when the types are not interoperable. The operators should
behave <em>as-if</em> <tt class="literal"><span class="pre">enable_if_interoperable</span></tt> were defined to be:</p>
<pre class="literal-block">
template <bool, typename> enable_if_interoperable_impl
{};
template <typename T> enable_if_interoperable_impl<true,T>
{ typedef T type; };
template<typename Dr1, typename Dr2, typename T>
struct enable_if_interoperable
: enable_if_interoperable_impl<
is_convertible<Dr1,Dr2>::value || is_convertible<Dr2,Dr1>::value
, T
>
{};
</pre>
</blockquote>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="enable-if-convertible-unspecified-conflicts-with-requires">
<h2><a class="toc-backref" href="#id5" name="enable-if-convertible-unspecified-conflicts-with-requires">9.4 enable_if_convertible unspecified, conflicts with requires</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>In every place where enable_if_convertible is used it's used like
this (simplified):</p>
<pre class="literal-block">
template<class T>
struct C
{
template<class T1>
C(T1, enable_if_convertible<T1, T>::type* = 0);
};
</pre>
<p>The idea being that this constructor won't compile if T1 isn't
convertible to T. As a result, the constructor won't be considered
as a possible overload when constructing from an object x where the
type of x isn't convertible to T. In addition, however, each of
these constructors has a requires clause that requires
convertibility, so the behavior of a program that attempts such a
construction is undefined. Seems like the enable_if_convertible
part is irrelevant, and should be removed. There are two
problems. First, enable_if_convertible is never specified, so we
don't know what this is supposed to do. Second: we could reasonably
say that this overload should be disabled in certain cases or we
could reasonably say that behavior is undefined, but we can't say
both.</p>
<p>Thomas Witt writes that the goal of putting in
enable_if_convertible here is to make sure that a specific overload
doesn't interfere with the generic case except when that overload
makes sense. He agrees that what we currently have is deficient.
Dave Abrahams writes that there is no conflict with the requires
cause because the requires clause only takes effect when the
function is actually called. The presence of the constructor
signature can/will be detected by is_convertible without violating
the requires clause, and thus it makes a difference to disable
those constructor instantiations that would be disabled by
enable_if_convertible even if calling them invokes undefined
behavior. There was more discussion on the reflector:
c++std-lib-12312, c++std-lib-12325, c++std-lib- 12330,
c++std-lib-12334, c++std-lib-12335, c++std-lib-12336,
c++std-lib-12338, c++std-lib- 12362.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Change:</p>
<blockquote>
[<em>Note:</em> The <tt class="literal"><span class="pre">enable_if_convertible<X,Y>::type</span></tt> expression
used in this section is for exposition purposes. The converting
constructors for specialized adaptors should be only be in an
overload set provided that an object of type <tt class="literal"><span class="pre">X</span></tt> is
implicitly convertible to an object of type <tt class="literal"><span class="pre">Y</span></tt>. The
<tt class="literal"><span class="pre">enable_if_convertible</span></tt> approach uses SFINAE to take the
constructor out of the overload set when the types are not
implicitly convertible.]</blockquote>
<p>To:</p>
<blockquote class="last">
<p>The <tt class="literal"><span class="pre">enable_if_convertible<X,Y>::type</span></tt> expression used in
this section is for exposition purposes. The converting
constructors for specialized adaptors should be only be in an
overload set provided that an object of type <tt class="literal"><span class="pre">X</span></tt> is
implicitly convertible to an object of type <tt class="literal"><span class="pre">Y</span></tt>. The
signatures involving <tt class="literal"><span class="pre">enable_if_convertible</span></tt> should behave
<em>as-if</em> <tt class="literal"><span class="pre">enable_if_convertible</span></tt> were defined to be:</p>
<pre class="literal-block">
template <bool> enable_if_convertible_impl
{};
template <> enable_if_convertible_impl<true>
{ struct type; };
template<typename From, typename To>
struct enable_if_convertible
: enable_if_convertible_impl<is_convertible<From,To>::value>
{};
</pre>
<p>If an expression other than the default argument is used to
supply the value of a function parameter whose type is written
in terms of <tt class="literal"><span class="pre">enable_if_convertible</span></tt>, the program is
ill-formed, no diagnostic required.</p>
<p>[<em>Note:</em> The <tt class="literal"><span class="pre">enable_if_convertible</span></tt> approach uses SFINAE to
take the constructor out of the overload set when the types are
not implicitly convertible. ]</p>
</blockquote>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-adaptor-has-an-extraneous-bool-at-the-start-of-the-template-definition">
<h2><a class="toc-backref" href="#id6" name="iterator-adaptor-has-an-extraneous-bool-at-the-start-of-the-template-definition">9.5 iterator_adaptor has an extraneous 'bool' at the start of the template definition</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>The title says it all; this is probably just a typo.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body">Remove the 'bool'.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="name-of-private-member-shouldn-t-be-normative">
<h2><a class="toc-backref" href="#id7" name="name-of-private-member-shouldn-t-be-normative">9.6 Name of private member shouldn't be normative</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>iterator_adaptor has a private member named m_iterator. Presumably
this is for exposition only, since it's an implementation
detail. It needs to be marked as such.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><dl class="first">
<dt>Mark the member <tt class="literal"><span class="pre">m_iterator</span></tt> as exposition</dt>
<dd>only. Note/DWA: I think this is NAD because the user can't
detect it, though I'm happy to mark it exposition only.</dd>
</dl>
<p>In [lib.iterator.adaptor]</p>
<p>Change:</p>
<pre class="literal-block">
Base m_iterator;
</pre>
<p>to:</p>
<pre class="last literal-block">
Base m_iterator; // exposition only
</pre>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-adaptor-operations-specifications-are-a-bit-inconsistent">
<h2><a class="toc-backref" href="#id8" name="iterator-adaptor-operations-specifications-are-a-bit-inconsistent">9.7 iterator_adaptor operations specifications are a bit inconsistent</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>iterator_adpator() has a Requires clause, that Base must be default
constructible. iterator_adaptor(Base) has no Requires clause,
although the Returns clause says that the Base member is copy
construced from the argument (this may actually be an oversight in
N1550, which doesn't require iterators to be copy constructible or
assignable).</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Add a requirements section for the template
parameters of iterator_adaptor, and state that Base must be Copy
Constructible and Assignable.</p>
<p class="last">N1550 does in fact include requirements for copy constructible
and assignable in the requirements tables. To clarify, we've also
added the requirements to the text.</p>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="specialized-adaptors-text-should-be-normative">
<h2><a class="toc-backref" href="#id9" name="specialized-adaptors-text-should-be-normative">9.8 Specialized adaptors text should be normative</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>similar to 9.3, "Specialized Adaptors" has a note describing
enable_if_convertible. This should be normative text.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body">Changed it to normative
text. See the resolution of 9.4</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="reverse-iterator-text-is-too-informal">
<h2><a class="toc-backref" href="#id10" name="reverse-iterator-text-is-too-informal">9.9 Reverse_iterator text is too informal</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>reverse iterator "flips the direction of the base iterator's
motion". This needs to be more formal, as in the current
standard. Something like: "iterates through the controlled sequence
in the opposite direction"</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Change:</p>
<blockquote>
The reverse iterator adaptor flips the direction of a base
iterator's motion. Invoking <tt class="literal"><span class="pre">operator++()</span></tt> moves the base
iterator backward and invoking <tt class="literal"><span class="pre">operator--()</span></tt> moves the base
iterator forward.</blockquote>
<p>to:</p>
<blockquote class="last">
The reverse iterator adaptor iterates through the adapted iterator
range in the opposite direction.</blockquote>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="prior-is-undefined">
<h2><a class="toc-backref" href="#id11" name="prior-is-undefined">9.10 'prior' is undefined</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>reverse_iterator::dereference is specified as calling a function
named 'prior' which has no specification.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Change the specification to avoid using <tt class="literal"><span class="pre">prior</span></tt> as follows.</p>
<p>Remove:</p>
<pre class="literal-block">
typename reverse_iterator::reference dereference() const { return *prior(this->base()); }
</pre>
<p>And at the end of the operations section add:</p>
<blockquote class="last">
<p><tt class="literal"><span class="pre">reference</span> <span class="pre">operator*()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
<pre class="literal-block">
Iterator tmp = m_iterator;
return *--tmp;
</pre>
</blockquote>
</td>
</tr>
<tr class="field"><th class="field-name">Rationale:</th><td class="field-body">The style of specification has changed because of issue 9.37x.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="in-other-words-is-bad-wording">
<h2><a class="toc-backref" href="#id12" name="in-other-words-is-bad-wording">9.11 "In other words" is bad wording</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>Transform iterator has a two-part specification: it does this, in
other words, it does that. "In other words" always means "I didn't
say it right, so I'll try again." We need to say it once.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Change:</p>
<blockquote>
The transform iterator adapts an iterator by applying some function
object to the result of dereferencing the iterator. In other words,
the <tt class="literal"><span class="pre">operator*</span></tt> of the transform iterator first dereferences the
base iterator, passes the result of this to the function object, and
then returns the result.</blockquote>
<p>to:</p>
<blockquote class="last">
The transform iterator adapts an iterator by modifying the
<tt class="literal"><span class="pre">operator*</span></tt> to apply a function object to the result of
dereferencing the iterator and returning the result.</blockquote>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="transform-iterator-shouldn-t-mandate-private-member">
<h2><a class="toc-backref" href="#id13" name="transform-iterator-shouldn-t-mandate-private-member">9.12 Transform_iterator shouldn't mandate private member</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>transform_iterator has a private member named 'm_f' which should be
marked "exposition only."</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Mark the member <tt class="literal"><span class="pre">m_f</span></tt> as exposition
only. Note/DWA: I think this is NAD because the user can't
detect it, though I'm happy to mark it exposition only.</p>
<p>Change:</p>
<pre class="literal-block">
UnaryFunction m_f;
</pre>
<p>to:</p>
<pre class="last literal-block">
UnaryFunction m_f; // exposition only
</pre>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="unclear-description-of-counting-iterator">
<h2><a class="toc-backref" href="#id14" name="unclear-description-of-counting-iterator">9.13 Unclear description of counting iterator</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>The description of Counting iterator is unclear. "The counting
iterator adaptor implements dereference by returning a reference to
the base object. The other operations are implemented by the base
m_iterator, as per the inheritance from iterator_adaptor."</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Change:</p>
<blockquote>
The counting iterator adaptor implements dereference by
returning a reference to the base object. The other operations
are implemented by the base <tt class="literal"><span class="pre">m_iterator</span></tt>, as per the
inheritance from <tt class="literal"><span class="pre">iterator_adaptor</span></tt>.</blockquote>
<p>to:</p>
<blockquote class="last">
<tt class="literal"><span class="pre">counting_iterator</span></tt> adapts an object by adding an
<tt class="literal"><span class="pre">operator*</span></tt> that returns the current value of the object. All
other iterator operations are forwarded to the adapted object.</blockquote>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="counting-iterator-s-difference-type">
<h2><a class="toc-backref" href="#id15" name="counting-iterator-s-difference-type">9.14 Counting_iterator's difference type</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>Counting iterator has the following note:</p>
<blockquote>
[Note: implementers are encouraged to provide an implementation
of distance_to and a difference_type that avoids overflows in the
cases when the Incrementable type is a numeric type.]</blockquote>
<p>I'm not sure what this means. The user provides a template argument
named Difference, but there's no difference_type. I assume this is
just a glitch in the wording. But if implementors are encouraged to
ignore this argument if it won't work right, why is it there?</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body">The <tt class="literal"><span class="pre">difference_type</span></tt> was inherited from
<tt class="literal"><span class="pre">iterator_adaptor</span></tt>. However, we've removed the explicit
inheritance, so explicit typedefs have been added. See the
resolution of 9.37x.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="how-to-detect-lvalueness">
<h2><a class="toc-backref" href="#id16" name="how-to-detect-lvalueness">9.15 How to detect lvalueness?</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Dave Abrahams</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>Shortly after N1550 was accepted, we discovered that an iterator's
lvalueness can be determined knowing only its value_type. This
predicate can be calculated even for old-style iterators (on whose
reference type the standard places few requirements). A trait in
the Boost iterator library does it by relying on the compiler's
unwillingness to bind an rvalue to a T& function template
parameter. Similarly, it is possible to detect an iterator's
readability knowing only its value_type. Thus, any interface which
asks the user to explicitly describe an iterator's lvalue-ness or
readability seems to introduce needless complexity.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><ol class="first arabic simple">
<li>Remove the <tt class="literal"><span class="pre">is_writable</span></tt> and <tt class="literal"><span class="pre">is_swappable</span></tt> traits, and
remove the requirements in the Writable Iterator and Swappable
Iterator concepts that require their models to support these
traits.</li>
<li>Change the <tt class="literal"><span class="pre">is_readable</span></tt> specification. Remove the
requirement for support of the <tt class="literal"><span class="pre">is_readable</span></tt> trait from the
Readable Iterator concept.</li>
<li>Remove the <tt class="literal"><span class="pre">iterator_tag</span></tt> class and transplant the logic for
choosing an iterator category into <tt class="literal"><span class="pre">iterator_facade</span></tt>.</li>
<li>Change the specification of <tt class="literal"><span class="pre">traversal_category</span></tt>.</li>
<li>Remove Access parameters from N1530</li>
</ol>
<p>In N1550:</p>
<p>Remove:</p>
<blockquote>
<p>Since the access concepts are not related via refinement, but
instead cover orthogonal issues, we do not use tags for the
access concepts, but instead use the equivalent of a bit field.</p>
<p>We provide an access mechanism for mapping iterator types to
the new traversal tags and access bit field. Our design reuses
<tt class="literal"><span class="pre">iterator_traits<Iter>::iterator_category</span></tt> as the access
mechanism. To that end, the access and traversal information is
bundled into a single type using the following <cite>iterator_tag</cite>
class.</p>
<pre class="literal-block">
enum iterator_access { readable_iterator = 1, writable_iterator = 2,
swappable_iterator = 4, lvalue_iterator = 8 };
template <unsigned int access_bits, class TraversalTag>
struct iterator_tag : /* appropriate old category or categories */ {
static const iterator_access access =
(iterator_access)access_bits &
(readable_iterator | writable_iterator | swappable_iterator);
typedef TraversalTag traversal;
};
</pre>
<p>The <tt class="literal"><span class="pre">access_bits</span></tt> argument is declared to be <tt class="literal"><span class="pre">unsigned</span> <span class="pre">int</span></tt>
instead of the enum <tt class="literal"><span class="pre">iterator_access</span></tt> for convenience of
use. For example, the expression <tt class="literal"><span class="pre">(readable_iterator</span> <span class="pre">|</span>
<span class="pre">writable_iterator)</span></tt> produces an unsigned int, not an
<tt class="literal"><span class="pre">iterator_access</span></tt>. The purpose of the <tt class="literal"><span class="pre">lvalue_iterator</span></tt>
part of the <tt class="literal"><span class="pre">iterator_access</span></tt> enum is to communicate to
<tt class="literal"><span class="pre">iterator_tag</span></tt> whether the reference type is an lvalue so
that the appropriate old category can be chosen for the base
class. The <tt class="literal"><span class="pre">lvalue_iterator</span></tt> bit is not recorded in the
<tt class="literal"><span class="pre">iterator_tag::access</span></tt> data member.</p>
<p>The <tt class="literal"><span class="pre">iterator_tag</span></tt> class template is derived from the
appropriate iterator tag or tags from the old requirements
based on the access bits and traversal tag passed as template
parameters. The algorithm for determining the old tag or tags
picks the least refined old concepts that include all of the
requirements of the access and traversal concepts (that is, the
closest fit), if any such category exists. For example, the
category tag for a Readable Single Pass Iterator will always be
derived from <tt class="literal"><span class="pre">input_iterator_tag</span></tt>, while the category tag for
a Single Pass Iterator that is both Readable and Writable will
be derived from both <tt class="literal"><span class="pre">input_iterator_tag</span></tt> and
<tt class="literal"><span class="pre">output_iterator_tag</span></tt>.</p>
<p>We also provide several helper classes that make it convenient
to obtain the access and traversal characteristics of an
iterator. These helper classes work both for iterators whose
<tt class="literal"><span class="pre">iterator_category</span></tt> is <tt class="literal"><span class="pre">iterator_tag</span></tt> and also for
iterators using the original iterator categories.</p>
<pre class="literal-block">
template <class Iterator> struct is_readable { typedef ... type; };
template <class Iterator> struct is_writable { typedef ... type; };
template <class Iterator> struct is_swappable { typedef ... type; };
template <class Iterator> struct traversal_category { typedef ... type; };
</pre>
</blockquote>
<p>After:</p>
<blockquote>
Like the old iterator requirements, we provide tags for
purposes of dispatching based on the traversal concepts. The
tags are related via inheritance so that a tag is convertible
to another tag if the concept associated with the first tag is
a refinement of the second tag.</blockquote>
<p>Add:</p>
<blockquote>
<p>Our design reuses <tt class="literal"><span class="pre">iterator_traits<Iter>::iterator_category</span></tt>
to indicate an iterator's traversal capability. To specify
capabilities not captured by any old-style iterator category,
an iterator designer can use an <tt class="literal"><span class="pre">iterator_category</span></tt> type that
is convertible to both the the most-derived old iterator
category tag which fits, and the appropriate new iterator
traversal tag.</p>
<p>We do not provide tags for the purposes of dispatching based on
the access concepts, in part because we could not find a way to
automatically infer the right access tags for old-style
iterators. An iterator's writability may be dependent on the
assignability of its <tt class="literal"><span class="pre">value_type</span></tt> and there's no known way to
detect whether an arbitrary type is assignable. Fortunately,
the need for dispatching based on access capability is not as
great as the need for dispatching based on traversal
capability.</p>
</blockquote>
<p>From the Readable Iterator Requirements table, remove:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="37%" />
<col width="37%" />
<col width="26%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">is_readable<X>::type</span></tt></td>
<td><tt class="literal"><span class="pre">true_type</span></tt></td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>From the Writable Iterator Requirements table, remove:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="37%" />
<col width="21%" />
<col width="42%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">is_writable<X>::type</span></tt></td>
<td><tt class="literal"><span class="pre">true_type</span></tt></td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>From the Swappable Iterator Requirements table, remove:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="37%" />
<col width="19%" />
<col width="43%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">is_swappable<X>::type</span></tt></td>
<td><tt class="literal"><span class="pre">true_type</span></tt></td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>From [lib.iterator.synopsis] replace:</p>
<pre class="literal-block">
template <class Iterator> struct is_readable;
template <class Iterator> struct is_writable;
template <class Iterator> struct is_swappable;
template <class Iterator> struct traversal_category;
enum iterator_access { readable_iterator = 1, writable_iterator = 2,
swappable_iterator = 4, lvalue_iterator = 8 };
template <unsigned int access_bits, class TraversalTag>
struct iterator_tag : /* appropriate old category or categories */ {
static const iterator_access access =
(iterator_access)access_bits &
(readable_iterator | writable_iterator | swappable_iterator);
typedef TraversalTag traversal;
};
</pre>
<p>with:</p>
<pre class="literal-block">
template <class Iterator> struct is_readable_iterator;
template <class Iterator> struct iterator_traversal;
</pre>
<p>In [lib.iterator.traits], remove:</p>
<blockquote>
<p>The <tt class="literal"><span class="pre">iterator_tag</span></tt> class template is an iterator category tag
that encodes the access enum and traversal tag in addition to
being compatible with the original iterator tags. The
<tt class="literal"><span class="pre">iterator_tag</span></tt> class inherits from one of the original
iterator tags according to the following pseudo-code.</p>
<pre class="literal-block">
inherit-category(access, traversal-tag) =
if ((access & readable_iterator) && (access & lvalue_iterator)) {
if (traversal-tag is convertible to random_access_traversal_tag)
return random_access_iterator_tag;
else if (traversal-tag is convertible to bidirectional_traversal_tag)
return bidirectional_iterator_tag;
else if (traversal-tag is convertible to forward_traversal_tag)
return forward_iterator_tag;
else if (traversal-tag is convertible to single_pass_traversal_tag)
if (access-tag is convertible to writable_iterator_tag)
return input_output_iterator_tag;
else
return input_iterator_tag;
else
return null_category_tag;
} else if ((access & readable_iterator) and (access & writable_iterator)
and traversal-tag is convertible to single_pass_iterator_tag)
return input_output_iterator_tag;
else if (access & readable_iterator
and traversal-tag is convertible to single_pass_iterator_tag)
return input_iterator_tag;
else if (access & writable_iterator
and traversal-tag is convertible to incrementable_iterator_tag)
return output_iterator_tag;
else
return null_category_tag;
</pre>
<p>If the argument for <tt class="literal"><span class="pre">TraversalTag</span></tt> is not convertible to
<tt class="literal"><span class="pre">incrementable_iterator_tag</span></tt> then the program is ill-formed.</p>
</blockquote>
<p>Change:</p>
<blockquote>
<p>The <tt class="literal"><span class="pre">is_readable</span></tt>, <tt class="literal"><span class="pre">is_writable</span></tt>, <tt class="literal"><span class="pre">is_swappable</span></tt>, and
<tt class="literal"><span class="pre">traversal_category</span></tt> class templates are traits classes. For
iterators whose <tt class="literal"><span class="pre">iterator_traits<Iter>::iterator_category</span></tt>
type is <tt class="literal"><span class="pre">iterator_tag</span></tt>, these traits obtain the <tt class="literal"><span class="pre">access</span></tt>
enum and <tt class="literal"><span class="pre">traversal</span></tt> member type from within
<tt class="literal"><span class="pre">iterator_tag</span></tt>. For iterators whose
<tt class="literal"><span class="pre">iterator_traits<Iter>::iterator_category</span></tt> type is not
<tt class="literal"><span class="pre">iterator_tag</span></tt> and instead is a tag convertible to one of the
original tags, the appropriate traversal tag and access bits
are deduced. The following pseudo-code describes the
algorithm.</p>
<pre class="literal-block">
is-readable(Iterator) =
cat = iterator_traits<Iterator>::iterator_category;
if (cat == iterator_tag<Access,Traversal>)
return Access & readable_iterator;
else if (cat is convertible to input_iterator_tag)
return true;
else
return false;
is-writable(Iterator) =
cat = iterator_traits<Iterator>::iterator_category;
if (cat == iterator_tag<Access,Traversal>)
return Access & writable_iterator;
else if (cat is convertible to output_iterator_tag)
return true;
else if (
cat is convertible to forward_iterator_tag
and iterator_traits<Iterator>::reference is a
mutable reference)
return true;
else
return false;
is-swappable(Iterator) =
cat = iterator_traits<Iterator>::iterator_category;
if (cat == iterator_tag<Access,Traversal>)
return Access & swappable_iterator;
else if (cat is convertible to forward_iterator_tag) {
if (iterator_traits<Iterator>::reference is a const reference)
return false;
else
return true;
} else
return false;
traversal-category(Iterator) =
cat = iterator_traits<Iterator>::iterator_category;
if (cat == iterator_tag<Access,Traversal>)
return Traversal;
else if (cat is convertible to random_access_iterator_tag)
return random_access_traversal_tag;
else if (cat is convertible to bidirectional_iterator_tag)
return bidirectional_traversal_tag;
else if (cat is convertible to forward_iterator_tag)
return forward_traversal_tag;
else if (cat is convertible to input_iterator_tag)
return single_pass_iterator_tag;
else if (cat is convertible to output_iterator_tag)
return incrementable_iterator_tag;
else
return null_category_tag;
</pre>
<p>The following specializations provide the access and traversal
category tags for pointer types.</p>
<pre class="literal-block">
template <typename T>
struct is_readable<const T*> { typedef true_type type; };
template <typename T>
struct is_writable<const T*> { typedef false_type type; };
template <typename T>
struct is_swappable<const T*> { typedef false_type type; };
template <typename T>
struct is_readable<T*> { typedef true_type type; };
template <typename T>
struct is_writable<T*> { typedef true_type type; };
template <typename T>
struct is_swappable<T*> { typedef true_type type; };
template <typename T>
struct traversal_category<T*>
{
typedef random_access_traversal_tag type;
};
</pre>
</blockquote>
<p>to:</p>
<blockquote>
<p>The <tt class="literal"><span class="pre">is_readable_iterator</span></tt> class template satisfies the
UnaryTypeTrait requirements.</p>
<p>Given an iterator type <tt class="literal"><span class="pre">X</span></tt>,
<tt class="literal"><span class="pre">is_readable_iterator<X>::value</span></tt> yields <tt class="literal"><span class="pre">true</span></tt> if, for an
object <tt class="literal"><span class="pre">a</span></tt> of type <tt class="literal"><span class="pre">X</span></tt>, <tt class="literal"><span class="pre">*a</span></tt> is convertible to
<tt class="literal"><span class="pre">iterator_traits<X>::value_type</span></tt>, and <tt class="literal"><span class="pre">false</span></tt> otherwise.</p>
<a class="target" id="category-to-traversal" name="category-to-traversal"></a><p><tt class="literal"><span class="pre">iterator_traversal<X>::type</span></tt> is</p>
<pre class="literal-block">
<em>category-to-traversal</em>(iterator_traits<X>::iterator_category)
</pre>
<p>where <em>category-to-traversal</em> is defined as follows</p>
<pre class="literal-block">
<em>category-to-traversal</em>(C) =
if (C is convertible to incrementable_traversal_tag)
return C;
else if (C is convertible to random_access_iterator_tag)
return random_access_traversal_tag;
else if (C is convertible to bidirectional_iterator_tag)
return bidirectional_traversal_tag;
else if (C is convertible to forward_iterator_tag)
return forward_traversal_tag;
else if (C is convertible to input_iterator_tag)
return single_pass_traversal_tag;
else if (C is convertible to output_iterator_tag)
return incrementable_traversal_tag;
else
<em>the program is ill-formed</em>
</pre>
</blockquote>
<p>In N1530:</p>
<p>In [lib.iterator.helper.synopsis]:</p>
<p>Change:</p>
<pre class="literal-block">
const unsigned use_default_access = -1;
struct iterator_core_access { /* implementation detail */ };
template <
class Derived
, class Value
, unsigned AccessCategory
, class TraversalCategory
, class Reference = Value&
, class Difference = ptrdiff_t
>
class iterator_facade;
template <
class Derived
, class Base
, class Value = use_default
, unsigned Access = use_default_access
, class Traversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class iterator_adaptor;
template <
class Iterator
, class Value = use_default
, unsigned Access = use_default_access
, class Traversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class indirect_iterator;
</pre>
<p>To:</p>
<pre class="literal-block">
struct iterator_core_access { /* implementation detail */ };
template <
class Derived
, class Value
, class CategoryOrTraversal
, class Reference = Value&
, class Difference = ptrdiff_t
>
class iterator_facade;
template <
class Derived
, class Base
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class iterator_adaptor;
template <
class Iterator
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class indirect_iterator;
</pre>
<p>Change:</p>
<pre class="literal-block">
template <
class Incrementable
, unsigned Access = use_default_access
, class Traversal = use_default
, class Difference = use_default
>
class counting_iterator
</pre>
<p>To:</p>
<pre class="literal-block">
template <
class Incrementable
, class CategoryOrTraversal = use_default
, class Difference = use_default
>
class counting_iterator;
</pre>
<p>In [lib.iterator.facade]:</p>
<p>Change:</p>
<pre class="literal-block">
template <
class Derived
, class Value
, unsigned AccessCategory
, class TraversalCategory
, class Reference = /* see below */
, class Difference = ptrdiff_t
>
class iterator_facade {
</pre>
<p>to:</p>
<pre class="literal-block">
template <
class Derived
, class Value
, class CategoryOrTraversal
, class Reference = Value&
, class Difference = ptrdiff_t
>
class iterator_facade {
</pre>
<p>Change:</p>
<pre class="literal-block">
typedef iterator_tag<AccessCategory, TraversalCategory> iterator_category;
</pre>
<p>to:</p>
<pre class="literal-block">
typedef /* see below */ iterator_category;
</pre>
<p>Change:</p>
<pre class="literal-block">
// Comparison operators
template <class Dr1, class V1, class AC1, class TC1, class R1, class D1,
class Dr2, class V2, class AC2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1, Dr2, bool>::type // exposition
operator ==(iterator_facade<Dr1, V1, AC1, TC1, R1, D1> const& lhs,
iterator_facade<Dr2, V2, AC2, TC2, R2, D2> const& rhs);
template <class Dr1, class V1, class AC1, class TC1, class R1, class D1,
class Dr2, class V2, class AC2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1, Dr2, bool>::type
operator !=(iterator_facade<Dr1, V1, AC1, TC1, R1, D1> const& lhs,
iterator_facade<Dr2, V2, AC2, TC2, R2, D2> const& rhs);
template <class Dr1, class V1, class AC1, class TC1, class R1, class D1,
class Dr2, class V2, class AC2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1, Dr2, bool>::type
operator <(iterator_facade<Dr1, V1, AC1, TC1, R1, D1> const& lhs,
iterator_facade<Dr2, V2, AC2, TC2, R2, D2> const& rhs);
template <class Dr1, class V1, class AC1, class TC1, class R1, class D1,
class Dr2, class V2, class AC2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1, Dr2, bool>::type
operator <=(iterator_facade<Dr1, V1, AC1, TC1, R1, D1> const& lhs,
iterator_facade<Dr2, V2, AC2, TC2, R2, D2> const& rhs);
template <class Dr1, class V1, class AC1, class TC1, class R1, class D1,
class Dr2, class V2, class AC2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1, Dr2, bool>::type
operator >(iterator_facade<Dr1, V1, AC1, TC1, R1, D1> const& lhs,
iterator_facade<Dr2, V2, AC2, TC2, R2, D2> const& rhs);
template <class Dr1, class V1, class AC1, class TC1, class R1, class D1,
class Dr2, class V2, class AC2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1, Dr2, bool>::type
operator >=(iterator_facade<Dr1, V1, AC1, TC1, R1, D1> const& lhs,
iterator_facade<Dr2, V2, AC2, TC2, R2, D2> const& rhs);
template <class Dr1, class V1, class AC1, class TC1, class R1, class D1,
class Dr2, class V2, class AC2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1, Dr2, bool>::type
operator >=(iterator_facade<Dr1, V1, AC1, TC1, R1, D1> const& lhs,
iterator_facade<Dr2, V2, AC2, TC2, R2, D2> const& rhs);
// Iterator difference
template <class Dr1, class V1, class AC1, class TC1, class R1, class D1,
class Dr2, class V2, class AC2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1, Dr2, bool>::type
operator -(iterator_facade<Dr1, V1, AC1, TC1, R1, D1> const& lhs,
iterator_facade<Dr2, V2, AC2, TC2, R2, D2> const& rhs);
// Iterator addition
template <class Derived, class V, class AC, class TC, class R, class D>
Derived operator+ (iterator_facade<Derived, V, AC, TC, R, D> const&,
typename Derived::difference_type n)
</pre>
<p>to:</p>
<pre class="literal-block">
// Comparison operators
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type // exposition
operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
// Iterator difference
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
/* see below */
operator-(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
// Iterator addition
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&,
typename Derived::difference_type n);
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference_type n,
iterator_facade<Dr,V,TC,R,D> const&);
</pre>
<p>After the <tt class="literal"><span class="pre">iterator_facade</span></tt> synopsis, add:</p>
<p>The <tt class="literal"><span class="pre">iterator_category</span></tt> member of <tt class="literal"><span class="pre">iterator_facade</span></tt> is</p>
<pre class="literal-block">
<em>iterator-category</em>(CategoryOrTraversal, value_type, reference)
</pre>
<p>where <em>iterator-category</em> is defined as follows:</p>
<pre class="last literal-block">
<em>iterator-category</em>(C,R,V) :=
if (C is convertible to std::input_iterator_tag
|| C is convertible to std::output_iterator_tag
)
return C
else if (C is not convertible to incrementable_traversal_tag)
<em>the program is ill-formed</em>
else return a type X satisfying the following two constraints:
1. X is convertible to X1, and not to any more-derived
type, where X1 is defined by:
if (R is a reference type
&& C is convertible to forward_traversal_tag)
{
if (C is convertible to random_access_traversal_tag)
X1 = random_access_iterator_tag
else if (C is convertible to bidirectional_traversal_tag)
X1 = bidirectional_iterator_tag
else
X1 = forward_iterator_tag
}
else
{
if (C is convertible to single_pass_traversal_tag
&& R is convertible to V)
X1 = input_iterator_tag
else
X1 = C
}
2. <a class="reference" href="#category-to-traversal"><em>category-to-traversal</em></a>(X) is convertible to the most
derived traversal tag type to which X is also
convertible, and not to any more-derived traversal tag
type.
</pre>
</td>
</tr>
</tbody>
</table>
<a class="target" id="iterator-category" name="iterator-category"></a><blockquote>
<p>In [lib.iterator.facade] <tt class="literal"><span class="pre">iterator_facade</span></tt> requirements:</p>
<p>Remove:</p>
<blockquote>
<tt class="literal"><span class="pre">AccessCategory</span></tt> must be an unsigned value which uses no more
bits than the greatest value of <tt class="literal"><span class="pre">iterator_access</span></tt>.</blockquote>
<p>In the <strong>Iterator Adaptor</strong> section, change:</p>
<blockquote>
Several of the template parameters of <tt class="literal"><span class="pre">iterator_adaptor</span></tt> default
to <tt class="literal"><span class="pre">use_default</span></tt> (or <tt class="literal"><span class="pre">use_default_access</span></tt>).</blockquote>
<p>to:</p>
<blockquote>
Several of the template parameters of <tt class="literal"><span class="pre">iterator_adaptor</span></tt> default
to <tt class="literal"><span class="pre">use_default</span></tt>.</blockquote>
<p>In [lib.iterator.special.adaptors]:</p>
<p>Change:</p>
<pre class="literal-block">
template <
class Iterator
, class Value = use_default
, unsigned Access = use_default_access
, class Traversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class indirect_iterator
</pre>
<p>to:</p>
<pre class="literal-block">
template <
class Iterator
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class indirect_iterator
</pre>
<p>Change:</p>
<pre class="literal-block">
template <
class Iterator2, class Value2, unsigned Access2, class Traversal2
, class Reference2, class Difference2
>
indirect_iterator(
</pre>
<p>to:</p>
<pre class="literal-block">
template <
class Iterator2, class Value2, class Category2
, class Reference2, class Difference2
>
indirect_iterator(
</pre>
<p>Change:</p>
<pre class="literal-block">
template <
class Incrementable
, unsigned Access = use_default_access
, class Traversal = use_default
, class Difference = use_default
>
class counting_iterator
</pre>
<p>to:</p>
<pre class="literal-block">
template <
class Incrementable
, class CategoryOrTraversal = use_default
, class Difference = use_default
>
class counting_iterator
</pre>
<p>Change:</p>
<pre class="literal-block">
typedef iterator_tag<
writable_iterator
, incrementable_traversal_tag
> iterator_category;
</pre>
<p>to:</p>
<blockquote>
typedef std::output_iterator_tag iterator_category;</blockquote>
<p>In [lib.iterator.adaptor]</p>
<p>Change:</p>
<pre class="literal-block">
template <
class Derived
, class Base
, class Value = use_default
, unsigned Access = use_default_access
, class Traversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class iterator_adaptor
</pre>
<p>To:</p>
<pre class="literal-block">
template <
class Derived
, class Base
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class iterator_adaptor
</pre>
</blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Rationale:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
<ol class="arabic simple">
<li>There are two reasons for removing <tt class="literal"><span class="pre">is_writable</span></tt>
and <tt class="literal"><span class="pre">is_swappable</span></tt>. The first is that we do not know of
a way to fix the specification so that it gives the correct
answer for all iterators. Second, there was only a weak
motivation for having <tt class="literal"><span class="pre">is_writable</span></tt> and <tt class="literal"><span class="pre">is_swappable</span></tt>
there in the first place. The main motivation was simply
uniformity: we have tags for the old iterator categories
so we should have tags for the new iterator categories.
While having tags and the capability to dispatch based
on the traversal categories is often used, we see
less of a need for dispatching based on writability
and swappability, since typically algorithms
that need these capabilities have no alternative if
they are not provided.</li>
<li>We discovered that the <tt class="literal"><span class="pre">is_readable</span></tt> trait can be implemented
using only the iterator type itself and its <tt class="literal"><span class="pre">value_type</span></tt>.
Therefore we remove the requirement for <tt class="literal"><span class="pre">is_readable</span></tt> from the
Readable Iterator concept, and change the definition of
<tt class="literal"><span class="pre">is_readable</span></tt> so that it works for any iterator type.</li>
<li>The purpose of the <tt class="literal"><span class="pre">iterator_tag</span></tt> class was to bundle the
traversal and access category tags into the
<tt class="literal"><span class="pre">iterator_category</span></tt> typedef. With <tt class="literal"><span class="pre">is_writable</span></tt> and
<tt class="literal"><span class="pre">is_swappable</span></tt> gone, and <tt class="literal"><span class="pre">is_readable</span></tt> no longer in need of
special hints, there is no reason for iterators to provide
information about the access capabilities of an iterator. Thus
there is no need for the <tt class="literal"><span class="pre">iterator_tag</span></tt>. The traversal tag can
be directly used for the <tt class="literal"><span class="pre">iterator_category</span></tt>. If a new
iterator is intended to be backward compatible with old iterator
concepts, a tag type that is convertible to both one of the new
traversal tags and also to an old iterator tag can be created
and use for the <tt class="literal"><span class="pre">iterator_category</span></tt>.</li>
<li>The changes to the specification of <tt class="literal"><span class="pre">traversal_category</span></tt> are a
direct result of the removal of <tt class="literal"><span class="pre">iterator_tag</span></tt>.</li>
</ol>
</div>
<div class="section" id="is-writable-iterator-returns-false-positives">
<h2><a class="toc-backref" href="#id17" name="is-writable-iterator-returns-false-positives">9.16 is_writable_iterator returns false positives</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Dave Abrahams</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>is_writable_iterator returns false positives for forward iterators
whose value_type has a private assignment operator, or whose
reference type is not a reference (currently legal).</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed Resolution:</th></tr>
<tr><td> </td><td class="field-body">See the resolution to 9.15.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="is-swappable-iterator-returns-false-positives">
<h2><a class="toc-backref" href="#id18" name="is-swappable-iterator-returns-false-positives">9.17 is_swappable_iterator returns false positives</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Dave Abrahams</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>is_swappable_iterator has the same problems as
is_writable_iterator. In addition, if we allow users to write their
own iter_swap functions it's easy to imagine old-style iterators
for which is_swappable returns false negatives.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed Resolution:</th></tr>
<tr><td> </td><td class="field-body">See the resolution to 9.15.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="are-is-readable-is-writable-and-is-swappable-useful">
<h2><a class="toc-backref" href="#id19" name="are-is-readable-is-writable-and-is-swappable-useful">9.18 Are is_readable, is_writable, and is_swappable useful?</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Dave Abrahams</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>I am concerned that there is little use for any of is_readable,
is_writable, or is_swappable, and that not only do they unduly
constrain iterator implementors but they add overhead to
iterator_facade and iterator_adaptor in the form of a template
parameter which would otherwise be unneeded. Since we can't
implement two of them accurately for old-style iterators, I am
having a hard time justifying their impact on the rest of the
proposal(s).</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed Resolution:</th></tr>
<tr><td> </td><td class="field-body">See the resolution to 9.15.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="non-uniformity-of-the-lvalue-iterator-bit">
<h2><a class="toc-backref" href="#id20" name="non-uniformity-of-the-lvalue-iterator-bit">9.19 Non-Uniformity of the "lvalue_iterator Bit"</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Dave Abrahams</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>The proposed iterator_tag class template accepts an "access bits"
parameter which includes a bit to indicate the iterator's
lvalueness (whether its dereference operator returns a reference to
its value_type. The relevant part of N1550 says:</p>
<blockquote>
The purpose of the lvalue_iterator part of the iterator_access
enum is to communicate to iterator_tagwhether the reference type
is an lvalue so that the appropriate old category can be chosen
for the base class. The lvalue_iterator bit is not recorded in
the iterator_tag::access data member.</blockquote>
<p>The lvalue_iterator bit is not recorded because N1550 aims to
improve orthogonality of the iterator concepts, and a new-style
iterator's lvalueness is detectable by examining its reference
type. This inside/outside difference is awkward and confusing.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed Resolution:</th></tr>
<tr><td> </td><td class="field-body">The iterator_tag class will be removed, so this is no longer an issue.
See the resolution to 9.15.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="traversal-concepts-and-tags">
<h2><a class="toc-backref" href="#id21" name="traversal-concepts-and-tags">9.20 Traversal Concepts and Tags</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Dave Abrahams</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>Howard Hinnant pointed out some inconsistencies with the naming of
these tag types:</p>
<pre class="literal-block">
incrementable_iterator_tag // ++r, r++
single_pass_iterator_tag // adds a == b, a != b
forward_traversal_iterator_tag // adds multi-pass
bidirectional_traversal_iterator_tag // adds --r, r--
random_access_traversal_iterator_tag // adds r+n,n+r,etc.
</pre>
<p>Howard thought that it might be better if all tag names contained
the word "traversal". It's not clear that would result in the best
possible names, though. For example, incrementable iterators can
only make a single pass over their input. What really distinguishes
single pass iterators from incrementable iterators is not that they
can make a single pass, but that they are equality
comparable. Forward traversal iterators really distinguish
themselves by introducing multi-pass capability. Without entering
a "Parkinson's Bicycle Shed" type of discussion, it might be worth
giving the names of these tags (and the associated concepts) some
extra attention.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Change the names of the traversal tags to the
following names:</p>
<pre class="literal-block">
incrementable_traversal_tag
single_pass_traversal_tag
forward_traversal_tag
bidirectional_traversal_tag
random_access_traversal_tag
</pre>
<p>In [lib.iterator.traversal]:</p>
<p>Change:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="39%" />
<col width="37%" />
<col width="24%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">traversal_category<X>::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">incrementable_iterator_tag</span></tt></td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>to:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="39%" />
<col width="37%" />
<col width="24%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">iterator_traversal<X>::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">incrementable_traversal_tag</span></tt></td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>Change:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="36%" />
<col width="33%" />
<col width="31%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">traversal_category<X>::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">single_pass_iterator_tag</span></tt></td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>to:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="36%" />
<col width="33%" />
<col width="31%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">iterator_traversal<X>::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">single_pass_traversal_tag</span></tt></td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>Change:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="44%" />
<col width="39%" />
<col width="17%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">traversal_category<X>::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">forward_traversal_iterator_tag</span></tt></td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>to:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="38%" />
<col width="34%" />
<col width="27%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">iterator_traversal<X>::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">forward_traversal_tag</span></tt></td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>Change:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="35%" />
<col width="44%" />
<col width="21%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">traversal_category<X>::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">bidirectional_traversal_iterator_tag</span></tt></td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>to:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="38%" />
<col width="37%" />
<col width="25%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">iterator_traversal<X>::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">bidirectional_traversal_tag</span></tt></td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>Change:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="31%" />
<col width="35%" />
<col width="18%" />
<col width="16%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">traversal_category<X>::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">random_access_traversal_iterator_tag</span></tt></td>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>to:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="28%" />
<col width="30%" />
<col width="23%" />
<col width="20%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">iterator_traversal<X>::type</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">random_access_traversal_tag</span></tt></td>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>In [lib.iterator.synopsis], change:</p>
<pre class="literal-block">
struct incrementable_iterator_tag { };
struct single_pass_iterator_tag : incrementable_iterator_tag { };
struct forward_traversal_tag : single_pass_iterator_tag { };
</pre>
<p>to:</p>
<pre class="literal-block">
struct incrementable_traversal_tag { };
struct single_pass_traversal_tag : incrementable_traversal_tag { };
struct forward_traversal_tag : single_pass_traversal_tag { };
</pre>
<p>Remove:</p>
<pre class="last literal-block">
struct null_category_tag { };
struct input_output_iterator_tag : input_iterator_tag, output_iterator_tag {};
</pre>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-facade-derived-template-argument-underspecified">
<h2><a class="toc-backref" href="#id22" name="iterator-facade-derived-template-argument-underspecified">9.21 iterator_facade Derived template argument underspecified</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>The first template argument to iterator_facade is named Derived,
and the proposal says:</p>
<blockquote>
The Derived template parameter must be a class derived from
iterator_facade.</blockquote>
<p>First, iterator_facade is a template, so cannot be derived
from. Rather, the class must be derived from a specialization of
iterator_facade. More important, isn't Derived required to be the
class that is being defined? That is, if I understand it right, the
definition of D here this is not valid:</p>
<pre class="literal-block">
class C : public iterator_facade<C, ... > { ... };
class D : public iterator_facade<C, ...> { ... };
</pre>
<p>In the definition of D, the Derived argument to iterator_facade is
a class derived from a specialization of iterator_facade, so the
requirement is met. Shouldn't the requirement be more like "when
using iterator_facade to define an iterator class Iter, the class
Iter must be derived from a specialization of iterator_facade whose
first template argument is Iter." That's a bit awkward, but at the
moment I don't see a better way of phrasing it.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">In [lib.iterator.facade]</p>
<p>Remove:</p>
<blockquote>
The <tt class="literal"><span class="pre">Derived</span></tt> template parameter must be a class derived from
<tt class="literal"><span class="pre">iterator_facade</span></tt>.</blockquote>
<p>Change:</p>
<blockquote>
The following table describes the other requirements on the
<tt class="literal"><span class="pre">Derived</span></tt> parameter. Depending on the resulting iterator's
<tt class="literal"><span class="pre">iterator_category</span></tt>, a subset of the expressions listed in the table
are required to be valid. The operations in the first column must be
accessible to member functions of class <tt class="literal"><span class="pre">iterator_core_access</span></tt>.</blockquote>
<p>to:</p>
<blockquote>
The following table describes the typical valid expressions on
<tt class="literal"><span class="pre">iterator_facade</span></tt>'s <tt class="literal"><span class="pre">Derived</span></tt> parameter, depending on the
iterator concept(s) it will model. The operations in the first
column must be made accessible to member functions of class
<tt class="literal"><span class="pre">iterator_core_access</span></tt>. In addition,
<tt class="literal"><span class="pre">static_cast<Derived*>(iterator_facade*)</span></tt> shall be well-formed.</blockquote>
<p>In [lib.iterator.adaptor]</p>
<p>Change:</p>
<blockquote>
The <tt class="literal"><span class="pre">iterator_adaptor</span></tt> is a base class template derived from
an instantiation of <tt class="literal"><span class="pre">iterator_facade</span></tt>.</blockquote>
<p>to:</p>
<blockquote>
Each specialization of the <tt class="literal"><span class="pre">iterator_adaptor</span></tt> class template
is derived from a specialization of <tt class="literal"><span class="pre">iterator_facade</span></tt>.</blockquote>
<p>Change:</p>
<blockquote>
The <tt class="literal"><span class="pre">Derived</span></tt> template parameter must be a derived class of
<tt class="literal"><span class="pre">iterator_adaptor</span></tt>.</blockquote>
<p>To:</p>
<blockquote class="last">
<tt class="literal"><span class="pre">static_cast<Derived*>(iterator_adaptor*)</span></tt> shall be well-formed.</blockquote>
</td>
</tr>
</tbody>
</table>
<p>[Note: The proposed resolution to Issue 9.37 contains related
changes]</p>
</div>
<div class="section" id="return-type-of-iterator-difference-for-iterator-facade">
<h2><a class="toc-backref" href="#id23" name="return-type-of-iterator-difference-for-iterator-facade">9.22 return type of Iterator difference for iterator facade</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>The proposal says:</p>
<pre class="literal-block">
template <class Dr1, class V1, class AC1, class TC1, class R1, class D1,
class Dr2, class V2, class AC2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1, Dr2, bool>::type
operator -(iterator_facade<Dr1, V1, AC1, TC1, R1, D1> const& lhs,
iterator_facade<Dr2, V2, AC2, TC2, R2, D2> const& rhs);
</pre>
<p>Shouldn't the return type be one of the two iterator types? Which
one? The idea is that if one of the iterator types can be converted
to the other type, then the subtraction is okay. Seems like the
return type should then be the type that was converted to. Is that
right?</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body">See resolution to 9.34.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-facade-minor-wording-issue">
<h2><a class="toc-backref" href="#id24" name="iterator-facade-minor-wording-issue">9.23 Iterator_facade: minor wording Issue</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>In the table that lists the required (sort of) member functions of
iterator types that are based on iterator_facade, the entry for
c.equal(y) says:</p>
<blockquote>
true iff c and y refer to the same position. Implements c == y
and c != y. The second sentence is inside out. c.equal(y) does
not implement either of these operations. It is used to implement
them. Same thing in the description of c.distance_to(z).</blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body">remove "implements" descriptions from
table. See resolution to 9.34</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="use-of-undefined-name-in-iterator-facade-table">
<h2><a class="toc-backref" href="#id25" name="use-of-undefined-name-in-iterator-facade-table">9.24 Use of undefined name in iterator_facade table</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>Several of the descriptions use the name X without defining
it. This seems to be a carryover from the table immediately above
this section, but the text preceding that table says "In the table
below, X is the derived iterator type." Looks like the X::
qualifiers aren't really needed; X::reference can simply be
reference, since that's defined by the iterator_facade
specialization itself.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Remove references to X.</p>
<p>In [lib.iterator.facade] operations <tt class="literal"><span class="pre">operator->()</span> <span class="pre">const;</span></tt>:</p>
<blockquote class="last">
<p>Change:</p>
<blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">If <tt class="literal"><span class="pre">X::reference</span></tt> is a reference type, an object
of type <tt class="literal"><span class="pre">X::pointer</span></tt> equal to:</p>
<pre class="literal-block">
&static_cast<Derived const*>(this)->dereference()
</pre>
<p>Otherwise returns an object of unspecified type such that,
given an object <tt class="literal"><span class="pre">a</span></tt> of type <tt class="literal"><span class="pre">X</span></tt>, <tt class="literal"><span class="pre">a->m</span></tt> is equivalent
to <tt class="literal"><span class="pre">(w</span> <span class="pre">=</span> <span class="pre">*a,</span> <span class="pre">w.m)</span></tt> for some temporary object <tt class="literal"><span class="pre">w</span></tt> of type
<tt class="literal"><span class="pre">X::value_type</span></tt>.</p>
<p class="last">The type <tt class="literal"><span class="pre">X::pointer</span></tt> is <tt class="literal"><span class="pre">Value*</span></tt> if
<tt class="literal"><span class="pre">is_writable_iterator<X>::value</span></tt> is <tt class="literal"><span class="pre">true</span></tt>, and
<tt class="literal"><span class="pre">Value</span> <span class="pre">const*</span></tt> otherwise.</p>
</td>
</tr>
</tbody>
</table>
</blockquote>
<p>to:</p>
<blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">If <tt class="literal"><span class="pre">reference</span></tt> is a reference type, an object
of type <tt class="literal"><span class="pre">pointer</span></tt> equal to:</p>
<pre class="literal-block">
&static_cast<Derived const*>(this)->dereference()
</pre>
<p class="last">Otherwise returns an object of unspecified type such that,
<tt class="literal"><span class="pre">(*static_cast<Derived</span> <span class="pre">const*>(this))->m</span></tt> is equivalent
to <tt class="literal"><span class="pre">(w</span> <span class="pre">=</span> <span class="pre">**static_cast<Derived</span> <span class="pre">const*>(this),</span> <span class="pre">w.m)</span></tt> for
some temporary object <tt class="literal"><span class="pre">w</span></tt> of type <tt class="literal"><span class="pre">value_type</span></tt>.</p>
</td>
</tr>
</tbody>
</table>
</blockquote>
<p>Further changes are covered by issue 9.26.</p>
</blockquote>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-facade-wrong-return-type">
<h2><a class="toc-backref" href="#id26" name="iterator-facade-wrong-return-type">9.25 Iterator_facade: wrong return type</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>Several of the member functions return a Derived object or a
Derived&. Their Effects clauses end with:</p>
<pre class="literal-block">
return *this;
</pre>
<p>This should be</p>
<pre class="literal-block">
return *static_cast<Derived*>(this);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">In [lib.iterator.facade], in the effects clause
of the following operations:</p>
<pre class="literal-block">
Derived& operator++()
Derived& operator--()
Derived& operator+=(difference_type n)
Derived& operator-=(difference_type n)
</pre>
<dl class="last">
<dt>Change:</dt>
<dd><tt class="literal"><span class="pre">return</span> <span class="pre">*this</span></tt></dd>
<dt>to:</dt>
<dd><tt class="literal"><span class="pre">return</span> <span class="pre">*static_cast<Derived*>(this);</span></tt></dd>
</dl>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-facade-unclear-returns-clause-for-operator">
<h2><a class="toc-backref" href="#id27" name="iterator-facade-unclear-returns-clause-for-operator">9.26 Iterator_facade: unclear returns clause for operator[]</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>The returns clause for <tt class="literal"><span class="pre">operator[](difference_type</span> <span class="pre">n)</span></tt> const
says:</p>
<blockquote>
Returns: an object convertible to X::reference and holding a copy
p of a+n such that, for a constant object v of type
X::value_type, X::reference(a[n] = v) is equivalent to p = v.
This needs to define 'a', but assuming it's supposed to be
<tt class="literal"><span class="pre">*this</span></tt> (or maybe <tt class="literal"><span class="pre">*(Derived*)this</span></tt>), it still isn't clear
what this says. Presumably, the idea is that you can index off of
an iterator and assign to the result. But why the requirement
that it hold a copy of a+n? Granted, that's probably how it's
implemented, but it seems over-constrained. And the last phrase
seems wrong. p is an iterator; there's no requirement that you
can assign a value_type object to it. Should that be <tt class="literal"><span class="pre">*p</span> <span class="pre">=</span> <span class="pre">v</span></tt>?
But why the cast in reference(a[n] = v)?</blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">In section operator[]:</p>
<blockquote>
<p>Change:</p>
<blockquote>
Writable iterators built with <tt class="literal"><span class="pre">iterator_facade</span></tt> implement
the semantics required by the preferred resolution to <cite>issue
299</cite> and adopted by proposal <cite>n1477</cite>: the result of <tt class="literal"><span class="pre">p[n]</span></tt>
is a proxy object containing a copy of <tt class="literal"><span class="pre">p+n</span></tt>, and <tt class="literal"><span class="pre">p[n]</span> <span class="pre">=</span>
<span class="pre">x</span></tt> is equivalent to <tt class="literal"><span class="pre">*(p</span> <span class="pre">+</span> <span class="pre">n)</span> <span class="pre">=</span> <span class="pre">x</span></tt>. This approach will
work properly for any random-access iterator regardless of
the other details of its implementation. A user who knows
more about the implementation of her iterator is free to
implement an <tt class="literal"><span class="pre">operator[]</span></tt> which returns an lvalue in the
derived iterator class; it will hide the one supplied by
<tt class="literal"><span class="pre">iterator_facade</span></tt> from clients of her iterator.</blockquote>
<p>to:</p>
<blockquote>
Writable iterators built with <tt class="literal"><span class="pre">iterator_facade</span></tt> implement
the semantics required by the preferred resolution to <cite>issue
299</cite> and adopted by proposal <cite>n1550</cite>: the result of <tt class="literal"><span class="pre">p[n]</span></tt>
is an object convertible to the iterator's <tt class="literal"><span class="pre">value_type</span></tt>,
and <tt class="literal"><span class="pre">p[n]</span> <span class="pre">=</span> <span class="pre">x</span></tt> is equivalent to <tt class="literal"><span class="pre">*(p</span> <span class="pre">+</span> <span class="pre">n)</span> <span class="pre">=</span> <span class="pre">x</span></tt> (Note:
This result object may be implemented as a proxy containing a
copy of <tt class="literal"><span class="pre">p+n</span></tt>). This approach will work properly for any
random-access iterator regardless of the other details of its
implementation. A user who knows more about the
implementation of her iterator is free to implement an
<tt class="literal"><span class="pre">operator[]</span></tt> that returns an lvalue in the derived iterator
class; it will hide the one supplied by <tt class="literal"><span class="pre">iterator_facade</span></tt>
from clients of her iterator.</blockquote>
</blockquote>
<p>In [lib.iterator.facade] operations:</p>
<blockquote class="last">
<p>Change:</p>
<blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">an object convertible to <tt class="literal"><span class="pre">X::reference</span></tt> and
holding a copy <em>p</em> of <tt class="literal"><span class="pre">a+n</span></tt> such that, for a constant
object <tt class="literal"><span class="pre">v</span></tt> of type <tt class="literal"><span class="pre">X::value_type</span></tt>, <tt class="literal"><span class="pre">X::reference(a[n]</span>
<span class="pre">=</span> <span class="pre">v)</span></tt> is equivalent to <tt class="literal"><span class="pre">p</span> <span class="pre">=</span> <span class="pre">v</span></tt>.</td>
</tr>
</tbody>
</table>
</blockquote>
<p>to:</p>
<blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">an object convertible to <tt class="literal"><span class="pre">value_type</span></tt>. For
constant objects <tt class="literal"><span class="pre">v</span></tt> of type <tt class="literal"><span class="pre">value_type</span></tt>, and <tt class="literal"><span class="pre">n</span></tt> of
type <tt class="literal"><span class="pre">difference_type</span></tt>, <tt class="literal"><span class="pre">(*this)[n]</span> <span class="pre">=</span> <span class="pre">v</span></tt> is equivalent
to <tt class="literal"><span class="pre">*(*this</span> <span class="pre">+</span> <span class="pre">n)</span> <span class="pre">=</span> <span class="pre">v</span></tt>, and <tt class="literal"><span class="pre">static_cast<value_type</span>
<span class="pre">const&>((*this)[n])</span></tt> is equivalent to
<tt class="literal"><span class="pre">static_cast<value_type</span> <span class="pre">const&>(*(*this</span> <span class="pre">+</span> <span class="pre">n))</span></tt></td>
</tr>
</tbody>
</table>
</blockquote>
</blockquote>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-facade-redundant-clause">
<h2><a class="toc-backref" href="#id28" name="iterator-facade-redundant-clause">9.27 Iterator_facade: redundant clause</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">operator-</span></tt> has both an effects clause and a returns
clause. Looks like the returns clause should be removed.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Remove the returns clause.</p>
<p>In [lib.iterator.facade] operations:</p>
<dl class="last">
<dt>Remove:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">static_cast<Derived</span> <span class="pre">const*>(this)->advance(-n);</span></tt></td>
</tr>
</tbody>
</table>
</dd>
</dl>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="indirect-iterator-incorrect-specification-of-default-constructor">
<h2><a class="toc-backref" href="#id29" name="indirect-iterator-incorrect-specification-of-default-constructor">9.28 indirect_iterator: incorrect specification of default constructor</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>The default constructor returns "An instance of indirect_iterator
with a default constructed base object", but the constructor that
takes an Iterator object returns "An instance of indirect_iterator
with the iterator_adaptor subobject copy constructed from x." The
latter is the correct form, since it does not reach inside the base
class for its semantics. So the default constructor shoudl return
"An instance of indirect_iterator with a default-constructed
iterator_adaptor subobject."</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><dl class="first last">
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">indirect_iterator</span></tt> with
a default constructed base object.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">indirect_iterator</span></tt> with
a default-constructed <tt class="literal"><span class="pre">m_iterator</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
</dl>
</td>
</tr>
<tr class="field"><th class="field-name">Rationale:</th><td class="field-body">Inheritance from iterator_adaptor has been removed, so we instead
give the semantics in terms of the (exposition only) member
<tt class="literal"><span class="pre">m_iterator</span></tt>.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="indirect-iterator-unclear-specification-of-template-constructor">
<h2><a class="toc-backref" href="#id30" name="indirect-iterator-unclear-specification-of-template-constructor">9.29 indirect_iterator: unclear specification of template constructor</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>The templated constructor that takes an indirect_iterator with a
different set of template arguments says that it returns "An
instance of indirect_iterator that is a copy of [the argument]".
But the type of the argument is different from the type of the
object being constructed, and there is no description of what
a "copy" means. The Iterator template parameter for the argument
must be convertible to the Iterator template parameter for the type
being constructed, which suggests that the argument's contained
Iterator object should be converted to the target type's Iterator
type. Is that what's meant here?
(Pete later writes: In fact, this problem is present in all of the
specialized adaptors that have a constructor like this: the
constructor returns "a copy" of the argument without saying what a
copy is.)</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><dl class="first last">
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">indirect_iterator</span></tt> that is a copy of <tt class="literal"><span class="pre">y</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">indirect_iterator</span></tt> whose
<tt class="literal"><span class="pre">m_iterator</span></tt> subobject is constructed from <tt class="literal"><span class="pre">y.base()</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
</dl>
</td>
</tr>
<tr class="field"><th class="field-name">Rationale:</th><td class="field-body">Inheritance from iterator_adaptor has been removed, so we
instead give the semantics in terms of the member <tt class="literal"><span class="pre">m_iterator</span></tt>.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="transform-iterator-argument-irregularity">
<h2><a class="toc-backref" href="#id31" name="transform-iterator-argument-irregularity">9.30 transform_iterator argument irregularity</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>The specialized adaptors that take both a Value and a Reference
template argument all take them in that order, i.e. Value precedes
Reference in the template argument list, with the exception of
transform_iterator, where Reference precedes Value. This seems like
a possible source of confusion. Is there a reason why this order is
preferable?</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body">NAD</td>
</tr>
<tr class="field"><th class="field-name">Rationale:</th><td class="field-body">defaults for Value depend on Reference. A sensible
Value can almost always be computed from Reference. The first
parameter is UnaryFunction, so the argument order is already
different from the other adapters.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="function-output-iterator-overconstrained">
<h2><a class="toc-backref" href="#id32" name="function-output-iterator-overconstrained">9.31 function_output_iterator overconstrained</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>function_output_iterator requirements says: "The UnaryFunction must
be Assignable, Copy Constructible, and the expression f(x) must be
valid, where f is an object of type UnaryFunction and x is an
object of a type accepted by f."</p>
<p>Everything starting with "and," somewhat reworded, is actually a
constraint on output_proxy::operator=. All that's needed to create
a function_output_iterator object is that the UnaryFunction type be
Assignable and CopyConstructible. That's also sufficient to
dereference and to increment such an object. It's only when you try
to assign through a dereferenced iterator that f(x) has to work,
and then only for the particular function object that the iterator
holds and for the particular value that is being assigned.</p>
<dl>
<dt>Addition from Jeremy:</dt>
<dd>The constructor for <tt class="literal"><span class="pre">function_output_iterator</span></tt> is also
slightly overconstrained because it requires
the <tt class="literal"><span class="pre">UnaryFunction</span></tt> to have a default constructor
even when the default constructor of <tt class="literal"><span class="pre">function_output_iterator</span></tt>
is not used.</dd>
</dl>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><dl class="first">
<dt>Change:</dt>
<dd><tt class="literal"><span class="pre">output_proxy</span> <span class="pre">operator*();</span></tt></dd>
<dt>to:</dt>
<dd><tt class="literal"><span class="pre">/*</span> <span class="pre">see</span> <span class="pre">below</span> <span class="pre">*/</span> <span class="pre">operator*();</span></tt></dd>
</dl>
<p>After <tt class="literal"><span class="pre">function_output_iterator&</span> <span class="pre">operator++(int);</span></tt> add:</p>
<pre class="literal-block">
private:
UnaryFunction m_f; // exposition only
</pre>
<dl>
<dt>Change:</dt>
<dd>The <tt class="literal"><span class="pre">UnaryFunction</span></tt> must be Assignable, Copy Constructible,
and the expression <tt class="literal"><span class="pre">f(x)</span></tt> must be valid, where <tt class="literal"><span class="pre">f</span></tt> is an
object of type <tt class="literal"><span class="pre">UnaryFunction</span></tt> and <tt class="literal"><span class="pre">x</span></tt> is an object of a
type accepted by <tt class="literal"><span class="pre">f</span></tt>. The resulting
<tt class="literal"><span class="pre">function_output_iterator</span></tt> is a model of the Writable and
Incrementable Iterator concepts.</dd>
<dt>to:</dt>
<dd><tt class="literal"><span class="pre">UnaryFunction</span></tt> must be Assignable and Copy Constructible.</dd>
</dl>
<p class="last">After the requirements section, add:</p>
</td>
</tr>
</tbody>
</table>
<div class="topic">
<p class="topic-title first"><tt class="literal"><span class="pre">function_output_iterator</span></tt> models</p>
<blockquote>
<tt class="literal"><span class="pre">function_output_iterator</span></tt> is a model of the Writable and
Incrementable Iterator concepts.</blockquote>
<dl>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">function_output_iterator</span></tt> with
<tt class="literal"><span class="pre">f</span></tt> stored as a data member.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs an instance of <tt class="literal"><span class="pre">function_output_iterator</span></tt>
with <tt class="literal"><span class="pre">m_f</span></tt> constructed from <tt class="literal"><span class="pre">f</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>Change:</dt>
<dd><p class="first"><tt class="literal"><span class="pre">output_proxy</span> <span class="pre">operator*();</span></tt></p>
<table class="last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">output_proxy</span></tt> constructed with
a copy of the unary function <tt class="literal"><span class="pre">f</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><p class="first"><tt class="literal"><span class="pre">operator*();</span></tt></p>
<table class="last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An object <tt class="literal"><span class="pre">r</span></tt> of unspecified type such that <tt class="literal"><span class="pre">r</span> <span class="pre">=</span> <span class="pre">t</span></tt>
is equivalent to <tt class="literal"><span class="pre">m_f(t)</span></tt> for all <tt class="literal"><span class="pre">t</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>Remove:</dt>
<dd><p class="first"><tt class="literal"><span class="pre">function_output_iterator::output_proxy</span></tt> operations</p>
<p><tt class="literal"><span class="pre">output_proxy(UnaryFunction&</span> <span class="pre">f);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">output_proxy</span></tt> with <tt class="literal"><span class="pre">f</span></tt> stored as
a data member.</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">template</span> <span class="pre"><class</span> <span class="pre">T></span> <span class="pre">output_proxy&</span> <span class="pre">operator=(const</span> <span class="pre">T&</span> <span class="pre">value);</span></tt></p>
<table class="last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><pre class="first last literal-block">
m_f(value);
return *this;
</pre>
</td>
</tr>
</tbody>
</table>
</dd>
</dl>
<p>Change:</p>
<pre class="literal-block">
explicit function_output_iterator(const UnaryFunction& f = UnaryFunction());
</pre>
<p>to:</p>
<pre class="literal-block">
explicit function_output_iterator();
explicit function_output_iterator(const UnaryFunction& f);
</pre>
</div>
</div>
<div class="section" id="should-output-proxy-really-be-a-named-type">
<h2><a class="toc-backref" href="#id33" name="should-output-proxy-really-be-a-named-type">9.32 Should output_proxy really be a named type?</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>This means someone can store an output_proxy object for later use,
whatever that means. It also constrains output_proxy to hold a copy
of the function object, rather than a pointer to the iterator
object. Is all this mechanism really necessary?</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body">See issue 9.31.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="istreambuf-iterator-isn-t-a-readable-iterator">
<h2><a class="toc-backref" href="#id34" name="istreambuf-iterator-isn-t-a-readable-iterator">9.33 istreambuf_iterator isn't a Readable Iterator</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>c++std-lib-12333:</p>
<blockquote>
N1550 requires that for a Readable Iterator a of type X, <tt class="literal"><span class="pre">*a</span></tt>
returns an object of type
<tt class="literal"><span class="pre">iterator_traits<X>::reference</span></tt>. <tt class="literal"><span class="pre">istreambuf_iterator::operator*</span></tt>
returns <tt class="literal"><span class="pre">charT</span></tt>, but <tt class="literal"><span class="pre">istreambuf_iterator::reference</span></tt> is
<tt class="literal"><span class="pre">charT&</span></tt>. So am I overlooking something, or is
<tt class="literal"><span class="pre">istreambuf_iterator</span></tt> not Readable.</blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Remove all constraints on
<tt class="literal"><span class="pre">iterator_traits<X>::reference</span></tt> in Readable Iterator and Lvalue
Iterator. Change Lvalue Iterator to refer to <tt class="literal"><span class="pre">T&</span></tt> instead of
<tt class="literal"><span class="pre">iterator_traits<X>::reference</span></tt>.</p>
<dl>
<dt>Change:</dt>
<dd>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> models the <em>Readable Iterator</em>
concept for the value type <tt class="literal"><span class="pre">T</span></tt> if the following expressions
are valid and respect the stated semantics. <tt class="literal"><span class="pre">U</span></tt> is the type
of any specified member of type <tt class="literal"><span class="pre">T</span></tt>.</dd>
<dt>to:</dt>
<dd>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> models the <em>Readable Iterator</em>
concept for value type <tt class="literal"><span class="pre">T</span></tt> if, in addition to <tt class="literal"><span class="pre">X</span></tt> being
Assignable and Copy Constructible, the following expressions
are valid and respect the stated semantics. <tt class="literal"><span class="pre">U</span></tt> is the type
of any specified member of type <tt class="literal"><span class="pre">T</span></tt>.</dd>
</dl>
<p>From the Input Iterator Requirements table, remove:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="37%" />
<col width="37%" />
<col width="26%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">iterator_traits<X>::reference</span></tt></td>
<td>Convertible to
<tt class="literal"><span class="pre">iterator_traits<X>::value_type</span></tt></td>
<td> </td>
</tr>
</tbody>
</table>
</blockquote>
<p>Change:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="37%" />
<col width="37%" />
<col width="26%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">*a</span></tt></td>
<td><tt class="literal"><span class="pre">iterator_traits<X>::reference</span></tt></td>
<td>pre: <tt class="literal"><span class="pre">a</span></tt> is
dereferenceable. If <tt class="literal"><span class="pre">a</span>
<span class="pre">==</span> <span class="pre">b</span></tt> then <tt class="literal"><span class="pre">*a</span></tt> is
equivalent to <tt class="literal"><span class="pre">*b</span></tt></td>
</tr>
</tbody>
</table>
</blockquote>
<p>to:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="28%" />
<col width="20%" />
<col width="52%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">*a</span></tt></td>
<td>Convertible to <tt class="literal"><span class="pre">T</span></tt></td>
<td><dl class="first last">
<dt>pre: <tt class="literal"><span class="pre">a</span></tt> is dereferenceable. If <tt class="literal"><span class="pre">a</span> <span class="pre">==</span> <span class="pre">b</span></tt> then <tt class="literal"><span class="pre">*a</span></tt></dt>
<dd>is equivalent to <tt class="literal"><span class="pre">*b</span></tt>.</dd>
</dl>
</td>
</tr>
</tbody>
</table>
</blockquote>
<dl>
<dt>Change:</dt>
<dd>The <em>Lvalue Iterator</em> concept adds the requirement that the
<tt class="literal"><span class="pre">reference</span></tt> type be a reference to the value type of the
iterator.</dd>
<dt>to:</dt>
<dd>The <em>Lvalue Iterator</em> concept adds the requirement that the
return type of <tt class="literal"><span class="pre">operator*</span></tt> type be a reference to the value
type of the iterator.</dd>
</dl>
<p>Change:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="42%" />
<col width="14%" />
<col width="44%" />
</colgroup>
<thead valign="bottom">
<tr><th colspan="3">Lvalue Iterator Requirements</th>
</tr>
<tr><th>Expression</th>
<th>Return Type</th>
<th>Assertion</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">iterator_traits<X>::reference</span></tt></td>
<td><tt class="literal"><span class="pre">T&</span></tt></td>
<td><tt class="literal"><span class="pre">T</span></tt> is <em>cv</em>
<tt class="literal"><span class="pre">iterator_traits<X>::value_type</span></tt>
where <em>cv</em> is an optional
cv-qualification</td>
</tr>
</tbody>
</table>
</blockquote>
<p>to:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="22%" />
<col width="19%" />
<col width="59%" />
</colgroup>
<thead valign="bottom">
<tr><th colspan="3">Lvalue Iterator Requirements</th>
</tr>
<tr><th>Expression</th>
<th>Return Type</th>
<th>Note/Assertion</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">*a</span></tt></td>
<td><tt class="literal"><span class="pre">T&</span></tt></td>
<td><tt class="literal"><span class="pre">T</span></tt> is <em>cv</em>
<tt class="literal"><span class="pre">iterator_traits<X>::value_type</span></tt>
where <em>cv</em> is an optional
cv-qualification.
pre: <tt class="literal"><span class="pre">a</span></tt> is
dereferenceable. If <tt class="literal"><span class="pre">a</span>
<span class="pre">==</span> <span class="pre">b</span></tt> then <tt class="literal"><span class="pre">*a</span></tt> is
equivalent to <tt class="literal"><span class="pre">*b</span></tt>.</td>
</tr>
</tbody>
</table>
</blockquote>
<p class="last">At the end of the section reverse_iterator models, add:
The type <tt class="literal"><span class="pre">iterator_traits<Iterator>::reference</span></tt> must be the type of
<tt class="literal"><span class="pre">*i</span></tt>, where <tt class="literal"><span class="pre">i</span></tt> is an object of type <tt class="literal"><span class="pre">Iterator</span></tt>.</p>
</td>
</tr>
<tr class="field"><th class="field-name">Rationale:</th><td class="field-body"><p class="first">Ideally there should be requirements on the reference
type, however, since Readable Iterator is suppose to correspond
to the current standard iterator requirements (which do not place
requirements on the reference type) we will leave them off for
now. There is a DR in process with respect to the reference type
in the stadard iterator requirements. Once that is resolved we
will revisit this issue for Readable Iterator and Lvalue
Iterator.</p>
<p class="last">We added Assignable to the requirements for Readable
Iterator. This is needed to have Readable Iterator coincide with
the capabilities of Input Iterator.</p>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-facade-free-functions-unspecified">
<h2><a class="toc-backref" href="#id35" name="iterator-facade-free-functions-unspecified">9.34 iterator_facade free functions unspecified</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>c++std-lib-12562:</p>
<blockquote>
The template functions <tt class="literal"><span class="pre">operator==</span></tt>, <tt class="literal"><span class="pre">operator!=</span></tt>,
<tt class="literal"><span class="pre">operator<</span></tt>, <tt class="literal"><span class="pre">operator<=</span></tt>, <tt class="literal"><span class="pre">operator></span></tt>, <tt class="literal"><span class="pre">operator>=</span></tt>, and
<tt class="literal"><span class="pre">operator-</span></tt> that take two arguments that are specializations of
iterator_facade have no specification. The template function
operator+ that takes an argument that is a specialization of
iterator_facade and an argument of type difference_type has no
specification.</blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Add the missing specifications.</p>
<pre class="literal-block">
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&,
typename Derived::difference_type n);
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference_type n,
iterator_facade<Dr,V,TC,R,D> const&);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><pre class="first last literal-block">
Derived tmp(static_cast<Derived const*>(this));
return tmp += n;
</pre>
</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt>, then
<tt class="literal"><span class="pre">lhs.equal(rhs)</span></tt>. Otherwise, <tt class="literal"><span class="pre">rhs.equal(lhs)</span></tt>.</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt>, then
<tt class="literal"><span class="pre">!lhs.equal(rhs)</span></tt>. Otherwise, <tt class="literal"><span class="pre">!rhs.equal(lhs)</span></tt>.</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt>, then
<tt class="literal"><span class="pre">lhs.distance_to(rhs)</span> <span class="pre"><</span> <span class="pre">0</span></tt>. Otherwise, <tt class="literal"><span class="pre">rhs.distance_to(lhs)</span> <span class="pre">></span>
<span class="pre">0</span></tt>.</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt>, then
<tt class="literal"><span class="pre">lhs.distance_to(rhs)</span> <span class="pre"><=</span> <span class="pre">0</span></tt>. Otherwise, <tt class="literal"><span class="pre">rhs.distance_to(lhs)</span>
<span class="pre">>=</span> <span class="pre">0</span></tt>.</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt>, then
<tt class="literal"><span class="pre">lhs.distance_to(rhs)</span> <span class="pre">></span> <span class="pre">0</span></tt>. Otherwise,
<tt class="literal"><span class="pre">rhs.distance_to(lhs)</span> <span class="pre"><</span> <span class="pre">0</span></tt>.</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt>, then
<tt class="literal"><span class="pre">lhs.distance_to(rhs)</span> <span class="pre">>=</span> <span class="pre">0</span></tt>. Otherwise,
<tt class="literal"><span class="pre">rhs.distance_to(lhs)</span> <span class="pre"><=</span> <span class="pre">0</span></tt>.</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,difference>::type
operator -(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Return Type:</th><td class="field-body">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt>, then
<tt class="literal"><span class="pre">difference</span></tt> shall be
<tt class="literal"><span class="pre">iterator_traits<Dr1>::difference_type</span></tt>. Otherwise,
<tt class="literal"><span class="pre">difference</span></tt> shall be
<tt class="literal"><span class="pre">iterator_traits<Dr2>::difference_type</span></tt>.</td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt>, then
<tt class="literal"><span class="pre">-lhs.distance_to(rhs)</span></tt>. Otherwise,
<tt class="literal"><span class="pre">rhs.distance_to(lhs)</span></tt>.</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-facade-too-many-equals">
<h2><a class="toc-backref" href="#id36" name="iterator-facade-too-many-equals">9.35 iterator_facade: too many equals?</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>c++std-lib-12563:</p>
<blockquote>
<p>The table listing the functions required for types derived from
iterator_facade has two functions named equal and two named
distance_to:</p>
<pre class="literal-block">
c.equal(b)
c.equal(y)
c.distance_to(b)
c.distance_to(z)
</pre>
<p>where b and c are const objects of the derived type, y and z are
constant objects of certain iterator types that are interoperable
with the derived type. Seems like the 'b' versions are
redundant: in both cases, the other version will take a 'b'. In
fact, iterator_adaptor is specified to use iterator_facade, but
does not provide the 'b' versions of these functions.</p>
<p>Are the 'b' versions needed?</p>
</blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Remove the 'b' versions.</p>
<p>In <tt class="literal"><span class="pre">iterator_facade</span></tt> requirements, remove:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="19%" />
<col width="18%" />
<col width="36%" />
<col width="26%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">c.equal(b)</span></tt></td>
<td>convertible to bool</td>
<td>true iff <tt class="literal"><span class="pre">b</span></tt> and <tt class="literal"><span class="pre">c</span></tt> are
equivalent.</td>
<td>Single Pass Iterator</td>
</tr>
</tbody>
</table>
</blockquote>
<p>and remove:</p>
<blockquote class="last">
<table border="1" class="table">
<colgroup>
<col width="19%" />
<col width="18%" />
<col width="36%" />
<col width="26%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">c.distance_to(b)</span></tt></td>
<td>convertible to
X::difference_type</td>
<td>equivalent to <tt class="literal"><span class="pre">distance(c,</span> <span class="pre">b)</span></tt></td>
<td>Random Access Traversal
Iterator</td>
</tr>
</tbody>
</table>
</blockquote>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="iterator-facade-function-requirements">
<h2><a class="toc-backref" href="#id37" name="iterator-facade-function-requirements">9.36 iterator_facade function requirements</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>c++std-lib-12636:</p>
<blockquote>
<p>The table that lists required functions for the derived type X
passed to iterator_facade lists, among others:</p>
<p>for a single pass iterator:</p>
<pre class="literal-block">
c.equal(b)
c.equal(y)
</pre>
<p>where b and c are const X objects, and y is a const object of a
single pass iterator that is interoperable with X. Since X is
interoperable with itself, c.equal(b) is redundant. There is a
difference in their descriptions, but its meaning isn't
clear. The first is "true iff b and c are equivalent", and the
second is "true iff c and y refer to the same position." Is there
a difference between the undefined term "equivalent" and "refer
to the same position"?</p>
<p>Similarly, for a random access traversal iterator:</p>
<pre class="literal-block">
c.distance_to(b)
c.distance_to(z)
</pre>
<p>where z is a constant object of a random access traversal
iterator that is interoperable with X. Again, X is interoperable
with itself, so c.distance_to(b) is redundant. Also, the
specification for c.distance_to(z) isn't valid. It's written
as "equivalent to distance(c, z)". The template function distance
takes two arguments of the same type, so distance(c, z) isn't
valid if c and z are different types. Should it be
distance(c, (X)z)?</p>
</blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Removed the 'b' versions (see 9.35) and added the cast.</p>
<p>Change:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="19%" />
<col width="18%" />
<col width="36%" />
<col width="26%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">c.distance_to(z)</span></tt></td>
<td>convertible to
X::difference_type</td>
<td>equivalent to <tt class="literal"><span class="pre">distance(c,</span> <span class="pre">z)</span></tt>.
Implements <tt class="literal"><span class="pre">c</span> <span class="pre">-</span> <span class="pre">z</span></tt>, <tt class="literal"><span class="pre">c</span> <span class="pre"><</span> <span class="pre">z</span></tt>, <tt class="literal"><span class="pre">c</span>
<span class="pre"><=</span> <span class="pre">z</span></tt>, <tt class="literal"><span class="pre">c</span> <span class="pre">></span> <span class="pre">z</span></tt>, and <tt class="literal"><span class="pre">c</span> <span class="pre">>=</span> <span class="pre">c</span></tt>.</td>
<td>Random Access Traversal
Iterator</td>
</tr>
</tbody>
</table>
</blockquote>
<p>to:</p>
<blockquote class="last">
<table border="1" class="table">
<colgroup>
<col width="21%" />
<col width="23%" />
<col width="27%" />
<col width="29%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">c.distance_to(z)</span></tt></td>
<td>convertible to
<tt class="literal"><span class="pre">F::difference_type</span></tt></td>
<td>equivalent to
<tt class="literal"><span class="pre">distance(c,</span> <span class="pre">X(z))</span></tt>.</td>
<td>Random Access Traversal
Iterator</td>
</tr>
</tbody>
</table>
</blockquote>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="section" id="more-issues-not-from-matt-s-list">
<h1><a class="toc-backref" href="#id38" name="more-issues-not-from-matt-s-list">More Issues (not from Matt's list)</a></h1>
<div class="section" id="x-inheritance-in-iterator-adaptor-and-other-adaptors-is-an-overspecification">
<h2><a class="toc-backref" href="#id39" name="x-inheritance-in-iterator-adaptor-and-other-adaptors-is-an-overspecification">9.37x Inheritance in iterator_adaptor and other adaptors is an overspecification</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>c++std-lib-12696:
The paper requires that iterator_adaptor be derived from an
appropriate instance of iterator_facade, and that most of the specific
forms of adaptors be derived from appropriate instances of
iterator_adaptor. That seems like overspecification, and we ought to
look at specifying these things in terms of what the various templates
provide rather than how they're implemented.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Remove the specfication of inheritance, and add explicit
specification of all the functionality that was inherited from the
specialized iterators.</p>
<p>In iterator_adaptor, inheritance is retained, sorry NAD. Also,
the Interoperable Iterators concept is added to the new iterator
concepts, and this concept is used in the specification of the
iterator adaptors.</p>
<p>In n1550, after [lib.random.access.traversal.iterators], add:</p>
<blockquote>
<p>Interoperable Iterators [lib.interoperable.iterators]</p>
<p>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> that models Single Pass Iterator
is <em>interoperable with</em> a class or built-in type <tt class="literal"><span class="pre">Y</span></tt> that
also models Single Pass Iterator if the following expressions
are valid and respect the stated semantics. In the tables
below, <tt class="literal"><span class="pre">x</span></tt> is an object of type <tt class="literal"><span class="pre">X</span></tt>, <tt class="literal"><span class="pre">y</span></tt> is an object of
type <tt class="literal"><span class="pre">Y</span></tt>, <tt class="literal"><span class="pre">Distance</span></tt> is
<tt class="literal"><span class="pre">iterator_traits<Y>::difference_type</span></tt>, and <tt class="literal"><span class="pre">n</span></tt> represents a
constant object of type <tt class="literal"><span class="pre">Distance</span></tt>.</p>
<table border="1" class="table">
<colgroup>
<col width="13%" />
<col width="27%" />
<col width="60%" />
</colgroup>
<thead valign="bottom">
<tr><th>Expression</th>
<th>Return Type</th>
<th>Assertion/Precondition/Postcondition</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">y</span> <span class="pre">=</span> <span class="pre">x</span></tt></td>
<td><tt class="literal"><span class="pre">Y</span></tt></td>
<td>post: <tt class="literal"><span class="pre">y</span> <span class="pre">==</span> <span class="pre">x</span></tt></td>
</tr>
<tr><td><tt class="literal"><span class="pre">Y(x)</span></tt></td>
<td><tt class="literal"><span class="pre">Y</span></tt></td>
<td>post: <tt class="literal"><span class="pre">Y(x)</span> <span class="pre">==</span> <span class="pre">x</span></tt></td>
</tr>
<tr><td><tt class="literal"><span class="pre">x</span> <span class="pre">==</span> <span class="pre">y</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">==</span></tt> is an equivalence relation over its domain.</td>
</tr>
<tr><td><tt class="literal"><span class="pre">y</span> <span class="pre">==</span> <span class="pre">x</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">==</span></tt> is an equivalence relation over its domain.</td>
</tr>
<tr><td><tt class="literal"><span class="pre">x</span> <span class="pre">!=</span> <span class="pre">y</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">bool(a==b)</span> <span class="pre">!=</span> <span class="pre">bool(a!=b)</span></tt> over its domain.</td>
</tr>
<tr><td><tt class="literal"><span class="pre">y</span> <span class="pre">!=</span> <span class="pre">x</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">bool(a==b)</span> <span class="pre">!=</span> <span class="pre">bool(a!=b)</span></tt> over its domain.</td>
</tr>
</tbody>
</table>
<p>If <tt class="literal"><span class="pre">X</span></tt> and <tt class="literal"><span class="pre">Y</span></tt> both model Random Access Traversal Iterator then
the following additional requirements must be met.</p>
<table border="1" class="table">
<colgroup>
<col width="12%" />
<col width="25%" />
<col width="23%" />
<col width="41%" />
</colgroup>
<thead valign="bottom">
<tr><th>Expression</th>
<th>Return Type</th>
<th>Operational Semantics</th>
<th>Assertion/ Precondition</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">x</span> <span class="pre"><</span> <span class="pre">y</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">y</span> <span class="pre">-</span> <span class="pre">x</span> <span class="pre">></span> <span class="pre">0</span></tt></td>
<td><tt class="literal"><span class="pre"><</span></tt> is a total ordering relation</td>
</tr>
<tr><td><tt class="literal"><span class="pre">y</span> <span class="pre"><</span> <span class="pre">x</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">x</span> <span class="pre">-</span> <span class="pre">y</span> <span class="pre">></span> <span class="pre">0</span></tt></td>
<td><tt class="literal"><span class="pre"><</span></tt> is a total ordering relation</td>
</tr>
<tr><td><tt class="literal"><span class="pre">x</span> <span class="pre">></span> <span class="pre">y</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">y</span> <span class="pre"><</span> <span class="pre">x</span></tt></td>
<td><tt class="literal"><span class="pre">></span></tt> is a total ordering relation</td>
</tr>
<tr><td><tt class="literal"><span class="pre">y</span> <span class="pre">></span> <span class="pre">x</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">x</span> <span class="pre"><</span> <span class="pre">y</span></tt></td>
<td><tt class="literal"><span class="pre">></span></tt> is a total ordering relation</td>
</tr>
<tr><td><tt class="literal"><span class="pre">x</span> <span class="pre">>=</span> <span class="pre">y</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">!(x</span> <span class="pre"><</span> <span class="pre">y)</span></tt></td>
<td> </td>
</tr>
<tr><td><tt class="literal"><span class="pre">y</span> <span class="pre">>=</span> <span class="pre">x</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">!(y</span> <span class="pre"><</span> <span class="pre">x)</span></tt></td>
<td> </td>
</tr>
<tr><td><tt class="literal"><span class="pre">x</span> <span class="pre"><=</span> <span class="pre">y</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">!(x</span> <span class="pre">></span> <span class="pre">y)</span></tt></td>
<td> </td>
</tr>
<tr><td><tt class="literal"><span class="pre">y</span> <span class="pre"><=</span> <span class="pre">x</span></tt></td>
<td>convertible to <tt class="literal"><span class="pre">bool</span></tt></td>
<td><tt class="literal"><span class="pre">!(y</span> <span class="pre">></span> <span class="pre">x)</span></tt></td>
<td> </td>
</tr>
<tr><td><tt class="literal"><span class="pre">y</span> <span class="pre">-</span> <span class="pre">x</span></tt></td>
<td><tt class="literal"><span class="pre">Distance</span></tt></td>
<td><tt class="literal"><span class="pre">distance(Y(x),y)</span></tt></td>
<td>pre: there exists a value <tt class="literal"><span class="pre">n</span></tt> of
<tt class="literal"><span class="pre">Distance</span></tt> such that <tt class="literal"><span class="pre">x</span> <span class="pre">+</span> <span class="pre">n</span> <span class="pre">==</span> <span class="pre">y</span></tt>.
<tt class="literal"><span class="pre">y</span> <span class="pre">==</span> <span class="pre">x</span> <span class="pre">+</span> <span class="pre">(y</span> <span class="pre">-</span> <span class="pre">x)</span></tt>.</td>
</tr>
<tr><td><tt class="literal"><span class="pre">x</span> <span class="pre">-</span> <span class="pre">y</span></tt></td>
<td><tt class="literal"><span class="pre">Distance</span></tt></td>
<td><tt class="literal"><span class="pre">distance(y,Y(x))</span></tt></td>
<td>pre: there exists a value <tt class="literal"><span class="pre">n</span></tt> of
<tt class="literal"><span class="pre">Distance</span></tt> such that <tt class="literal"><span class="pre">y</span> <span class="pre">+</span> <span class="pre">n</span> <span class="pre">==</span> <span class="pre">x</span></tt>.
<tt class="literal"><span class="pre">x</span> <span class="pre">==</span> <span class="pre">y</span> <span class="pre">+</span> <span class="pre">(x</span> <span class="pre">-</span> <span class="pre">y)</span></tt>.</td>
</tr>
</tbody>
</table>
</blockquote>
<p>In N1530:</p>
<blockquote class="last">
<p>In [lib.iterator.adaptor]</p>
<p>Change:</p>
<pre class="literal-block">
class iterator_adaptor
: public iterator_facade<Derived, /* see details ...*/>
</pre>
<p>To:</p>
<pre class="literal-block">
class iterator_adaptor
: public iterator_facade<Derived, *V'*, *C'*, *R'*, *D'*> // see details
</pre>
<dl>
<dt>Change the text from:</dt>
<dd>The <tt class="literal"><span class="pre">Base</span></tt> type must implement the expressions involving
<tt class="literal"><span class="pre">m_iterator</span></tt> in the specifications...</dd>
<dt>until the end of the <strong>iterator_adaptor requirements</strong> section, to:</dt>
<dd>The <tt class="literal"><span class="pre">Base</span></tt> argument shall be Assignable and Copy Constructible.</dd>
</dl>
<p>Add:</p>
</blockquote>
</td>
</tr>
</tbody>
</table>
<div class="topic">
<p class="topic-title first"><tt class="literal"><span class="pre">iterator_adaptor</span></tt> base class parameters</p>
<blockquote>
<p>The <em>V'</em>, <em>C'</em>, <em>R'</em>, and <em>D'</em> parameters of the <tt class="literal"><span class="pre">iterator_facade</span></tt>
used as a base class in the summary of <tt class="literal"><span class="pre">iterator_adaptor</span></tt>
above are defined as follows:</p>
<pre class="literal-block">
<em>V'</em> = if (Value is use_default)
return iterator_traits<Base>::value_type
else
return Value
<em>C'</em> = if (CategoryOrTraversal is use_default)
return iterator_traversal<Base>::type
else
return CategoryOrTraversal
<em>R'</em> = if (Reference is use_default)
if (Value is use_default)
return iterator_traits<Base>::reference
else
return Value&
else
return Reference
<em>D'</em> = if (Difference is use_default)
return iterator_traits<Base>::difference_type
else
return Difference
</pre>
</blockquote>
<p>In [lib.iterator.special.adaptors]</p>
<p>Change:</p>
<pre class="literal-block">
class indirect_iterator
: public iterator_adaptor</* see discussion */>
{
friend class iterator_core_access;
</pre>
<p>to:</p>
<pre class="literal-block">
class indirect_iterator
{
public:
typedef /* see below */ value_type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;
</pre>
<p>Change:</p>
<pre class="literal-block">
private: // as-if specification
typename indirect_iterator::reference dereference() const
{
return **this->base();
}
</pre>
<p>to:</p>
<pre class="literal-block">
Iterator const& base() const;
reference operator*() const;
indirect_iterator& operator++();
indirect_iterator& operator--();
private:
Iterator m_iterator; // exposition
</pre>
<p>After the synopsis add:</p>
<blockquote>
<p>The member types of <tt class="literal"><span class="pre">indirect_iterator</span></tt> are defined
according to the following pseudo-code, where <tt class="literal"><span class="pre">V</span></tt> is
<tt class="literal"><span class="pre">iterator_traits<Iterator>::value_type</span></tt></p>
<pre class="literal-block">
if (Value is use_default) then
typedef remove_const<pointee<V>::type>::type value_type;
else
typedef remove_const<Value>::type value_type;
if (Reference is use_default) then
if (Value is use_default) then
typedef indirect_reference<V>::type reference;
else
typedef Value& reference;
else
typedef Reference reference;
if (Value is use_default) then
typedef pointee<V>::type* pointer;
else
typedef Value* pointer;
if (Difference is use_default)
typedef iterator_traits<Iterator>::difference_type difference_type;
else
typedef Difference difference_type;
if (CategoryOrTraversal is use_default)
typedef <em>iterator-category</em>(
iterator_traversal<Iterator>::type,``reference``,``value_type``
) iterator_category;
else
typedef <em>iterator-category</em>(
CategoryOrTraversal,``reference``,``value_type``
) iterator_category;
</pre>
</blockquote>
<p>[Note: See resolution to 9.44y for a description of <tt class="literal"><span class="pre">pointee</span></tt> and
<tt class="literal"><span class="pre">indirect_reference</span></tt>]</p>
<p>After the requirements section, add:</p>
</div>
<div class="topic">
<p class="topic-title first"><tt class="literal"><span class="pre">indirect_iterator</span></tt> models</p>
<blockquote>
<p>In addition to the concepts indicated by <tt class="literal"><span class="pre">iterator_category</span></tt>
and by <tt class="literal"><span class="pre">iterator_traversal<indirect_iterator>::type</span></tt>, a
specialization of <tt class="literal"><span class="pre">indirect_iterator</span></tt> models the following
concepts, Where <tt class="literal"><span class="pre">v</span></tt> is an object of
<tt class="literal"><span class="pre">iterator_traits<Iterator>::value_type</span></tt>:</p>
<blockquote>
<ul class="simple">
<li>Readable Iterator if <tt class="literal"><span class="pre">reference(*v)</span></tt> is convertible to
<tt class="literal"><span class="pre">value_type</span></tt>.</li>
<li>Writable Iterator if <tt class="literal"><span class="pre">reference(*v)</span> <span class="pre">=</span> <span class="pre">t</span></tt> is a valid
expression (where <tt class="literal"><span class="pre">t</span></tt> is an object of type
<tt class="literal"><span class="pre">indirect_iterator::value_type</span></tt>)</li>
<li>Lvalue Iterator if <tt class="literal"><span class="pre">reference</span></tt> is a reference type.</li>
</ul>
</blockquote>
<p><tt class="literal"><span class="pre">indirect_iterator<X,V1,C1,R1,D1></span></tt> is interoperable with
<tt class="literal"><span class="pre">indirect_iterator<Y,V2,C2,R2,D2></span></tt> if and only if <tt class="literal"><span class="pre">X</span></tt> is
interoperable with <tt class="literal"><span class="pre">Y</span></tt>.</p>
</blockquote>
<p>Before <tt class="literal"><span class="pre">indirect_iterator();</span></tt> add:</p>
<blockquote>
In addition to the operations required by the concepts described
above, specializations of <tt class="literal"><span class="pre">indirect_iterator</span></tt> provide the
following operations.</blockquote>
<dl>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">indirect_iterator</span></tt> with
the <tt class="literal"><span class="pre">iterator_adaptor</span></tt> subobject copy constructed from <tt class="literal"><span class="pre">x</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">indirect_iterator</span></tt> with
<tt class="literal"><span class="pre">m_iterator</span></tt> copy constructed from <tt class="literal"><span class="pre">x</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
</dl>
<p>At the end of the indirect_iterator operations add:</p>
<blockquote>
<p><tt class="literal"><span class="pre">Iterator</span> <span class="pre">const&</span> <span class="pre">base()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_iterator</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">reference</span> <span class="pre">operator*()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">**m_iterator</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">indirect_iterator&</span> <span class="pre">operator++();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">++m_iterator</span></tt></td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">indirect_iterator&</span> <span class="pre">operator--();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">--m_iterator</span></tt></td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
</blockquote>
<p>Change:</p>
<pre class="literal-block">
template <class Iterator>
class reverse_iterator :
public iterator_adaptor< reverse_iterator<Iterator>, Iterator >
{
friend class iterator_core_access;
</pre>
<p>to:</p>
<pre class="literal-block">
template <class Iterator>
class reverse_iterator
{
public:
typedef iterator_traits<Iterator>::value_type value_type;
typedef iterator_traits<Iterator>::reference reference;
typedef iterator_traits<Iterator>::pointer pointer;
typedef iterator_traits<Iterator>::difference_type difference_type;
typedef /* see below */ iterator_category;
</pre>
<p>Change:</p>
<pre class="literal-block">
private: // as-if specification
typename reverse_iterator::reference dereference() const { return *prior(this->base()); }
void increment() { --this->base_reference(); }
void decrement() { ++this->base_reference(); }
void advance(typename reverse_iterator::difference_type n)
{
this->base_reference() += -n;
}
template <class OtherIterator>
typename reverse_iterator::difference_type
distance_to(reverse_iterator<OtherIterator> const& y) const
{
return this->base_reference() - y.base();
}
</pre>
<p>to:</p>
<pre class="literal-block">
Iterator const& base() const;
reference operator*() const;
reverse_iterator& operator++();
reverse_iterator& operator--();
private:
Iterator m_iterator; // exposition
</pre>
<dl>
<dt>After the synopsis for <tt class="literal"><span class="pre">reverse_iterator</span></tt>, add:</dt>
<dd>If <tt class="literal"><span class="pre">Iterator</span></tt> models Random Access Traversal Iterator and Readable
Lvalue Iterator, then <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible to
<tt class="literal"><span class="pre">random_access_iterator_tag</span></tt>. Otherwise, if
<tt class="literal"><span class="pre">Iterator</span></tt> models Bidirectional Traversal Iterator and Readable
Lvalue Iterator, then <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible to
<tt class="literal"><span class="pre">bidirectional_iterator_tag</span></tt>. Otherwise, <tt class="literal"><span class="pre">iterator_category</span></tt> is
convertible to <tt class="literal"><span class="pre">input_iterator_tag</span></tt>.</dd>
<dt>Change:</dt>
<dd><p class="first"><strong>reverse_iterator requirements</strong></p>
<p class="last">The base <tt class="literal"><span class="pre">Iterator</span></tt> must be a model of Bidirectional Traversal
Iterator. The resulting <tt class="literal"><span class="pre">reverse_iterator</span></tt> will be a model of the
most refined standard traversal and access concepts that are modeled
by <tt class="literal"><span class="pre">Iterator</span></tt>.</p>
</dd>
<dt>to:</dt>
<dd><p class="first"><strong>reverse_iterator requirements</strong></p>
<p class="last"><tt class="literal"><span class="pre">Iterator</span></tt> must be a model of Bidirectional Traversal Iterator.</p>
</dd>
</dl>
</div>
<div class="topic">
<p class="topic-title first"><tt class="literal"><span class="pre">reverse_iterator</span></tt> models</p>
<blockquote>
<p>A specialization of <tt class="literal"><span class="pre">reverse_iterator</span></tt> models the same iterator
traversal and iterator access concepts modeled by its <tt class="literal"><span class="pre">Iterator</span></tt>
argument. In addition, it may model old iterator concepts
specified in the following table:</p>
<table border="1" class="table">
<colgroup>
<col width="53%" />
<col width="47%" />
</colgroup>
<thead valign="bottom">
<tr><th>If <tt class="literal"><span class="pre">I</span></tt> models</th>
<th>then <tt class="literal"><span class="pre">reverse_iterator<I></span></tt> models</th>
</tr>
</thead>
<tbody valign="top">
<tr><td>Readable Lvalue Iterator,
Bidirectional Traversal Iterator</td>
<td>Bidirectional Iterator</td>
</tr>
<tr><td>Writable Lvalue Iterator,
Bidirectional Traversal Iterator</td>
<td>Mutable Bidirectional Iterator</td>
</tr>
<tr><td>Readable Lvalue Iterator,
Random Access Traversal Iterator</td>
<td>Random Access Iterator</td>
</tr>
<tr><td>Writable Lvalue Iterator,
Random Access Traversal Iterator</td>
<td>Mutable Random Access Iterator</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">reverse_iterator<X></span></tt> is interoperable with
<tt class="literal"><span class="pre">reverse_iterator<Y></span></tt> if and only if <tt class="literal"><span class="pre">X</span></tt> is interoperable with
<tt class="literal"><span class="pre">Y</span></tt>.</p>
</blockquote>
<dl>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">reverse_iterator</span></tt> with a
default constructed base object.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs an instance of <tt class="literal"><span class="pre">reverse_iterator</span></tt> with <tt class="literal"><span class="pre">m_iterator</span></tt>
default constructed.</td>
</tr>
</tbody>
</table>
</dd>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs an instance of <tt class="literal"><span class="pre">reverse_iterator</span></tt> with a
base object copy constructed from <tt class="literal"><span class="pre">x</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs an instance of <tt class="literal"><span class="pre">reverse_iterator</span></tt> with a
<tt class="literal"><span class="pre">m_iterator</span></tt> constructed from <tt class="literal"><span class="pre">x</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">reverse_iterator</span></tt> that is a copy of <tt class="literal"><span class="pre">r</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs instance of <tt class="literal"><span class="pre">reverse_iterator</span></tt> whose
<tt class="literal"><span class="pre">m_iterator</span></tt> subobject is constructed from <tt class="literal"><span class="pre">y.base()</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>At the end of the operations for <tt class="literal"><span class="pre">reverse_iterator</span></tt>, add:</dt>
<dd><p class="first"><tt class="literal"><span class="pre">Iterator</span> <span class="pre">const&</span> <span class="pre">base()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_iterator</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">reference</span> <span class="pre">operator*()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
<pre class="literal-block">
Iterator tmp = m_iterator;
return *--tmp;
</pre>
<p><tt class="literal"><span class="pre">reverse_iterator&</span> <span class="pre">operator++();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">--m_iterator</span></tt></td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">reverse_iterator&</span> <span class="pre">operator--();</span></tt></p>
<table class="last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">++m_iterator</span></tt></td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
</dd>
</dl>
<p>Change:</p>
<pre class="literal-block">
class transform_iterator
: public iterator_adaptor</* see discussion */>
{
friend class iterator_core_access;
</pre>
<p>to:</p>
<pre class="literal-block">
class transform_iterator
{
public:
typedef /* see below */ value_type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef iterator_traits<Iterator>::difference_type difference_type;
typedef /* see below */ iterator_category;
</pre>
<p>After <tt class="literal"><span class="pre">UnaryFunction</span> <span class="pre">functor()</span> <span class="pre">const;</span></tt> add:</p>
<pre class="literal-block">
Iterator const& base() const;
reference operator*() const;
transform_iterator& operator++();
transform_iterator& operator--();
</pre>
<p>Change:</p>
<pre class="literal-block">
private:
typename transform_iterator::value_type dereference() const;
UnaryFunction m_f;
};
</pre>
<p>to:</p>
<pre class="literal-block">
private:
Iterator m_iterator; // exposition only
UnaryFunction m_f; // exposition only
};
</pre>
<dl>
<dt>After the synopsis, add:</dt>
<dd>If <tt class="literal"><span class="pre">Iterator</span></tt> models Readable Lvalue Iterator and if <tt class="literal"><span class="pre">Iterator</span></tt>
models Random Access Traversal Iterator, then <tt class="literal"><span class="pre">iterator_category</span></tt> is
convertible to <tt class="literal"><span class="pre">random_access_iterator_tag</span></tt>. Otherwise, if
<tt class="literal"><span class="pre">Iterator</span></tt> models Bidirectional Traversal Iterator, then
<tt class="literal"><span class="pre">iterator_category</span></tt> is convertible to
<tt class="literal"><span class="pre">bidirectional_iterator_tag</span></tt>. Otherwise <tt class="literal"><span class="pre">iterator_category</span></tt> is
convertible to <tt class="literal"><span class="pre">forward_iterator_tag</span></tt>. If <tt class="literal"><span class="pre">Iterator</span></tt> does not
model Readable Lvalue Iterator then <tt class="literal"><span class="pre">iterator_category</span></tt> is
convertible to <tt class="literal"><span class="pre">input_iterator_tag</span></tt>.</dd>
<dt>In the requirements section, change:</dt>
<dd><p class="first">The type <tt class="literal"><span class="pre">Iterator</span></tt> must at least model Readable Iterator. The
resulting <tt class="literal"><span class="pre">transform_iterator</span></tt> models the most refined of the
following that is also modeled by <tt class="literal"><span class="pre">Iterator</span></tt>.</p>
<blockquote>
<ul class="simple">
<li>Writable Lvalue Iterator if
<tt class="literal"><span class="pre">result_of<UnaryFunction(iterator_traits<Iterator>::reference)>::type</span></tt>
is a non-const reference.</li>
<li>Readable Lvalue Iterator if
<tt class="literal"><span class="pre">result_of<UnaryFunction(iterator_traits<Iterator>::reference)>::type</span></tt>
is a const reference.</li>
<li>Readable Iterator otherwise.</li>
</ul>
</blockquote>
<p>The <tt class="literal"><span class="pre">transform_iterator</span></tt> models the most refined standard traversal
concept that is modeled by <tt class="literal"><span class="pre">Iterator</span></tt>.</p>
<p class="last">The <tt class="literal"><span class="pre">reference</span></tt> type of <tt class="literal"><span class="pre">transform_iterator</span></tt> is
<tt class="literal"><span class="pre">result_of<UnaryFunction(iterator_traits<Iterator>::reference)>::type</span></tt>.
The <tt class="literal"><span class="pre">value_type</span></tt> is <tt class="literal"><span class="pre">remove_cv<remove_reference<reference></span> <span class="pre">>::type</span></tt>.</p>
</dd>
<dt>to:</dt>
<dd>The argument <tt class="literal"><span class="pre">Iterator</span></tt> shall model Readable Iterator.</dd>
</dl>
<p>After the requirements section, add:</p>
</div>
<div class="topic">
<p class="topic-title first"><tt class="literal"><span class="pre">transform_iterator</span></tt> models</p>
<blockquote>
<p>The resulting <tt class="literal"><span class="pre">transform_iterator</span></tt> models the most refined of the
following options that is also modeled by <tt class="literal"><span class="pre">Iterator</span></tt>.</p>
<blockquote>
<ul class="simple">
<li>Writable Lvalue Iterator if
<tt class="literal"><span class="pre">transform_iterator::reference</span></tt> is a non-const
reference.</li>
<li>Readable Lvalue Iterator if
<tt class="literal"><span class="pre">transform_iterator::reference</span></tt> is a const reference.</li>
<li>Readable Iterator otherwise.</li>
</ul>
</blockquote>
<p>The <tt class="literal"><span class="pre">transform_iterator</span></tt> models the most refined standard traversal
concept that is modeled by the <tt class="literal"><span class="pre">Iterator</span></tt> argument.</p>
<p>If <tt class="literal"><span class="pre">transform_iterator</span></tt> is a model of Readable Lvalue Iterator then
it models the following original iterator concepts depending on what
the <tt class="literal"><span class="pre">Iterator</span></tt> argument models.</p>
<table border="1" class="table">
<colgroup>
<col width="50%" />
<col width="50%" />
</colgroup>
<thead valign="bottom">
<tr><th>If <tt class="literal"><span class="pre">Iterator</span></tt> models</th>
<th>then <tt class="literal"><span class="pre">transform_iterator</span></tt> models</th>
</tr>
</thead>
<tbody valign="top">
<tr><td>Single Pass Iterator</td>
<td>Input Iterator</td>
</tr>
<tr><td>Forward Traversal Iterator</td>
<td>Forward Iterator</td>
</tr>
<tr><td>Bidirectional Traversal Iterator</td>
<td>Bidirectional Iterator</td>
</tr>
<tr><td>Random Access Traversal Iterator</td>
<td>Random Access Iterator</td>
</tr>
</tbody>
</table>
<p>If <tt class="literal"><span class="pre">transform_iterator</span></tt> models Writable Lvalue Iterator then it is a
mutable iterator (as defined in the old iterator requirements).</p>
<p><tt class="literal"><span class="pre">transform_iterator<F1,</span> <span class="pre">X,</span> <span class="pre">R1,</span> <span class="pre">V1></span></tt> is interoperable with
<tt class="literal"><span class="pre">transform_iterator<F2,</span> <span class="pre">Y,</span> <span class="pre">R2,</span> <span class="pre">V2></span></tt> if and only if <tt class="literal"><span class="pre">X</span></tt> is
interoperable with <tt class="literal"><span class="pre">Y</span></tt>.</p>
</blockquote>
<p>Remove the private operations section heading and remove:</p>
<pre class="literal-block">
``typename transform_iterator::value_type dereference() const;``
:Returns: ``m_f(transform_iterator::dereference());``
</pre>
<p>After the entry for <tt class="literal"><span class="pre">functor()</span></tt>, add:</p>
<pre class="literal-block">
``Iterator const& base() const;``
:Returns: ``m_iterator``
``reference operator*() const;``
:Returns: ``m_f(*m_iterator)``
``transform_iterator& operator++();``
:Effects: ``++m_iterator``
:Returns: ``*this``
``transform_iterator& operator--();``
:Effects: ``--m_iterator``
:Returns: ``*this``
</pre>
<p>Change:</p>
<pre class="literal-block">
template <class Predicate, class Iterator>
class filter_iterator
: public iterator_adaptor<
filter_iterator<Predicate, Iterator>, Iterator
, use_default
, /* see details */
>
{
public:
</pre>
<p>to:</p>
<pre class="literal-block">
template <class Predicate, class Iterator>
class filter_iterator
{
public:
typedef iterator_traits<Iterator>::value_type value_type;
typedef iterator_traits<Iterator>::reference reference;
typedef iterator_traits<Iterator>::pointer pointer;
typedef iterator_traits<Iterator>::difference_type difference_type;
typedef /* see below */ iterator_category;
</pre>
<p>Change:</p>
<pre class="literal-block">
private: // as-if specification
void increment()
{
++(this->base_reference());
satisfy_predicate();
}
void satisfy_predicate()
{
while (this->base() != this->m_end && !this->m_predicate(*this->base()))
++(this->base_reference());
}
Predicate m_predicate;
Iterator m_end;
</pre>
<p>to:</p>
<pre class="literal-block">
Iterator const& base() const;
reference operator*() const;
filter_iterator& operator++();
private:
Predicate m_pred; // exposition only
Iterator m_iter; // exposition only
Iterator m_end; // exposition only
</pre>
<dl>
<dt>Change:</dt>
<dd>The base <tt class="literal"><span class="pre">Iterator</span></tt> parameter must be a model of Readable
Iterator and Single Pass Iterator. The resulting
<tt class="literal"><span class="pre">filter_iterator</span></tt> will be a model of Forward Traversal Iterator
if <tt class="literal"><span class="pre">Iterator</span></tt> is, otherwise the <tt class="literal"><span class="pre">filter_iterator</span></tt> will be a
model of Single Pass Iterator. The access category of the
<tt class="literal"><span class="pre">filter_iterator</span></tt> will be the same as the access category of
<tt class="literal"><span class="pre">Iterator</span></tt>.</dd>
<dt>to:</dt>
<dd>The <tt class="literal"><span class="pre">Iterator</span></tt> argument shall meet the requirements of Readable
Iterator and Single Pass Iterator or it shall meet the requirements of
Input Iterator.</dd>
</dl>
<p>After the requirements section, add:</p>
</div>
<div class="topic">
<p class="topic-title first"><tt class="literal"><span class="pre">filter_iterator</span></tt> models</p>
<blockquote>
<p>The concepts that <tt class="literal"><span class="pre">filter_iterator</span></tt> models are dependent on which
concepts the <tt class="literal"><span class="pre">Iterator</span></tt> argument models, as specified in the
following tables.</p>
<table border="1" class="table">
<colgroup>
<col width="33%" />
<col width="67%" />
</colgroup>
<thead valign="bottom">
<tr><th>If <tt class="literal"><span class="pre">Iterator</span></tt> models</th>
<th>then <tt class="literal"><span class="pre">filter_iterator</span></tt> models</th>
</tr>
</thead>
<tbody valign="top">
<tr><td>Single Pass Iterator</td>
<td>Single Pass Iterator</td>
</tr>
<tr><td>Forward Traversal Iterator</td>
<td>Forward Traversal Iterator</td>
</tr>
</tbody>
</table>
<table border="1" class="table">
<colgroup>
<col width="41%" />
<col width="59%" />
</colgroup>
<thead valign="bottom">
<tr><th>If <tt class="literal"><span class="pre">Iterator</span></tt> models</th>
<th>then <tt class="literal"><span class="pre">filter_iterator</span></tt> models</th>
</tr>
</thead>
<tbody valign="top">
<tr><td>Readable Iterator</td>
<td>Readable Iterator</td>
</tr>
<tr><td>Writable Iterator</td>
<td>Writable Iterator</td>
</tr>
<tr><td>Lvalue Iterator</td>
<td>Lvalue Iterator</td>
</tr>
</tbody>
</table>
<table border="1" class="table">
<colgroup>
<col width="63%" />
<col width="38%" />
</colgroup>
<thead valign="bottom">
<tr><th>If <tt class="literal"><span class="pre">Iterator</span></tt> models</th>
<th>then <tt class="literal"><span class="pre">filter_iterator</span></tt> models</th>
</tr>
</thead>
<tbody valign="top">
<tr><td>Readable Iterator, Single Pass Iterator</td>
<td>Input Iterator</td>
</tr>
<tr><td>Readable Lvalue Iterator, Forward Traversal Iterator</td>
<td>Forward Iterator</td>
</tr>
<tr><td>Writable Lvalue Iterator, Forward Traversal Iterator</td>
<td>Mutable Forward Iterator</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">filter_iterator<P1,</span> <span class="pre">X></span></tt> is interoperable with <tt class="literal"><span class="pre">filter_iterator<P2,</span> <span class="pre">Y></span></tt>
if and only if <tt class="literal"><span class="pre">X</span></tt> is interoperable with <tt class="literal"><span class="pre">Y</span></tt>.</p>
</blockquote>
<dl>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">a <tt class="literal"><span class="pre">filter_iterator</span></tt> whose
predicate is a default constructed <tt class="literal"><span class="pre">Predicate</span></tt> and
whose <tt class="literal"><span class="pre">end</span></tt> is a default constructed <tt class="literal"><span class="pre">Iterator</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs a <tt class="literal"><span class="pre">filter_iterator</span></tt> whose``m_pred``, <tt class="literal"><span class="pre">m_iter</span></tt>, and <tt class="literal"><span class="pre">m_end</span></tt>
members are a default constructed.</td>
</tr>
</tbody>
</table>
</dd>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">A <tt class="literal"><span class="pre">filter_iterator</span></tt> at position <tt class="literal"><span class="pre">x</span></tt> that filters according
to predicate <tt class="literal"><span class="pre">f</span></tt> and that will not increment past <tt class="literal"><span class="pre">end</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs a <tt class="literal"><span class="pre">filter_iterator</span></tt> where <tt class="literal"><span class="pre">m_iter</span></tt> is either
the first position in the range <tt class="literal"><span class="pre">[x,end)</span></tt> such that <tt class="literal"><span class="pre">f(*m_iter)</span> <span class="pre">==</span> <span class="pre">true</span></tt>
or else``m_iter == end``. The member <tt class="literal"><span class="pre">m_pred</span></tt> is constructed from
<tt class="literal"><span class="pre">f</span></tt> and <tt class="literal"><span class="pre">m_end</span></tt> from <tt class="literal"><span class="pre">end</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">A <tt class="literal"><span class="pre">filter_iterator</span></tt> at position <tt class="literal"><span class="pre">x</span></tt> that filters
according to a default constructed <tt class="literal"><span class="pre">Predicate</span></tt>
and that will not increment past <tt class="literal"><span class="pre">end</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs a <tt class="literal"><span class="pre">filter_iterator</span></tt> where <tt class="literal"><span class="pre">m_iter</span></tt> is either
the first position in the range <tt class="literal"><span class="pre">[x,end)</span></tt> such that <tt class="literal"><span class="pre">m_pred(*m_iter)</span> <span class="pre">==</span> <span class="pre">true</span></tt>
or else``m_iter == end``. The member <tt class="literal"><span class="pre">m_pred</span></tt> is default constructed.</td>
</tr>
</tbody>
</table>
</dd>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">A copy of iterator <tt class="literal"><span class="pre">t</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Constructs a filter iterator whose members are copied from <tt class="literal"><span class="pre">t</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">A copy of the predicate object used to construct <tt class="literal"><span class="pre">*this</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_pred</span></tt></td>
</tr>
</tbody>
</table>
</dd>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">The object <tt class="literal"><span class="pre">end</span></tt> used to construct <tt class="literal"><span class="pre">*this</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_end</span></tt></td>
</tr>
</tbody>
</table>
</dd>
</dl>
<p>At the end of the operations section, add:</p>
<blockquote>
<p><tt class="literal"><span class="pre">reference</span> <span class="pre">operator*()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*m_iter</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">filter_iterator&</span> <span class="pre">operator++();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Increments <tt class="literal"><span class="pre">m_iter</span></tt> and then continues to
increment <tt class="literal"><span class="pre">m_iter</span></tt> until either <tt class="literal"><span class="pre">m_iter</span> <span class="pre">==</span> <span class="pre">m_end</span></tt>
or <tt class="literal"><span class="pre">m_pred(*m_iter)</span> <span class="pre">==</span> <span class="pre">true</span></tt>.</td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
</blockquote>
<p>Change:</p>
<pre class="literal-block">
class counting_iterator
: public iterator_adaptor<
counting_iterator<Incrementable, Access, Traversal, Difference>
, Incrementable
, Incrementable
, Access
, /* see details for traversal category */
, Incrementable const&
, Incrementable const*
, /* distance = Difference or a signed integral type */>
{
friend class iterator_core_access;
public:
</pre>
<p>to:</p>
<pre class="literal-block">
class counting_iterator
{
public:
typedef Incrementable value_type;
typedef const Incrementable& reference;
typedef const Incrementable* pointer;
typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;
</pre>
<p>Change:</p>
<pre class="literal-block">
private:
typename counting_iterator::reference dereference() const
{
return this->base_reference();
}
</pre>
<p>to:</p>
<pre class="literal-block">
Incrementable const& base() const;
reference operator*() const;
counting_iterator& operator++();
counting_iterator& operator--();
private:
Incrementable m_inc; // exposition
</pre>
<p>After the synopsis, add:</p>
<blockquote>
<p>If the <tt class="literal"><span class="pre">Difference</span></tt> argument is <tt class="literal"><span class="pre">use_default</span></tt> then
<tt class="literal"><span class="pre">difference_type</span></tt> is an unspecified signed integral
type. Otherwise <tt class="literal"><span class="pre">difference_type</span></tt> is <tt class="literal"><span class="pre">Difference</span></tt>.</p>
<p><tt class="literal"><span class="pre">iterator_category</span></tt> is determined according to the following
algorithm:</p>
<pre class="literal-block">
if (CategoryOrTraversal is not use_default)
return CategoryOrTraversal
else if (numeric_limits<Incrementable>::is_specialized)
return <em>iterator-category</em>(
random_access_traversal_tag, Incrementable, const Incrementable&)
else
return <em>iterator-category</em>(
iterator_traversal<Incrementable>::type,
Incrementable, const Incrementable&)
</pre>
</blockquote>
<dl>
<dt>Change:</dt>
<dd><dl class="first last">
<dt>[<em>Note:</em> implementers are encouraged to provide an implementation of</dt>
<dd><tt class="literal"><span class="pre">distance_to</span></tt> and a <tt class="literal"><span class="pre">difference_type</span></tt> that avoids overflows in
the cases when the <tt class="literal"><span class="pre">Incrementable</span></tt> type is a numeric type.]</dd>
</dl>
</dd>
<dt>to:</dt>
<dd><dl class="first last">
<dt>[<em>Note:</em> implementers are encouraged to provide an implementation of</dt>
<dd><tt class="literal"><span class="pre">operator-</span></tt> and a <tt class="literal"><span class="pre">difference_type</span></tt> that avoid overflows in
the cases where <tt class="literal"><span class="pre">std::numeric_limits<Incrementable>::is_specialized</span></tt>
is true.]</dd>
</dl>
</dd>
<dt>Change:</dt>
<dd><p class="first">The <tt class="literal"><span class="pre">Incrementable</span></tt> type must be Default Constructible, Copy
Constructible, and Assignable. The default distance is
an implementation defined signed integegral type.</p>
<p class="last">The resulting <tt class="literal"><span class="pre">counting_iterator</span></tt> models Readable Lvalue Iterator.</p>
</dd>
<dt>to:</dt>
<dd>The <tt class="literal"><span class="pre">Incrementable</span></tt> argument shall be Copy Constructible and Assignable.</dd>
<dt>Change:</dt>
<dd>Furthermore, if you wish to create a counting iterator that is a Forward
Traversal Iterator, then the following expressions must be valid:</dd>
<dt>to:</dt>
<dd>If <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible to <tt class="literal"><span class="pre">forward_iterator_tag</span></tt>
or <tt class="literal"><span class="pre">forward_traversal_tag</span></tt>, the following must be well-formed:</dd>
<dt>Change:</dt>
<dd>If you wish to create a counting iterator that is a
Bidirectional Traversal Iterator, then pre-decrement is also required:</dd>
<dt>to:</dt>
<dd>If <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible to
<tt class="literal"><span class="pre">bidirectional_iterator_tag</span></tt> or <tt class="literal"><span class="pre">bidirectional_traversal_tag</span></tt>,
the following expression must also be well-formed:</dd>
<dt>Change:</dt>
<dd>If you wish to create a counting iterator that is a Random Access
Traversal Iterator, then these additional expressions are also
required:</dd>
<dt>to:</dt>
<dd>If <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible to
<tt class="literal"><span class="pre">random_access_iterator_tag</span></tt> or <tt class="literal"><span class="pre">random_access_traversal_tag</span></tt>,
the following must must also be valid:</dd>
</dl>
<p>After the requirements section, add:</p>
</div>
<div class="topic">
<p class="topic-title first"><tt class="literal"><span class="pre">counting_iterator</span></tt> models</p>
<blockquote>
<p>Specializations of <tt class="literal"><span class="pre">counting_iterator</span></tt> model Readable Lvalue
Iterator. In addition, they model the concepts corresponding to the
iterator tags to which their <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible.
Also, if <tt class="literal"><span class="pre">CategoryOrTraversal</span></tt> is not <tt class="literal"><span class="pre">use_default</span></tt> then
<tt class="literal"><span class="pre">counting_iterator</span></tt> models the concept corresponding to the iterator
tag <tt class="literal"><span class="pre">CategoryOrTraversal</span></tt>. Otherwise, if
<tt class="literal"><span class="pre">numeric_limits<Incrementable>::is_specialized</span></tt>, then
<tt class="literal"><span class="pre">counting_iterator</span></tt> models Random Access Traversal Iterator.
Otherwise, <tt class="literal"><span class="pre">counting_iterator</span></tt> models the same iterator traversal
concepts modeled by <tt class="literal"><span class="pre">Incrementable</span></tt>.</p>
<p><tt class="literal"><span class="pre">counting_iterator<X,C1,D1></span></tt> is interoperable with
<tt class="literal"><span class="pre">counting_iterator<Y,C2,D2></span></tt> if and only if <tt class="literal"><span class="pre">X</span></tt> is
interoperable with <tt class="literal"><span class="pre">Y</span></tt>.</p>
</blockquote>
<p>At the begining of the operations section, add:</p>
<blockquote>
In addition to the operations required by the concepts modeled by
<tt class="literal"><span class="pre">counting_iterator</span></tt>, <tt class="literal"><span class="pre">counting_iterator</span></tt> provides the following
operations.</blockquote>
<dl>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">A default constructed instance of <tt class="literal"><span class="pre">counting_iterator</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body"><tt class="literal"><span class="pre">Incrementable</span></tt> is Default Constructible.</td>
</tr>
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Default construct the member <tt class="literal"><span class="pre">m_inc</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">counting_iterator</span></tt> that is a copy of <tt class="literal"><span class="pre">rhs</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Construct member <tt class="literal"><span class="pre">m_inc</span></tt> from <tt class="literal"><span class="pre">rhs.m_inc</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>Change:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">An instance of <tt class="literal"><span class="pre">counting_iterator</span></tt> with its base
object copy constructed from <tt class="literal"><span class="pre">x</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
<dt>to:</dt>
<dd><table class="first last field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body">Construct member <tt class="literal"><span class="pre">m_inc</span></tt> from <tt class="literal"><span class="pre">x</span></tt>.</td>
</tr>
</tbody>
</table>
</dd>
</dl>
<p>At the end of the operations section, add:</p>
<blockquote>
<p><tt class="literal"><span class="pre">reference</span> <span class="pre">operator*()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_inc</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">counting_iterator&</span> <span class="pre">operator++();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">++m_inc</span></tt></td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">counting_iterator&</span> <span class="pre">operator--();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><tt class="literal"><span class="pre">--m_inc</span></tt></td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">*this</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Incrementable</span> <span class="pre">const&</span> <span class="pre">base()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">m_inc</span></tt></td>
</tr>
</tbody>
</table>
</blockquote>
</div>
</div>
<div class="section" id="x-problem-with-specification-of-a-m-in-readable-iterator">
<h2><a class="toc-backref" href="#id40" name="x-problem-with-specification-of-a-m-in-readable-iterator">9.38x Problem with specification of a->m in Readable Iterator</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Howard Hinnant</td>
</tr>
<tr class="field"><th class="field-name">Status:</th><td class="field-body">New</td>
</tr>
</tbody>
</table>
<p>c++std-lib-12585:</p>
<p>Readable Iterator Requirements says:</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="13%" />
<col width="10%" />
<col width="77%" />
</colgroup>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">a->m</span></tt></td>
<td><tt class="literal"><span class="pre">U&</span></tt></td>
<td>pre: <tt class="literal"><span class="pre">(*a).m</span></tt> is well-defined. Equivalent to <tt class="literal"><span class="pre">(*a).m</span></tt></td>
</tr>
</tbody>
</table>
</blockquote>
<p>Do we mean to outlaw iterators with proxy references from meeting
the readable requirements?</p>
<p>Would it be better for the requirements to read <tt class="literal"><span class="pre">static_cast<T>(*a).m</span></tt>
instead of <tt class="literal"><span class="pre">(*a).m</span></tt> ?</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body">NAD.</td>
</tr>
<tr class="field"><th class="field-name">Rationale:</th><td class="field-body"><p class="first">We think you're misreading "pre:".
If <tt class="literal"><span class="pre">(*a).m</span></tt> is not well defined, then the iterator is not
required to provide <tt class="literal"><span class="pre">a->m</span></tt>. So a proxy iterator is not
required to provide <tt class="literal"><span class="pre">a->m</span></tt>.</p>
<p class="last">As an aside, it is possible for proxy iterators to
support <tt class="literal"><span class="pre">-></span></tt>, so changing the requirements to
read <tt class="literal"><span class="pre">static_cast<T>(*a).m</span></tt> is interesting.
However, such a change to Readable Iterator would
mean that it no longer corresponds to the
input iterator requirements. So old iterators would not
necessarily conform to new iterator requirements.</p>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="x-counting-iterator-traversal-argument-unspecified">
<h2><a class="toc-backref" href="#id41" name="x-counting-iterator-traversal-argument-unspecified">9.39x counting_iterator Traversal argument unspecified</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
</tbody>
</table>
<p>c++std-lib-12635:</p>
<p>counting_iterator takes an argument for its Traversal type, with a
default value of use_default. It is derived from an instance of
iterator_adaptor, where the argument passed for the Traversal type
is described as "<tt class="literal"><span class="pre">/*</span> <span class="pre">see</span> <span class="pre">details</span> <span class="pre">for</span> <span class="pre">traversal</span> <span class="pre">category</span>
<span class="pre">*/</span></tt>". The details for counting_iterator describe constraints on
the Incrementable type imposed by various traversal
categories. There is no description of what the argument to
iterator_adaptor should be.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body">We no longer inherit from iterator_adaptor. So instead,
we specify the iterator_category in terms of the Traversal type
(which is now called CategoryOrTraversal). Also the
requirements and models section was reorganized to
match these changes and to make more sense.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="x-indirect-iterator-requirements-muddled">
<h2><a class="toc-backref" href="#id42" name="x-indirect-iterator-requirements-muddled">9.40x indirect_iterator requirements muddled</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
</tbody>
</table>
<p>c++std-lib-12640:</p>
<blockquote>
<blockquote>
The value_type of the Iterator template parameter should itself
be dereferenceable. The return type of the <tt class="literal"><span class="pre">operator*</span></tt> for
the value_type must be the same type as the Reference template
parameter.</blockquote>
<p>I'd say this a bit differently, to emphasize what's required:
iterator_traits<Iterator>::value_type must be dereferenceable.
The Reference template parameter must be the same type as
<tt class="literal"><span class="pre">*iterator_traits<Iterator>::value_type()</span></tt>.</p>
<blockquote>
The Value template parameter will be the value_type for the
indirect_iterator, unless Value is const. If Value is const X, then
value_type will be non- const X.</blockquote>
<p>Also non-volatile, right? In other words, if Value isn't use_default, it
just gets passed as the Value argument for iterator_adaptor.</p>
<blockquote>
<p>The default for Value is:</p>
<pre class="literal-block">
iterator_traits< iterator_traits<Iterator>::value_type >::value_type
</pre>
<p>If the default is used for Value, then there must be a valid
specialization of iterator_traits for the value type of the
base iterator.</p>
</blockquote>
<p>The earlier requirement is that
<tt class="literal"><span class="pre">iterator_traits<Iterator>::value_type</span></tt> must be
dereferenceable. Now it's being treated as an iterator. Is this
just a pun, or is <tt class="literal"><span class="pre">iterator_traits<Iterator>::value_type</span></tt>
required to be some form of iterator? If it's the former we need
to find a different way to say it. If it's the latter we need to
say so.</p>
</blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Change:</p>
<blockquote>
<p>The <tt class="literal"><span class="pre">value_type</span></tt> of the <tt class="literal"><span class="pre">Iterator</span></tt> template parameter
should itself be dereferenceable. The return type of the
<tt class="literal"><span class="pre">operator*</span></tt> for the <tt class="literal"><span class="pre">value_type</span></tt> must be the same type as
the <tt class="literal"><span class="pre">Reference</span></tt> template parameter. The <tt class="literal"><span class="pre">Value</span></tt> template
parameter will be the <tt class="literal"><span class="pre">value_type</span></tt> for the
<tt class="literal"><span class="pre">indirect_iterator</span></tt>, unless <tt class="literal"><span class="pre">Value</span></tt> is const. If <tt class="literal"><span class="pre">Value</span></tt>
is <tt class="literal"><span class="pre">const</span> <span class="pre">X</span></tt>, then <tt class="literal"><span class="pre">value_type</span></tt> will be <em>non-</em> <tt class="literal"><span class="pre">const</span> <span class="pre">X</span></tt>.
The default for <tt class="literal"><span class="pre">Value</span></tt> is:</p>
<pre class="literal-block">
iterator_traits< iterator_traits<Iterator>::value_type >::value_type
</pre>
<p>If the default is used for <tt class="literal"><span class="pre">Value</span></tt>, then there must be a
valid specialization of <tt class="literal"><span class="pre">iterator_traits</span></tt> for the value type
of the base iterator.</p>
<p>The <tt class="literal"><span class="pre">Reference</span></tt> parameter will be the <tt class="literal"><span class="pre">reference</span></tt> type of the
<tt class="literal"><span class="pre">indirect_iterator</span></tt>. The default is <tt class="literal"><span class="pre">Value&</span></tt>.</p>
<p>The <tt class="literal"><span class="pre">Access</span></tt> and <tt class="literal"><span class="pre">Traversal</span></tt> parameters are passed
unchanged to the corresponding parameters of the
<tt class="literal"><span class="pre">iterator_adaptor</span></tt> base class, and the <tt class="literal"><span class="pre">Iterator</span></tt> parameter
is passed unchanged as the <tt class="literal"><span class="pre">Base</span></tt> parameter to the
<tt class="literal"><span class="pre">iterator_adaptor</span></tt> base class.</p>
</blockquote>
<p>to:</p>
<blockquote class="last">
<blockquote>
The expression <tt class="literal"><span class="pre">*v</span></tt>, where <tt class="literal"><span class="pre">v</span></tt> is an object of
<tt class="literal"><span class="pre">iterator_traits<Iterator>::value_type</span></tt>, shall be valid
expression and convertible to <tt class="literal"><span class="pre">reference</span></tt>. <tt class="literal"><span class="pre">Iterator</span></tt>
shall model the traversal concept indicated by
<tt class="literal"><span class="pre">iterator_category</span></tt>. <tt class="literal"><span class="pre">Value</span></tt>, <tt class="literal"><span class="pre">Reference</span></tt>, and
<tt class="literal"><span class="pre">Difference</span></tt> shall be chosen so that <tt class="literal"><span class="pre">value_type</span></tt>,
<tt class="literal"><span class="pre">reference</span></tt>, and <tt class="literal"><span class="pre">difference_type</span></tt> meet the requirements
indicated by <tt class="literal"><span class="pre">iterator_category</span></tt>.</blockquote>
<p>[Note: there are further requirements on the
<tt class="literal"><span class="pre">iterator_traits<Iterator>::value_type</span></tt> if the <tt class="literal"><span class="pre">Value</span></tt>
parameter is not <tt class="literal"><span class="pre">use_default</span></tt>, as implied by the algorithm
for deducing the default for the <tt class="literal"><span class="pre">value_type</span></tt> member.]</p>
</blockquote>
</td>
</tr>
<tr class="field"><th class="field-name">Rationale:</th><td class="field-body">Not included above is the specification of the
<tt class="literal"><span class="pre">value_type</span></tt>, <tt class="literal"><span class="pre">reference</span></tt>, etc., members, which is handled by
the changes in 9.37x.</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="x-problem-with-transform-iterator-requirements">
<h2><a class="toc-backref" href="#id43" name="x-problem-with-transform-iterator-requirements">9.41x Problem with transform_iterator requirements</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
</tbody>
</table>
<p>c++std-lib-12641:</p>
<blockquote>
The reference type of transform_iterator is <tt class="literal"><span class="pre">result_of<</span>
<span class="pre">UnaryFunction(iterator_traits<Iterator>::reference)</span>
<span class="pre">>::type</span></tt>. The <tt class="literal"><span class="pre">value_type</span></tt> is
<tt class="literal"><span class="pre">remove_cv<remove_reference<reference></span> <span class="pre">>::type</span></tt>.</blockquote>
<p>These are the defaults, right? If the user supplies their own types
that's what gets passed to iterator_adaptor. And again, the
specification should be in terms of the specialization of
iterator_adaptor, and not in terms of the result:</p>
<p>Reference argument to iterator_adaptor:</p>
<pre class="literal-block">
if (Reference != use_default)
Reference
else
result_of<
UnaryFunction(iterator_traits<Iterator>::reference)
>::type
</pre>
<p>Value argument to iterator_adaptor:</p>
<pre class="literal-block">
if (Value != use_default)
Value
else if (Reference != use_default)
remove_reference<reference>::type
else
remove_reference<
result_of<
UnaryFunction(iterator_traits<Iterator>::reference)
>::type
>::type
</pre>
<p>There's probably a better way to specify that last alternative, but
I've been at this too long, and it's all turning into a maze of
twisty passages, all alike.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Replace:</p>
<blockquote>
The reference type of transform_iterator is <tt class="literal"><span class="pre">result_of<</span>
<span class="pre">UnaryFunction(iterator_traits<Iterator>::reference)</span>
<span class="pre">>::type</span></tt>. The <tt class="literal"><span class="pre">value_type</span></tt> is
<tt class="literal"><span class="pre">remove_cv<remove_reference<reference></span> <span class="pre">>::type</span></tt>.</blockquote>
<p>with:</p>
<blockquote class="last">
<p>If <tt class="literal"><span class="pre">Reference</span></tt> is <tt class="literal"><span class="pre">use_default</span></tt> then the <tt class="literal"><span class="pre">reference</span></tt>
member of <tt class="literal"><span class="pre">transform_iterator</span></tt> is <tt class="literal"><span class="pre">result_of<</span>
<span class="pre">UnaryFunction(iterator_traits<Iterator>::reference)</span>
<span class="pre">>::type</span></tt>. Otherwise, <tt class="literal"><span class="pre">reference</span></tt> is <tt class="literal"><span class="pre">Reference</span></tt>.</p>
<p>If <tt class="literal"><span class="pre">Value</span></tt> is <tt class="literal"><span class="pre">use_default</span></tt> then the <tt class="literal"><span class="pre">value_type</span></tt>
member is <tt class="literal"><span class="pre">remove_cv<remove_reference<reference></span> <span class="pre">>::type</span></tt>.
Otherwise, <tt class="literal"><span class="pre">value_type</span></tt> is <tt class="literal"><span class="pre">Value</span></tt>.</p>
</blockquote>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="x-filter-iterator-details-unspecified">
<h2><a class="toc-backref" href="#id44" name="x-filter-iterator-details-unspecified">9.42x filter_iterator details unspecified</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Pete Becker</td>
</tr>
</tbody>
</table>
<p>c++std-lib-12642:</p>
<p>The paper says:</p>
<pre class="literal-block">
template<class Predicate, class Iterator>
class filter_iterator
: public iterator_adaptor<
filter_iterator<Predicate, Iterator>,
Iterator,
use_default,
/* see details */ >
</pre>
<p>That comment covers the Access, Traversal, Reference, and Difference
arguments. The only specification for any of these in the details is:</p>
<blockquote>
The access category of the filter_iterator will be the same as
the access category of Iterator.</blockquote>
<p>Needs more.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Add to the synopsis:</p>
<pre class="literal-block">
typedef iterator_traits<Iterator>::value_type value_type;
typedef iterator_traits<Iterator>::reference reference;
typedef iterator_traits<Iterator>::pointer pointer;
typedef iterator_traits<Iterator>::difference_type difference_type;
typedef /* see below */ iterator_category;
</pre>
<p>and add just after the synopsis:</p>
<blockquote class="last">
If <tt class="literal"><span class="pre">Iterator</span></tt> models Readable Lvalue Iterator and Forward
Traversal Iterator then <tt class="literal"><span class="pre">iterator_category</span></tt> is convertible
to <tt class="literal"><span class="pre">std::forward_iterator_tag</span></tt>. Otherwise
<tt class="literal"><span class="pre">iterator_category</span></tt> is convertible to
<tt class="literal"><span class="pre">std::input_iterator_tag</span></tt>.</blockquote>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="x-transform-iterator-interoperability-too-restrictive">
<h2><a class="toc-backref" href="#id45" name="x-transform-iterator-interoperability-too-restrictive">9.43x transform_iterator interoperability too restrictive</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Jeremy Siek</td>
</tr>
</tbody>
</table>
<p>We do not need to require that the function objects have the same
type, just that they be convertible.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Change:</p>
<pre class="literal-block">
template<class OtherIterator, class R2, class V2>
transform_iterator(
transform_iterator<UnaryFunction, OtherIterator, R2, V2> const& t
, typename enable_if_convertible<OtherIterator, Iterator>::type* = 0 // exposition
);
</pre>
<p>to:</p>
<pre class="last literal-block">
template<class F2, class I2, class R2, class V2>
transform_iterator(
transform_iterator<F2, I2, R2, V2> const& t
, typename enable_if_convertible<I2, Iterator>::type* = 0 // exposition only
, typename enable_if_convertible<F2, UnaryFunction>::type* = 0 // exposition only
);
</pre>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="y-indirect-iterator-and-smart-pointers">
<h2><a class="toc-backref" href="#id46" name="y-indirect-iterator-and-smart-pointers">9.44y <tt class="literal"><span class="pre">indirect_iterator</span></tt> and smart pointers</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Dave Abrahams</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">indirect_iterator</span></tt> should be able to iterate over containers of
smart pointers, but the mechanism that allows it was left out of
the specification, even though it's present in the Boost
specification</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Add <tt class="literal"><span class="pre">pointee</span></tt> and <tt class="literal"><span class="pre">indirect_reference</span></tt>
to deal with this capability.</p>
<p>In [lib.iterator.helper.synopsis], add:</p>
<pre class="literal-block">
template <class Dereferenceable>
struct pointee;
template <class Dereferenceable>
struct indirect_reference;
</pre>
<p class="last">After <tt class="literal"><span class="pre">indirect_iterator</span></tt>'s abstract, add:</p>
</td>
</tr>
</tbody>
</table>
<div class="topic">
<p class="topic-title first">Class template <tt class="literal"><span class="pre">pointee</span></tt></p>
<!-- Copyright David Abrahams 2004. Use, modification and distribution is -->
<!-- subject to the Boost Software License, Version 1.0. (See accompanying -->
<!-- file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
<pre class="literal-block">
template <class Dereferenceable>
struct pointee
{
typedef /* see below */ type;
};
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body">For an object <tt class="literal"><span class="pre">x</span></tt> of type <tt class="literal"><span class="pre">Dereferenceable</span></tt>, <tt class="literal"><span class="pre">*x</span></tt>
is well-formed. If <tt class="literal"><span class="pre">++x</span></tt> is ill-formed it shall neither be
ambiguous nor shall it violate access control, and
<tt class="literal"><span class="pre">Dereferenceable::element_type</span></tt> shall be an accessible type.
Otherwise <tt class="literal"><span class="pre">iterator_traits<Dereferenceable>::value_type</span></tt> shall
be well formed. [Note: These requirements need not apply to
explicit or partial specializations of <tt class="literal"><span class="pre">pointee</span></tt>]</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">type</span></tt> is determined according to the following algorithm, where
<tt class="literal"><span class="pre">x</span></tt> is an object of type <tt class="literal"><span class="pre">Dereferenceable</span></tt>:</p>
<pre class="literal-block">
if ( ++x is ill-formed )
{
return ``Dereferenceable::element_type``
}
else if (``*x`` is a mutable reference to
std::iterator_traits<Dereferenceable>::value_type)
{
return iterator_traits<Dereferenceable>::value_type
}
else
{
return iterator_traits<Dereferenceable>::value_type const
}
</pre>
</div>
<div class="topic">
<p class="topic-title first">Class template <tt class="literal"><span class="pre">indirect_reference</span></tt></p>
<!-- Copyright David Abrahams 2004. Use, modification and distribution is -->
<!-- subject to the Boost Software License, Version 1.0. (See accompanying -->
<!-- file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
<pre class="literal-block">
template <class Dereferenceable>
struct indirect_reference
{
typedef /* see below */ type;
};
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Requires:</th><td class="field-body">For an object <tt class="literal"><span class="pre">x</span></tt> of type <tt class="literal"><span class="pre">Dereferenceable</span></tt>, <tt class="literal"><span class="pre">*x</span></tt>
is well-formed. If <tt class="literal"><span class="pre">++x</span></tt> is ill-formed it shall neither be
ambiguous nor shall it violate access control, and
<tt class="literal"><span class="pre">pointee<Dereferenceable>::type&</span></tt> shall be well-formed.
Otherwise <tt class="literal"><span class="pre">iterator_traits<Dereferenceable>::reference</span></tt> shall
be well formed. [Note: These requirements need not apply to
explicit or partial specializations of <tt class="literal"><span class="pre">indirect_reference</span></tt>]</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">type</span></tt> is determined according to the following algorithm, where
<tt class="literal"><span class="pre">x</span></tt> is an object of type <tt class="literal"><span class="pre">Dereferenceable</span></tt>:</p>
<pre class="literal-block">
if ( ++x is ill-formed )
return ``pointee<Dereferenceable>::type&``
else
std::iterator_traits<Dereferenceable>::reference
</pre>
</div>
<p>See proposed resolution to Issue 9.37x for more changes related to
this issue.</p>
</div>
<div class="section" id="y-n1530-typos-and-editorial-changes-in-proposal-text-not-standardese">
<h2><a class="toc-backref" href="#id47" name="y-n1530-typos-and-editorial-changes-in-proposal-text-not-standardese">9.45y N1530: Typos and editorial changes in proposal text (not standardese)</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Dave Abrahams</td>
</tr>
</tbody>
</table>
<ol class="arabic">
<li><p class="first">"because specification helps to highlight that the <tt class="literal"><span class="pre">Reference</span></tt>
template parameter may not always be identical to the iterator's
<tt class="literal"><span class="pre">reference</span></tt> type, and will keep users making mistakes based on
that assumption."</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first last">add "from" before "making"</p>
</td>
</tr>
</tbody>
</table>
</li>
<li><p class="first">mention of obsolete projection_iterator</p>
</li>
</ol>
<blockquote>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed Resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">From n1530, in the <strong>Specialized Adaptors</strong> section, remove:</p>
<blockquote class="last">
<tt class="literal"><span class="pre">projection_iterator</span></tt>, which is similar to <tt class="literal"><span class="pre">transform_iterator</span></tt>
except that when dereferenced it returns a reference instead of
a value.</blockquote>
</td>
</tr>
<tr class="field"><th class="field-name">Rationale:</th><td class="field-body">This iterator was in the original boost library, but the new
iterator concepts allowed this iterator to be
folded into <tt class="literal"><span class="pre">transform_iterator</span></tt>.</td>
</tr>
</tbody>
</table>
</blockquote>
</div>
<div class="section" id="y-n1530-base-return-by-value-is-costly">
<h2><a class="toc-backref" href="#id48" name="y-n1530-base-return-by-value-is-costly">9.46y N1530: <tt class="literal"><span class="pre">base()</span></tt> return-by-value is costly</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Dave Abrahams</td>
</tr>
</tbody>
</table>
<p>We've had some real-life reports that iterators that use
<tt class="literal"><span class="pre">iterator_adaptor</span></tt>'s <tt class="literal"><span class="pre">base()</span></tt> function can be inefficient
when the <tt class="literal"><span class="pre">Base</span></tt> iterator is expensive to copy. Iterators, of
all things, should be efficient.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">In [lib.iterator.adaptor]</p>
<p>Change:</p>
<pre class="literal-block">
Base base() const;
</pre>
<p>to:</p>
<pre class="literal-block">
Base const& base() const;
</pre>
<p class="last">twice (once in the synopsis and once in the <strong>public
operations</strong> section).</p>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="x-forgot-default-constructible-in-forward-traversal-iterator">
<h2><a class="toc-backref" href="#id49" name="x-forgot-default-constructible-in-forward-traversal-iterator">9.47x Forgot default constructible in Forward Traversal Iterator</a></h2>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Submitter:</th><td class="field-body">Jeremy Siek</td>
</tr>
</tbody>
</table>
<p>We want Forward Traversal Iterator plus Readable Lvalue Iterator to
match the old Foward Iterator requirements, so we need Forward
Traversal Iterator to include Default Constructible.</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name" colspan="2">Proposed resolution:</th></tr>
<tr><td> </td><td class="field-body"><p class="first">Change:</p>
<blockquote>
<p>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> models the <em>Forward Traversal Iterator</em>
concept if the following expressions are valid and respect the stated
semantics.</p>
<table border="1" class="table">
<colgroup>
<col width="44%" />
<col width="39%" />
<col width="17%" />
</colgroup>
<tbody valign="top">
<tr><td colspan="3">Forward Traversal Iterator Requirements (in addition to Single Pass Iterator)</td>
</tr>
</tbody>
</table>
</blockquote>
<p>to:</p>
<blockquote class="last">
<p>A class or built-in type <tt class="literal"><span class="pre">X</span></tt> models the <em>Forward Traversal Iterator</em>
concept if, in addition to <tt class="literal"><span class="pre">X</span></tt> meeting the requirements of
Default Constructible and Single Pass Iterator, the following
expressions are valid and respect the
stated semantics.</p>
<table border="1" class="table">
<colgroup>
<col width="38%" />
<col width="34%" />
<col width="27%" />
</colgroup>
<tbody valign="top">
<tr><td colspan="3">Forward Traversal Iterator Requirements (in addition to Default Constructible and Single Pass Iterator)</td>
</tr>
</tbody>
</table>
</blockquote>
</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="x-editorial-changes-non-normative-text">
<h2><a class="toc-backref" href="#id50" name="x-editorial-changes-non-normative-text">9.48x Editorial changes (non-normative text)</a></h2>
<dl>
<dt>Change:</dt>
<dd>Iterator facade uses the Curiously Recurring Template Pattern (CRTP)
[Cop95] so that the user can specify the behavior of
<tt class="literal"><span class="pre">iterator_facade</span></tt> in a derived class. Former designs used policy
objects to specify the behavior. <tt class="literal"><span class="pre">iterator_facade</span></tt> does not use policy
objects for several reasons:</dd>
<dt>to:</dt>
<dd>Iterator facade uses the Curiously Recurring Template
Pattern (CRTP) [Cop95] so that the user can specify the behavior
of <tt class="literal"><span class="pre">iterator_facade</span></tt> in a derived class. Former designs used
policy objects to specify the behavior, but that approach was
discarded for several reasons:</dd>
<dt>Change:</dt>
<dd>iterator's <tt class="literal"><span class="pre">operator++</span></tt> returns the iterator type itself means
that all iterators generated by <tt class="literal"><span class="pre">iterator_facade</span></tt> would be
instantiations of <tt class="literal"><span class="pre">iterator_facade</span></tt>. Cumbersome type generator</dd>
<dt>to:</dt>
<dd>iterator's <tt class="literal"><span class="pre">operator++</span></tt> returns the iterator type itself
would mean that all iterators built with the library would
have to be specializations of <tt class="literal"><span class="pre">iterator_facade<...></span></tt>, rather
than something more descriptive like
<tt class="literal"><span class="pre">indirect_iterator<T*></span></tt>. Cumbersome type generator</dd>
<dt>Change:</dt>
<dd>The return type for <tt class="literal"><span class="pre">operator-></span></tt> and <tt class="literal"><span class="pre">operator[]</span></tt> is not
explicitly specified. Instead it requires each <tt class="literal"><span class="pre">iterator_facade</span></tt>
instantiation to meet the requirements of its <tt class="literal"><span class="pre">iterator_category</span></tt>.</dd>
<dt>To:</dt>
<dd>The return types for <tt class="literal"><span class="pre">iterator_facade</span></tt>'s <tt class="literal"><span class="pre">operator-></span></tt> and
<tt class="literal"><span class="pre">operator[]</span></tt> are not explicitly specified. Instead, those types
are described in terms of a set of requirements, which must be
satisfied by the <tt class="literal"><span class="pre">iterator_facade</span></tt> implementation.</dd>
</dl>
</div>
<div class="section" id="x-clarification-of-iterator-facade-requirements-and-type-members">
<h2><a class="toc-backref" href="#id51" name="x-clarification-of-iterator-facade-requirements-and-type-members">9.49x Clarification of iterator_facade requirements and type members</a></h2>
<p>A general cleanup and simplification of the requirements and
description of type members for <tt class="literal"><span class="pre">iterator_facade</span></tt>.</p>
<p>The user is only allowed to add <tt class="literal"><span class="pre">const</span></tt> as a qualifier.</p>
<dl>
<dt>Change:</dt>
<dd><tt class="literal"><span class="pre">typedef</span> <span class="pre">remove_cv<Value>::type</span> <span class="pre">value_type;</span></tt></dd>
<dt>to:</dt>
<dd><tt class="literal"><span class="pre">typedef</span> <span class="pre">remove_const<Value>::type</span> <span class="pre">value_type;</span></tt></dd>
</dl>
<p>We use to have an unspecified type for <tt class="literal"><span class="pre">pointer</span></tt>, to match the
return type of <tt class="literal"><span class="pre">operator-></span></tt>, but there's no real reason to make them
match, so we just use the simpler <tt class="literal"><span class="pre">Value*</span></tt> for <tt class="literal"><span class="pre">pointer</span></tt>.</p>
<p>Change:</p>
<blockquote>
<tt class="literal"><span class="pre">typedef</span> <span class="pre">/*</span> <span class="pre">see</span> <span class="pre">description</span> <span class="pre">of</span> <span class="pre">operator-></span> <span class="pre">*/</span> <span class="pre">pointer;</span></tt></blockquote>
<dl>
<dt>To:</dt>
<dd><tt class="literal"><span class="pre">typedef</span> <span class="pre">Value*</span> <span class="pre">pointer;</span></tt></dd>
<dt>Remove:</dt>
<dd>Some of the constraints on template parameters to
<tt class="literal"><span class="pre">iterator_facade</span></tt> are expressed in terms of resulting nested
types and should be viewed in the context of their impact on
<tt class="literal"><span class="pre">iterator_traits<Derived></span></tt>.</dd>
<dt>Change:</dt>
<dd>The <tt class="literal"><span class="pre">Derived</span></tt> template parameter must be a class derived from
<tt class="literal"><span class="pre">iterator_facade</span></tt>.</dd>
<dt>and:</dt>
<dd>The following table describes the other requirements on the
<tt class="literal"><span class="pre">Derived</span></tt> parameter. Depending on the resulting iterator's
<tt class="literal"><span class="pre">iterator_category</span></tt>, a subset of the expressions listed in the table
are required to be valid. The operations in the first column must be
accessible to member functions of class <tt class="literal"><span class="pre">iterator_core_access</span></tt>.</dd>
<dt>to:</dt>
<dd>The following table describes the typical valid expressions on
<tt class="literal"><span class="pre">iterator_facade</span></tt>'s <tt class="literal"><span class="pre">Derived</span></tt> parameter, depending on the
iterator concept(s) it will model. The operations in the first
column must be made accessible to member functions of class
<tt class="literal"><span class="pre">iterator_core_access</span></tt>. In addition,
<tt class="literal"><span class="pre">static_cast<Derived*>(iterator_facade*)</span></tt> shall be well-formed.</dd>
<dt>Remove:</dt>
<dd><p class="first">The nested <tt class="literal"><span class="pre">::value_type</span></tt> type will be the same as
<tt class="literal"><span class="pre">remove_cv<Value>::type</span></tt>, so the <tt class="literal"><span class="pre">Value</span></tt> parameter must be
an (optionally <tt class="literal"><span class="pre">const</span></tt>-qualified) non-reference type.</p>
<p class="last">The nested <tt class="literal"><span class="pre">::reference</span></tt> will be the same as the <tt class="literal"><span class="pre">Reference</span></tt>
parameter; it must be a suitable reference type for the resulting
iterator. The default for the <tt class="literal"><span class="pre">Reference</span></tt> parameter is
<tt class="literal"><span class="pre">Value&</span></tt>.</p>
</dd>
</dl>
<p>Change:</p>
<blockquote>
<p>In the table below, <tt class="literal"><span class="pre">X</span></tt> is the derived iterator type, <tt class="literal"><span class="pre">a</span></tt> is an
object of type <tt class="literal"><span class="pre">X</span></tt>, <tt class="literal"><span class="pre">b</span></tt> and <tt class="literal"><span class="pre">c</span></tt> are objects of type <tt class="literal"><span class="pre">const</span> <span class="pre">X</span></tt>,
<tt class="literal"><span class="pre">n</span></tt> is an object of <tt class="literal"><span class="pre">X::difference_type</span></tt>, <tt class="literal"><span class="pre">y</span></tt> is a constant
object of a single pass iterator type interoperable with X, and <tt class="literal"><span class="pre">z</span></tt>
is a constant object of a random access traversal iterator type
interoperable with <tt class="literal"><span class="pre">X</span></tt>.</p>
<table border="1" class="table">
<colgroup>
<col width="19%" />
<col width="18%" />
<col width="36%" />
<col width="26%" />
</colgroup>
<thead valign="bottom">
<tr><th>Expression</th>
<th>Return Type</th>
<th>Assertion/Note</th>
<th>Required to implement
Iterator Concept(s)</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">c.dereference()</span></tt></td>
<td><tt class="literal"><span class="pre">X::reference</span></tt></td>
<td> </td>
<td>Readable Iterator, Writable
Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">c.equal(b)</span></tt></td>
<td>convertible to bool</td>
<td>true iff <tt class="literal"><span class="pre">b</span></tt> and <tt class="literal"><span class="pre">c</span></tt> are
equivalent.</td>
<td>Single Pass Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">c.equal(y)</span></tt></td>
<td>convertible to bool</td>
<td>true iff <tt class="literal"><span class="pre">c</span></tt> and <tt class="literal"><span class="pre">y</span></tt> refer to the
same position. Implements <tt class="literal"><span class="pre">c</span> <span class="pre">==</span> <span class="pre">y</span></tt>
and <tt class="literal"><span class="pre">c</span> <span class="pre">!=</span> <span class="pre">y</span></tt>.</td>
<td>Single Pass Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a.advance(n)</span></tt></td>
<td>unused</td>
<td> </td>
<td>Random Access Traversal
Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a.increment()</span></tt></td>
<td>unused</td>
<td> </td>
<td>Incrementable Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a.decrement()</span></tt></td>
<td>unused</td>
<td> </td>
<td>Bidirectional Traversal
Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">c.distance_to(b)</span></tt></td>
<td>convertible to
X::difference_type</td>
<td>equivalent to <tt class="literal"><span class="pre">distance(c,</span> <span class="pre">b)</span></tt></td>
<td>Random Access Traversal
Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">c.distance_to(z)</span></tt></td>
<td>convertible to
X::difference_type</td>
<td>equivalent to <tt class="literal"><span class="pre">distance(c,</span> <span class="pre">z)</span></tt>.
Implements <tt class="literal"><span class="pre">c</span> <span class="pre">-</span> <span class="pre">z</span></tt>, <tt class="literal"><span class="pre">c</span> <span class="pre"><</span> <span class="pre">z</span></tt>, <tt class="literal"><span class="pre">c</span>
<span class="pre"><=</span> <span class="pre">z</span></tt>, <tt class="literal"><span class="pre">c</span> <span class="pre">></span> <span class="pre">z</span></tt>, and <tt class="literal"><span class="pre">c</span> <span class="pre">>=</span> <span class="pre">c</span></tt>.</td>
<td>Random Access Traversal
Iterator</td>
</tr>
</tbody>
</table>
</blockquote>
<p>to:</p>
<blockquote>
<p>In the table below, <tt class="literal"><span class="pre">F</span></tt> is <tt class="literal"><span class="pre">iterator_facade<X,V,C,R,D></span></tt>, <tt class="literal"><span class="pre">a</span></tt> is an
object of type <tt class="literal"><span class="pre">X</span></tt>, <tt class="literal"><span class="pre">b</span></tt> and <tt class="literal"><span class="pre">c</span></tt> are objects of type <tt class="literal"><span class="pre">const</span> <span class="pre">X</span></tt>,
<tt class="literal"><span class="pre">n</span></tt> is an object of <tt class="literal"><span class="pre">F::difference_type</span></tt>, <tt class="literal"><span class="pre">y</span></tt> is a constant
object of a single pass iterator type interoperable with <tt class="literal"><span class="pre">X</span></tt>, and <tt class="literal"><span class="pre">z</span></tt>
is a constant object of a random access traversal iterator type
interoperable with <tt class="literal"><span class="pre">X</span></tt>.</p>
<p><strong>iterator_facade Core Operations</strong></p>
<table border="1" class="table">
<colgroup>
<col width="21%" />
<col width="23%" />
<col width="27%" />
<col width="29%" />
</colgroup>
<thead valign="bottom">
<tr><th>Expression</th>
<th>Return Type</th>
<th>Assertion/Note</th>
<th>Used to implement Iterator
Concept(s)</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">c.dereference()</span></tt></td>
<td><tt class="literal"><span class="pre">F::reference</span></tt></td>
<td> </td>
<td>Readable Iterator, Writable
Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">c.equal(y)</span></tt></td>
<td>convertible to bool</td>
<td>true iff <tt class="literal"><span class="pre">c</span></tt> and <tt class="literal"><span class="pre">y</span></tt>
refer to the same
position.</td>
<td>Single Pass Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a.increment()</span></tt></td>
<td>unused</td>
<td> </td>
<td>Incrementable Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a.decrement()</span></tt></td>
<td>unused</td>
<td> </td>
<td>Bidirectional Traversal
Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a.advance(n)</span></tt></td>
<td>unused</td>
<td> </td>
<td>Random Access Traversal
Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">c.distance_to(z)</span></tt></td>
<td>convertible to
<tt class="literal"><span class="pre">F::difference_type</span></tt></td>
<td>equivalent to
<tt class="literal"><span class="pre">distance(c,</span> <span class="pre">X(z))</span></tt>.</td>
<td>Random Access Traversal
Iterator</td>
</tr>
</tbody>
</table>
</blockquote>
</div>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="iter-issue-list.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>
|