1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>Iterator Facade</title>
<meta name="author" content="David Abrahams, Jeremy Siek, Thomas Witt" />
<meta name="organization" content="Boost Consulting, Indiana University Open Systems Lab, University of Hanover Institute for Transport Railway Operation and Construction" />
<meta name="date" content="2004-11-01" />
<meta name="copyright" content="Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003." />
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<h1 class="title">Iterator Facade</h1>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Author:</th>
<td>David Abrahams, Jeremy Siek, Thomas Witt</td></tr>
<tr><th class="docinfo-name">Contact:</th>
<td><a class="first reference" href="mailto:dave@boost-consulting.com">dave@boost-consulting.com</a>, <a class="reference" href="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</a>, <a class="last reference" href="mailto:witt@ive.uni-hannover.de">witt@ive.uni-hannover.de</a></td></tr>
<tr><th class="docinfo-name">Organization:</th>
<td><a class="first reference" href="http://www.boost-consulting.com">Boost Consulting</a>, Indiana University <a class="reference" href="http://www.osl.iu.edu">Open Systems
Lab</a>, University of Hanover <a class="last reference" href="http://www.ive.uni-hannover.de">Institute for Transport
Railway Operation and Construction</a></td></tr>
<tr><th class="docinfo-name">Date:</th>
<td>2004-11-01</td></tr>
<tr><th class="docinfo-name">Copyright:</th>
<td>Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.</td></tr>
</tbody>
</table>
<div class="document" id="iterator-facade">
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">abstract:</th><td class="field-body"><tt class="literal"><span class="pre">iterator_facade</span></tt> is a base class template that implements the
interface of standard iterators in terms of a few core functions
and associated types, to be supplied by a derived iterator class.</td>
</tr>
</tbody>
</table>
<div class="contents topic" id="table-of-contents">
<p class="topic-title first"><a name="table-of-contents">Table of Contents</a></p>
<ul class="simple">
<li><a class="reference" href="#overview" id="id23" name="id23">Overview</a><ul>
<li><a class="reference" href="#usage" id="id24" name="id24">Usage</a></li>
<li><a class="reference" href="#iterator-core-access" id="id25" name="id25">Iterator Core Access</a></li>
<li><a class="reference" href="#operator" id="id26" name="id26"><tt class="literal"><span class="pre">operator[]</span></tt></a></li>
<li><a class="reference" href="#id2" id="id27" name="id27"><tt class="literal"><span class="pre">operator-></span></tt></a></li>
</ul>
</li>
<li><a class="reference" href="#reference" id="id28" name="id28">Reference</a><ul>
<li><a class="reference" href="#iterator-facade-requirements" id="id29" name="id29"><tt class="literal"><span class="pre">iterator_facade</span></tt> Requirements</a></li>
<li><a class="reference" href="#iterator-facade-operations" id="id30" name="id30"><tt class="literal"><span class="pre">iterator_facade</span></tt> operations</a></li>
</ul>
</li>
<li><a class="reference" href="#tutorial-example" id="id31" name="id31">Tutorial Example</a><ul>
<li><a class="reference" href="#the-problem" id="id32" name="id32">The Problem</a></li>
<li><a class="reference" href="#a-basic-iterator-using-iterator-facade" id="id33" name="id33">A Basic Iterator Using <tt class="literal"><span class="pre">iterator_facade</span></tt></a><ul>
<li><a class="reference" href="#template-arguments-for-iterator-facade" id="id34" name="id34">Template Arguments for <tt class="literal"><span class="pre">iterator_facade</span></tt></a><ul>
<li><a class="reference" href="#derived" id="id35" name="id35"><tt class="literal"><span class="pre">Derived</span></tt></a></li>
<li><a class="reference" href="#value" id="id36" name="id36"><tt class="literal"><span class="pre">Value</span></tt></a></li>
<li><a class="reference" href="#categoryortraversal" id="id37" name="id37"><tt class="literal"><span class="pre">CategoryOrTraversal</span></tt></a></li>
<li><a class="reference" href="#id12" id="id38" name="id38"><tt class="literal"><span class="pre">Reference</span></tt></a></li>
<li><a class="reference" href="#difference" id="id39" name="id39"><tt class="literal"><span class="pre">Difference</span></tt></a></li>
</ul>
</li>
<li><a class="reference" href="#constructors-and-data-members" id="id40" name="id40">Constructors and Data Members</a></li>
<li><a class="reference" href="#implementing-the-core-operations" id="id41" name="id41">Implementing the Core Operations</a></li>
</ul>
</li>
<li><a class="reference" href="#a-constant-node-iterator" id="id42" name="id42">A constant <tt class="literal"><span class="pre">node_iterator</span></tt></a></li>
<li><a class="reference" href="#interoperability" id="id43" name="id43">Interoperability</a></li>
<li><a class="reference" href="#telling-the-truth" id="id44" name="id44">Telling the Truth</a></li>
<li><a class="reference" href="#wrap-up" id="id45" name="id45">Wrap Up</a></li>
</ul>
</li>
</ul>
</div>
<div class="section" id="overview">
<h1><a class="toc-backref" href="#id23" name="overview">Overview</a></h1>
<!-- Version 1.1 of this ReStructuredText document corresponds to
n1530_, the paper accepted by the LWG for TR1. -->
<!-- Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. -->
<p>While the iterator interface is rich, there is a core subset of the
interface that is necessary for all the functionality. We have
identified the following core behaviors for iterators:</p>
<ul class="simple">
<li>dereferencing</li>
<li>incrementing</li>
<li>decrementing</li>
<li>equality comparison</li>
<li>random-access motion</li>
<li>distance measurement</li>
</ul>
<p>In addition to the behaviors listed above, the core interface elements
include the associated types exposed through iterator traits:
<tt class="literal"><span class="pre">value_type</span></tt>, <tt class="literal"><span class="pre">reference</span></tt>, <tt class="literal"><span class="pre">difference_type</span></tt>, and
<tt class="literal"><span class="pre">iterator_category</span></tt>.</p>
<p>Iterator facade uses the Curiously Recurring Template
Pattern (CRTP) <a class="citation-reference" href="#cop95" id="id1" name="id1">[Cop95]</a> so that the user can specify the behavior
of <tt class="literal"><span class="pre">iterator_facade</span></tt> in a derived class. Former designs used
policy objects to specify the behavior, but that approach was
discarded for several reasons:</p>
<blockquote>
<ol class="arabic simple">
<li>the creation and eventual copying of the policy object may create
overhead that can be avoided with the current approach.</li>
<li>The policy object approach does not allow for custom constructors
on the created iterator types, an essential feature if
<tt class="literal"><span class="pre">iterator_facade</span></tt> should be used in other library
implementations.</li>
<li>Without the use of CRTP, the standard requirement that an
iterator's <tt class="literal"><span class="pre">operator++</span></tt> returns the iterator type itself
would mean that all iterators built with the library would
have to be specializations of <tt class="literal"><span class="pre">iterator_facade<...></span></tt>, rather
than something more descriptive like
<tt class="literal"><span class="pre">indirect_iterator<T*></span></tt>. Cumbersome type generator
metafunctions would be needed to build new parameterized
iterators, and a separate <tt class="literal"><span class="pre">iterator_adaptor</span></tt> layer would be
impossible.</li>
</ol>
</blockquote>
<div class="section" id="usage">
<h2><a class="toc-backref" href="#id24" name="usage">Usage</a></h2>
<p>The user of <tt class="literal"><span class="pre">iterator_facade</span></tt> derives his iterator class from a
specialization of <tt class="literal"><span class="pre">iterator_facade</span></tt> and passes the derived
iterator class as <tt class="literal"><span class="pre">iterator_facade</span></tt>'s first template parameter.
The order of the other template parameters have been carefully
chosen to take advantage of useful defaults. For example, when
defining a constant lvalue iterator, the user can pass a
const-qualified version of the iterator's <tt class="literal"><span class="pre">value_type</span></tt> as
<tt class="literal"><span class="pre">iterator_facade</span></tt>'s <tt class="literal"><span class="pre">Value</span></tt> parameter and omit the
<tt class="literal"><span class="pre">Reference</span></tt> parameter which follows.</p>
<p>The derived iterator class must define member functions implementing
the iterator's core behaviors. The following table describes
expressions which are required to be valid depending on the category
of the derived iterator type. These member functions are described
briefly below and in more detail in the iterator facade
requirements.</p>
<blockquote>
<table border="1" class="table">
<colgroup>
<col width="44%" />
<col width="56%" />
</colgroup>
<thead valign="bottom">
<tr><th>Expression</th>
<th>Effects</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">i.dereference()</span></tt></td>
<td>Access the value referred to</td>
</tr>
<tr><td><tt class="literal"><span class="pre">i.equal(j)</span></tt></td>
<td>Compare for equality with <tt class="literal"><span class="pre">j</span></tt></td>
</tr>
<tr><td><tt class="literal"><span class="pre">i.increment()</span></tt></td>
<td>Advance by one position</td>
</tr>
<tr><td><tt class="literal"><span class="pre">i.decrement()</span></tt></td>
<td>Retreat by one position</td>
</tr>
<tr><td><tt class="literal"><span class="pre">i.advance(n)</span></tt></td>
<td>Advance by <tt class="literal"><span class="pre">n</span></tt> positions</td>
</tr>
<tr><td><tt class="literal"><span class="pre">i.distance_to(j)</span></tt></td>
<td>Measure the distance to <tt class="literal"><span class="pre">j</span></tt></td>
</tr>
</tbody>
</table>
</blockquote>
<!-- Should we add a comment that a zero overhead implementation of iterator_facade
is possible with proper inlining? -->
<p>In addition to implementing the core interface functions, an iterator
derived from <tt class="literal"><span class="pre">iterator_facade</span></tt> typically defines several
constructors. To model any of the standard iterator concepts, the
iterator must at least have a copy constructor. Also, if the iterator
type <tt class="literal"><span class="pre">X</span></tt> is meant to be automatically interoperate with another
iterator type <tt class="literal"><span class="pre">Y</span></tt> (as with constant and mutable iterators) then
there must be an implicit conversion from <tt class="literal"><span class="pre">X</span></tt> to <tt class="literal"><span class="pre">Y</span></tt> or from <tt class="literal"><span class="pre">Y</span></tt>
to <tt class="literal"><span class="pre">X</span></tt> (but not both), typically implemented as a conversion
constructor. Finally, if the iterator is to model Forward Traversal
Iterator or a more-refined iterator concept, a default constructor is
required.</p>
</div>
<div class="section" id="iterator-core-access">
<h2><a class="toc-backref" href="#id25" name="iterator-core-access">Iterator Core Access</a></h2>
<p><tt class="literal"><span class="pre">iterator_facade</span></tt> and the operator implementations need to be able
to access the core member functions in the derived class. Making the
core member functions public would expose an implementation detail to
the user. The design used here ensures that implementation details do
not appear in the public interface of the derived iterator type.</p>
<p>Preventing direct access to the core member functions has two
advantages. First, there is no possibility for the user to accidently
use a member function of the iterator when a member of the value_type
was intended. This has been an issue with smart pointer
implementations in the past. The second and main advantage is that
library implementers can freely exchange a hand-rolled iterator
implementation for one based on <tt class="literal"><span class="pre">iterator_facade</span></tt> without fear of
breaking code that was accessing the public core member functions
directly.</p>
<p>In a naive implementation, keeping the derived class' core member
functions private would require it to grant friendship to
<tt class="literal"><span class="pre">iterator_facade</span></tt> and each of the seven operators. In order to
reduce the burden of limiting access, <tt class="literal"><span class="pre">iterator_core_access</span></tt> is
provided, a class that acts as a gateway to the core member functions
in the derived iterator class. The author of the derived class only
needs to grant friendship to <tt class="literal"><span class="pre">iterator_core_access</span></tt> to make his core
member functions available to the library.</p>
<!-- This is no long uptodate -thw -->
<!-- Yes it is; I made sure of it! -DWA -->
<p><tt class="literal"><span class="pre">iterator_core_access</span></tt> will be typically implemented as an empty
class containing only private static member functions which invoke the
iterator core member functions. There is, however, no need to
standardize the gateway protocol. Note that even if
<tt class="literal"><span class="pre">iterator_core_access</span></tt> used public member functions it would not
open a safety loophole, as every core member function preserves the
invariants of the iterator.</p>
</div>
<div class="section" id="operator">
<h2><a class="toc-backref" href="#id26" name="operator"><tt class="literal"><span class="pre">operator[]</span></tt></a></h2>
<p>The indexing operator for a generalized iterator presents special
challenges. A random access iterator's <tt class="literal"><span class="pre">operator[]</span></tt> is only
required to return something convertible to its <tt class="literal"><span class="pre">value_type</span></tt>.
Requiring that it return an lvalue would rule out currently-legal
random-access iterators which hold the referenced value in a data
member (e.g. <a class="reference" href="counting_iterator.html"><tt class="literal"><span class="pre">counting_iterator</span></tt></a>), because <tt class="literal"><span class="pre">*(p+n)</span></tt> is a reference
into the temporary iterator <tt class="literal"><span class="pre">p+n</span></tt>, which is destroyed when
<tt class="literal"><span class="pre">operator[]</span></tt> returns.</p>
<p>Writable iterators built with <tt class="literal"><span class="pre">iterator_facade</span></tt> implement the
semantics required by the preferred resolution to <a class="reference" href="http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#299">issue 299</a> and
adopted by proposal <a class="reference" href="http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html">n1550</a>: the result of <tt class="literal"><span class="pre">p[n]</span></tt> is an object
convertible to the iterator's <tt class="literal"><span class="pre">value_type</span></tt>, and <tt class="literal"><span class="pre">p[n]</span> <span class="pre">=</span> <span class="pre">x</span></tt> is
equivalent to <tt class="literal"><span class="pre">*(p</span> <span class="pre">+</span> <span class="pre">n)</span> <span class="pre">=</span> <span class="pre">x</span></tt> (Note: This result object may be
implemented as a proxy containing a copy of <tt class="literal"><span class="pre">p+n</span></tt>). This approach
will work properly for any random-access iterator regardless of the
other details of its implementation. A user who knows more about
the implementation of her iterator is free to implement an
<tt class="literal"><span class="pre">operator[]</span></tt> that returns an lvalue in the derived iterator
class; it will hide the one supplied by <tt class="literal"><span class="pre">iterator_facade</span></tt> from
clients of her iterator.</p>
<a class="target" id="operator-arrow" name="operator-arrow"></a></div>
<div class="section" id="id2">
<h2><a class="toc-backref" href="#id27" name="id2"><tt class="literal"><span class="pre">operator-></span></tt></a></h2>
<p>The <tt class="literal"><span class="pre">reference</span></tt> type of a readable iterator (and today's input
iterator) need not in fact be a reference, so long as it is
convertible to the iterator's <tt class="literal"><span class="pre">value_type</span></tt>. When the <tt class="literal"><span class="pre">value_type</span></tt>
is a class, however, it must still be possible to access members
through <tt class="literal"><span class="pre">operator-></span></tt>. Therefore, an iterator whose <tt class="literal"><span class="pre">reference</span></tt>
type is not in fact a reference must return a proxy containing a copy
of the referenced value from its <tt class="literal"><span class="pre">operator-></span></tt>.</p>
<p>The return types for <tt class="literal"><span class="pre">iterator_facade</span></tt>'s <tt class="literal"><span class="pre">operator-></span></tt> and
<tt class="literal"><span class="pre">operator[]</span></tt> are not explicitly specified. Instead, those types
are described in terms of a set of requirements, which must be
satisfied by the <tt class="literal"><span class="pre">iterator_facade</span></tt> implementation.</p>
<table class="citation" frame="void" id="cop95" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a name="cop95">[Cop95]</a></td><td><em>(<a class="fn-backref" href="#id1">1</a>, <a class="fn-backref" href="#id10">2</a>)</em> [Coplien, 1995] Coplien, J., Curiously Recurring Template
Patterns, C++ Report, February 1995, pp. 24-27.</td></tr>
</tbody>
</table>
</div>
</div>
<div class="section" id="reference">
<h1><a class="toc-backref" href="#id28" name="reference">Reference</a></h1>
<!-- Version 1.3 of this ReStructuredText document corresponds to
n1530_, the paper accepted by the LWG for TR1. -->
<!-- Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. -->
<pre class="literal-block">
template <
class Derived
, class Value
, class CategoryOrTraversal
, class Reference = Value&
, class Difference = ptrdiff_t
>
class iterator_facade {
public:
typedef remove_const<Value>::type value_type;
typedef Reference reference;
typedef Value* pointer;
typedef Difference difference_type;
typedef /* see <a class="reference" href="#iterator-category">below</a> */ iterator_category;
reference operator*() const;
/* see <a class="reference" href="#operator-arrow">below</a> */ operator->() const;
/* see <a class="reference" href="#brackets">below</a> */ operator[](difference_type n) const;
Derived& operator++();
Derived operator++(int);
Derived& operator--();
Derived operator--(int);
Derived& operator+=(difference_type n);
Derived& operator-=(difference_type n);
Derived operator-(difference_type n) const;
protected:
typedef iterator_facade iterator_facade_;
};
// Comparison operators
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type // exposition
operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
// Iterator difference
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
/* see <a class="reference" href="#minus">below</a> */
operator-(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
// Iterator addition
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&,
typename Derived::difference_type n);
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference_type n,
iterator_facade<Dr,V,TC,R,D> const&);
</pre>
<a class="target" id="iterator-category" name="iterator-category"></a><p>The <tt class="literal"><span class="pre">iterator_category</span></tt> member of <tt class="literal"><span class="pre">iterator_facade</span></tt> is</p>
<pre class="literal-block">
<em>iterator-category</em>(CategoryOrTraversal, value_type, reference)
</pre>
<p>where <em>iterator-category</em> is defined as follows:</p>
<a class="target" id="id7" name="id7"></a><pre class="literal-block">
<em>iterator-category</em>(C,R,V) :=
if (C is convertible to std::input_iterator_tag
|| C is convertible to std::output_iterator_tag
)
return C
else if (C is not convertible to incrementable_traversal_tag)
<em>the program is ill-formed</em>
else return a type X satisfying the following two constraints:
1. X is convertible to X1, and not to any more-derived
type, where X1 is defined by:
if (R is a reference type
&& C is convertible to forward_traversal_tag)
{
if (C is convertible to random_access_traversal_tag)
X1 = random_access_iterator_tag
else if (C is convertible to bidirectional_traversal_tag)
X1 = bidirectional_iterator_tag
else
X1 = forward_iterator_tag
}
else
{
if (C is convertible to single_pass_traversal_tag
&& R is convertible to V)
X1 = input_iterator_tag
else
X1 = C
}
2. <a class="reference" href="new-iter-concepts.html#category-to-traversal"><em>category-to-traversal</em></a>(X) is convertible to the most
derived traversal tag type to which X is also
convertible, and not to any more-derived traversal tag
type.
</pre>
<p>[Note: the intention is to allow <tt class="literal"><span class="pre">iterator_category</span></tt> to be one of
the five original category tags when convertibility to one of the
traversal tags would add no information]</p>
<!-- Copyright David Abrahams 2004. Use, modification and distribution is -->
<!-- subject to the Boost Software License, Version 1.0. (See accompanying -->
<!-- file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
<p>The <tt class="literal"><span class="pre">enable_if_interoperable</span></tt> template used above is for exposition
purposes. The member operators should only be in an overload set
provided the derived types <tt class="literal"><span class="pre">Dr1</span></tt> and <tt class="literal"><span class="pre">Dr2</span></tt> are interoperable,
meaning that at least one of the types is convertible to the other. The
<tt class="literal"><span class="pre">enable_if_interoperable</span></tt> approach uses SFINAE to take the operators
out of the overload set when the types are not interoperable.
The operators should behave <em>as-if</em> <tt class="literal"><span class="pre">enable_if_interoperable</span></tt>
were defined to be:</p>
<pre class="literal-block">
template <bool, typename> enable_if_interoperable_impl
{};
template <typename T> enable_if_interoperable_impl<true,T>
{ typedef T type; };
template<typename Dr1, typename Dr2, typename T>
struct enable_if_interoperable
: enable_if_interoperable_impl<
is_convertible<Dr1,Dr2>::value || is_convertible<Dr2,Dr1>::value
, T
>
{};
</pre>
<div class="section" id="iterator-facade-requirements">
<h2><a class="toc-backref" href="#id29" name="iterator-facade-requirements"><tt class="literal"><span class="pre">iterator_facade</span></tt> Requirements</a></h2>
<p>The following table describes the typical valid expressions on
<tt class="literal"><span class="pre">iterator_facade</span></tt>'s <tt class="literal"><span class="pre">Derived</span></tt> parameter, depending on the
iterator concept(s) it will model. The operations in the first
column must be made accessible to member functions of class
<tt class="literal"><span class="pre">iterator_core_access</span></tt>. In addition,
<tt class="literal"><span class="pre">static_cast<Derived*>(iterator_facade*)</span></tt> shall be well-formed.</p>
<p>In the table below, <tt class="literal"><span class="pre">F</span></tt> is <tt class="literal"><span class="pre">iterator_facade<X,V,C,R,D></span></tt>, <tt class="literal"><span class="pre">a</span></tt> is an
object of type <tt class="literal"><span class="pre">X</span></tt>, <tt class="literal"><span class="pre">b</span></tt> and <tt class="literal"><span class="pre">c</span></tt> are objects of type <tt class="literal"><span class="pre">const</span> <span class="pre">X</span></tt>,
<tt class="literal"><span class="pre">n</span></tt> is an object of <tt class="literal"><span class="pre">F::difference_type</span></tt>, <tt class="literal"><span class="pre">y</span></tt> is a constant
object of a single pass iterator type interoperable with <tt class="literal"><span class="pre">X</span></tt>, and <tt class="literal"><span class="pre">z</span></tt>
is a constant object of a random access traversal iterator type
interoperable with <tt class="literal"><span class="pre">X</span></tt>.</p>
<a class="target" id="core-operations" name="core-operations"></a><div class="topic">
<p class="topic-title first"><tt class="literal"><span class="pre">iterator_facade</span></tt> Core Operations</p>
<table border="1" class="table">
<colgroup>
<col width="21%" />
<col width="23%" />
<col width="27%" />
<col width="29%" />
</colgroup>
<thead valign="bottom">
<tr><th>Expression</th>
<th>Return Type</th>
<th>Assertion/Note</th>
<th>Used to implement Iterator
Concept(s)</th>
</tr>
</thead>
<tbody valign="top">
<tr><td><tt class="literal"><span class="pre">c.dereference()</span></tt></td>
<td><tt class="literal"><span class="pre">F::reference</span></tt></td>
<td> </td>
<td>Readable Iterator, Writable
Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">c.equal(y)</span></tt></td>
<td>convertible to bool</td>
<td>true iff <tt class="literal"><span class="pre">c</span></tt> and <tt class="literal"><span class="pre">y</span></tt>
refer to the same
position.</td>
<td>Single Pass Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a.increment()</span></tt></td>
<td>unused</td>
<td> </td>
<td>Incrementable Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a.decrement()</span></tt></td>
<td>unused</td>
<td> </td>
<td>Bidirectional Traversal
Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">a.advance(n)</span></tt></td>
<td>unused</td>
<td> </td>
<td>Random Access Traversal
Iterator</td>
</tr>
<tr><td><tt class="literal"><span class="pre">c.distance_to(z)</span></tt></td>
<td>convertible to
<tt class="literal"><span class="pre">F::difference_type</span></tt></td>
<td>equivalent to
<tt class="literal"><span class="pre">distance(c,</span> <span class="pre">X(z))</span></tt>.</td>
<td>Random Access Traversal
Iterator</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="section" id="iterator-facade-operations">
<h2><a class="toc-backref" href="#id30" name="iterator-facade-operations"><tt class="literal"><span class="pre">iterator_facade</span></tt> operations</a></h2>
<p>The operations in this section are described in terms of operations on
the core interface of <tt class="literal"><span class="pre">Derived</span></tt> which may be inaccessible
(i.e. private). The implementation should access these operations
through member functions of class <tt class="literal"><span class="pre">iterator_core_access</span></tt>.</p>
<p><tt class="literal"><span class="pre">reference</span> <span class="pre">operator*()</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><tt class="literal"><span class="pre">static_cast<Derived</span> <span class="pre">const*>(this)->dereference()</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">operator->()</span> <span class="pre">const;</span></tt> (see <a class="reference" href="#operator-arrow">below</a>)</p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">If <tt class="literal"><span class="pre">reference</span></tt> is a reference type, an object
of type <tt class="literal"><span class="pre">pointer</span></tt> equal to:</p>
<pre class="literal-block">
&static_cast<Derived const*>(this)->dereference()
</pre>
<p class="last">Otherwise returns an object of unspecified type such that,
<tt class="literal"><span class="pre">(*static_cast<Derived</span> <span class="pre">const*>(this))->m</span></tt> is equivalent to <tt class="literal"><span class="pre">(w</span> <span class="pre">=</span> <span class="pre">**static_cast<Derived</span> <span class="pre">const*>(this),</span>
<span class="pre">w.m)</span></tt> for some temporary object <tt class="literal"><span class="pre">w</span></tt> of type <tt class="literal"><span class="pre">value_type</span></tt>.</p>
</td>
</tr>
</tbody>
</table>
<a class="target" id="brackets" name="brackets"></a><p><em>unspecified</em> <tt class="literal"><span class="pre">operator[](difference_type</span> <span class="pre">n)</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body">an object convertible to <tt class="literal"><span class="pre">value_type</span></tt>. For constant
objects <tt class="literal"><span class="pre">v</span></tt> of type <tt class="literal"><span class="pre">value_type</span></tt>, and <tt class="literal"><span class="pre">n</span></tt> of type
<tt class="literal"><span class="pre">difference_type</span></tt>, <tt class="literal"><span class="pre">(*this)[n]</span> <span class="pre">=</span> <span class="pre">v</span></tt> is equivalent to
<tt class="literal"><span class="pre">*(*this</span> <span class="pre">+</span> <span class="pre">n)</span> <span class="pre">=</span> <span class="pre">v</span></tt>, and <tt class="literal"><span class="pre">static_cast<value_type</span>
<span class="pre">const&>((*this)[n])</span></tt> is equivalent to
<tt class="literal"><span class="pre">static_cast<value_type</span> <span class="pre">const&>(*(*this</span> <span class="pre">+</span> <span class="pre">n))</span></tt></td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Derived&</span> <span class="pre">operator++();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><pre class="first last literal-block">
static_cast<Derived*>(this)->increment();
return *static_cast<Derived*>(this);
</pre>
</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Derived</span> <span class="pre">operator++(int);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><pre class="first last literal-block">
Derived tmp(static_cast<Derived const*>(this));
++*this;
return tmp;
</pre>
</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Derived&</span> <span class="pre">operator--();</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><pre class="first last literal-block">
static_cast<Derived*>(this)->decrement();
return *static_cast<Derived*>(this);
</pre>
</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Derived</span> <span class="pre">operator--(int);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><pre class="first last literal-block">
Derived tmp(static_cast<Derived const*>(this));
--*this;
return tmp;
</pre>
</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Derived&</span> <span class="pre">operator+=(difference_type</span> <span class="pre">n);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><pre class="first last literal-block">
static_cast<Derived*>(this)->advance(n);
return *static_cast<Derived*>(this);
</pre>
</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Derived&</span> <span class="pre">operator-=(difference_type</span> <span class="pre">n);</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><pre class="first last literal-block">
static_cast<Derived*>(this)->advance(-n);
return *static_cast<Derived*>(this);
</pre>
</td>
</tr>
</tbody>
</table>
<p><tt class="literal"><span class="pre">Derived</span> <span class="pre">operator-(difference_type</span> <span class="pre">n)</span> <span class="pre">const;</span></tt></p>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><pre class="first last literal-block">
Derived tmp(static_cast<Derived const*>(this));
return tmp -= n;
</pre>
</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&,
typename Derived::difference_type n);
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference_type n,
iterator_facade<Dr,V,TC,R,D> const&);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Effects:</th><td class="field-body"><pre class="first last literal-block">
Derived tmp(static_cast<Derived const*>(this));
return tmp += n;
</pre>
</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt></p>
<dl class="last">
<dt>then </dt>
<dd><tt class="literal"><span class="pre">((Dr1</span> <span class="pre">const&)lhs).equal((Dr2</span> <span class="pre">const&)rhs)</span></tt>.</dd>
<dt>Otherwise, </dt>
<dd><tt class="literal"><span class="pre">((Dr2</span> <span class="pre">const&)rhs).equal((Dr1</span> <span class="pre">const&)lhs)</span></tt>.</dd>
</dl>
</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt></p>
<dl class="last">
<dt>then </dt>
<dd><tt class="literal"><span class="pre">!((Dr1</span> <span class="pre">const&)lhs).equal((Dr2</span> <span class="pre">const&)rhs)</span></tt>.</dd>
<dt>Otherwise, </dt>
<dd><tt class="literal"><span class="pre">!((Dr2</span> <span class="pre">const&)rhs).equal((Dr1</span> <span class="pre">const&)lhs)</span></tt>.</dd>
</dl>
</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt></p>
<dl class="last">
<dt>then </dt>
<dd><tt class="literal"><span class="pre">((Dr1</span> <span class="pre">const&)lhs).distance_to((Dr2</span> <span class="pre">const&)rhs)</span> <span class="pre"><</span> <span class="pre">0</span></tt>.</dd>
<dt>Otherwise, </dt>
<dd><tt class="literal"><span class="pre">((Dr2</span> <span class="pre">const&)rhs).distance_to((Dr1</span> <span class="pre">const&)lhs)</span> <span class="pre">></span> <span class="pre">0</span></tt>.</dd>
</dl>
</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt></p>
<dl class="last">
<dt>then </dt>
<dd><tt class="literal"><span class="pre">((Dr1</span> <span class="pre">const&)lhs).distance_to((Dr2</span> <span class="pre">const&)rhs)</span> <span class="pre"><=</span> <span class="pre">0</span></tt>.</dd>
<dt>Otherwise, </dt>
<dd><tt class="literal"><span class="pre">((Dr2</span> <span class="pre">const&)rhs).distance_to((Dr1</span> <span class="pre">const&)lhs)</span> <span class="pre">>=</span> <span class="pre">0</span></tt>.</dd>
</dl>
</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt></p>
<dl class="last">
<dt>then </dt>
<dd><tt class="literal"><span class="pre">((Dr1</span> <span class="pre">const&)lhs).distance_to((Dr2</span> <span class="pre">const&)rhs)</span> <span class="pre">></span> <span class="pre">0</span></tt>.</dd>
<dt>Otherwise, </dt>
<dd><tt class="literal"><span class="pre">((Dr2</span> <span class="pre">const&)rhs).distance_to((Dr1</span> <span class="pre">const&)lhs)</span> <span class="pre"><</span> <span class="pre">0</span></tt>.</dd>
</dl>
</td>
</tr>
</tbody>
</table>
<pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt></p>
<dl class="last">
<dt>then </dt>
<dd><tt class="literal"><span class="pre">((Dr1</span> <span class="pre">const&)lhs).distance_to((Dr2</span> <span class="pre">const&)rhs)</span> <span class="pre">>=</span> <span class="pre">0</span></tt>.</dd>
<dt>Otherwise, </dt>
<dd><tt class="literal"><span class="pre">((Dr2</span> <span class="pre">const&)rhs).distance_to((Dr1</span> <span class="pre">const&)lhs)</span> <span class="pre"><=</span> <span class="pre">0</span></tt>.</dd>
</dl>
</td>
</tr>
</tbody>
</table>
<a class="target" id="minus" name="minus"></a><pre class="literal-block">
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,difference>::type
operator -(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
</pre>
<table class="field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">Return Type:</th><td class="field-body"><p class="first">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt></p>
<blockquote class="last">
<dl>
<dt>then </dt>
<dd><tt class="literal"><span class="pre">difference</span></tt> shall be
<tt class="literal"><span class="pre">iterator_traits<Dr1>::difference_type</span></tt>.</dd>
<dt>Otherwise </dt>
<dd><tt class="literal"><span class="pre">difference</span></tt> shall be <tt class="literal"><span class="pre">iterator_traits<Dr2>::difference_type</span></tt></dd>
</dl>
</blockquote>
</td>
</tr>
<tr class="field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">if <tt class="literal"><span class="pre">is_convertible<Dr2,Dr1>::value</span></tt></p>
<dl class="last">
<dt>then </dt>
<dd><tt class="literal"><span class="pre">-((Dr1</span> <span class="pre">const&)lhs).distance_to((Dr2</span> <span class="pre">const&)rhs)</span></tt>.</dd>
<dt>Otherwise, </dt>
<dd><tt class="literal"><span class="pre">((Dr2</span> <span class="pre">const&)rhs).distance_to((Dr1</span> <span class="pre">const&)lhs)</span></tt>.</dd>
</dl>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="section" id="tutorial-example">
<h1><a class="toc-backref" href="#id31" name="tutorial-example">Tutorial Example</a></h1>
<!-- Copyright David Abrahams 2004. Use, modification and distribution is -->
<!-- subject to the Boost Software License, Version 1.0. (See accompanying -->
<!-- file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
<p>In this section we'll walk through the implementation of a few
iterators using <tt class="literal"><span class="pre">iterator_facade</span></tt>, based around the simple
example of a linked list of polymorphic objects. This example was
inspired by a <a class="reference" href="http://thread.gmane.org/gmane.comp.lib.boost.user/5100">posting</a> by Keith Macdonald on the <a class="reference" href="../../../more/mailing_lists.htm#users">Boost-Users</a>
mailing list.</p>
<div class="section" id="the-problem">
<h2><a class="toc-backref" href="#id32" name="the-problem">The Problem</a></h2>
<p>Say we've written a polymorphic linked list node base class:</p>
<pre class="literal-block">
# include <iostream>
struct node_base
{
node_base() : m_next(0) {}
// Each node manages all of its tail nodes
virtual ~node_base() { delete m_next; }
// Access the rest of the list
node_base* next() const { return m_next; }
// print to the stream
virtual void print(std::ostream& s) const = 0;
// double the value
virtual void double_me() = 0;
void append(node_base* p)
{
if (m_next)
m_next->append(p);
else
m_next = p;
}
private:
node_base* m_next;
};
</pre>
<p>Lists can hold objects of different types by linking together
specializations of the following template:</p>
<pre class="literal-block">
template <class T>
struct node : node_base
{
node(T x)
: m_value(x)
{}
void print(std::ostream& s) const { s << this->m_value; }
void double_me() { m_value += m_value; }
private:
T m_value;
};
</pre>
<p>And we can print any node using the following streaming operator:</p>
<pre class="literal-block">
inline std::ostream& operator<<(std::ostream& s, node_base const& n)
{
n.print(s);
return s;
}
</pre>
<p>Our first challenge is to build an appropriate iterator over these
lists.</p>
</div>
<div class="section" id="a-basic-iterator-using-iterator-facade">
<h2><a class="toc-backref" href="#id33" name="a-basic-iterator-using-iterator-facade">A Basic Iterator Using <tt class="literal"><span class="pre">iterator_facade</span></tt></a></h2>
<p>We will construct a <tt class="literal"><span class="pre">node_iterator</span></tt> class using inheritance from
<tt class="literal"><span class="pre">iterator_facade</span></tt> to implement most of the iterator's operations.</p>
<pre class="literal-block">
# include "node.hpp"
# include <boost/iterator/iterator_facade.hpp>
class node_iterator
: public boost::iterator_facade<...>
{
...
};
</pre>
<div class="section" id="template-arguments-for-iterator-facade">
<h3><a class="toc-backref" href="#id34" name="template-arguments-for-iterator-facade">Template Arguments for <tt class="literal"><span class="pre">iterator_facade</span></tt></a></h3>
<p><tt class="literal"><span class="pre">iterator_facade</span></tt> has several template parameters, so we must decide
what types to use for the arguments. The parameters are <tt class="literal"><span class="pre">Derived</span></tt>,
<tt class="literal"><span class="pre">Value</span></tt>, <tt class="literal"><span class="pre">CategoryOrTraversal</span></tt>, <tt class="literal"><span class="pre">Reference</span></tt>, and <tt class="literal"><span class="pre">Difference</span></tt>.</p>
<div class="section" id="derived">
<h4><a class="toc-backref" href="#id35" name="derived"><tt class="literal"><span class="pre">Derived</span></tt></a></h4>
<p>Because <tt class="literal"><span class="pre">iterator_facade</span></tt> is meant to be used with the CRTP
<a class="citation-reference" href="#cop95" id="id10" name="id10">[Cop95]</a> the first parameter is the iterator class name itself,
<tt class="literal"><span class="pre">node_iterator</span></tt>.</p>
</div>
<div class="section" id="value">
<h4><a class="toc-backref" href="#id36" name="value"><tt class="literal"><span class="pre">Value</span></tt></a></h4>
<p>The <tt class="literal"><span class="pre">Value</span></tt> parameter determines the <tt class="literal"><span class="pre">node_iterator</span></tt>'s
<tt class="literal"><span class="pre">value_type</span></tt>. In this case, we are iterating over <tt class="literal"><span class="pre">node_base</span></tt>
objects, so <tt class="literal"><span class="pre">Value</span></tt> will be <tt class="literal"><span class="pre">node_base</span></tt>.</p>
</div>
<div class="section" id="categoryortraversal">
<h4><a class="toc-backref" href="#id37" name="categoryortraversal"><tt class="literal"><span class="pre">CategoryOrTraversal</span></tt></a></h4>
<p>Now we have to determine which <a class="reference" href="new-iter-concepts.html#iterator-traversal-concepts-lib-iterator-traversal">iterator traversal concept</a> our
<tt class="literal"><span class="pre">node_iterator</span></tt> is going to model. Singly-linked lists only have
forward links, so our iterator can't can't be a <a class="reference" href="new-iter-concepts.html#bidirectional-traversal-iterators-lib-bidirectional-traversal-iterators">bidirectional
traversal iterator</a>. Our iterator should be able to make multiple
passes over the same linked list (unlike, say, an
<tt class="literal"><span class="pre">istream_iterator</span></tt> which consumes the stream it traverses), so it
must be a <a class="reference" href="new-iter-concepts.html#forward-traversal-iterators-lib-forward-traversal-iterators">forward traversal iterator</a>. Therefore, we'll pass
<tt class="literal"><span class="pre">boost::forward_traversal_tag</span></tt> in this position <a class="footnote-reference" href="#category" id="id11" name="id11"><sup>1</sup></a>.</p>
<table class="footnote" frame="void" id="category" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id11" name="category">[1]</a></td><td><tt class="literal"><span class="pre">iterator_facade</span></tt> also supports old-style category
tags, so we could have passed <tt class="literal"><span class="pre">std::forward_iterator_tag</span></tt> here;
either way, the resulting iterator's <tt class="literal"><span class="pre">iterator_category</span></tt> will
end up being <tt class="literal"><span class="pre">std::forward_iterator_tag</span></tt>.</td></tr>
</tbody>
</table>
</div>
<div class="section" id="id12">
<h4><a class="toc-backref" href="#id38" name="id12"><tt class="literal"><span class="pre">Reference</span></tt></a></h4>
<p>The <tt class="literal"><span class="pre">Reference</span></tt> argument becomes the type returned by
<tt class="literal"><span class="pre">node_iterator</span></tt>'s dereference operation, and will also be the
same as <tt class="literal"><span class="pre">std::iterator_traits<node_iterator>::reference</span></tt>. The
library's default for this parameter is <tt class="literal"><span class="pre">Value&</span></tt>; since
<tt class="literal"><span class="pre">node_base&</span></tt> is a good choice for the iterator's <tt class="literal"><span class="pre">reference</span></tt>
type, we can omit this argument, or pass <tt class="literal"><span class="pre">use_default</span></tt>.</p>
</div>
<div class="section" id="difference">
<h4><a class="toc-backref" href="#id39" name="difference"><tt class="literal"><span class="pre">Difference</span></tt></a></h4>
<p>The <tt class="literal"><span class="pre">Difference</span></tt> argument determines how the distance between
two <tt class="literal"><span class="pre">node_iterator</span></tt>s will be measured and will also be the
same as <tt class="literal"><span class="pre">std::iterator_traits<node_iterator>::difference_type</span></tt>.
The library's default for <tt class="literal"><span class="pre">Difference</span></tt> is <tt class="literal"><span class="pre">std::ptrdiff_t</span></tt>, an
appropriate type for measuring the distance between any two
addresses in memory, and one that works for almost any iterator,
so we can omit this argument, too.</p>
<p>The declaration of <tt class="literal"><span class="pre">node_iterator</span></tt> will therefore look something
like:</p>
<pre class="literal-block">
# include "node.hpp"
# include <boost/iterator/iterator_facade.hpp>
class node_iterator
: public boost::iterator_facade<
node_iterator
, node_base
, boost::forward_traversal_tag
>
{
...
};
</pre>
</div>
</div>
<div class="section" id="constructors-and-data-members">
<h3><a class="toc-backref" href="#id40" name="constructors-and-data-members">Constructors and Data Members</a></h3>
<p>Next we need to decide how to represent the iterator's position.
This representation will take the form of data members, so we'll
also need to write constructors to initialize them. The
<tt class="literal"><span class="pre">node_iterator</span></tt>'s position is quite naturally represented using
a pointer to a <tt class="literal"><span class="pre">node_base</span></tt>. We'll need a constructor to build an
iterator from a <tt class="literal"><span class="pre">node_base*</span></tt>, and a default constructor to
satisfy the <a class="reference" href="new-iter-concepts.html#forward-traversal-iterators-lib-forward-traversal-iterators">forward traversal iterator</a> requirements <a class="footnote-reference" href="#default" id="id13" name="id13"><sup>2</sup></a>.
Our <tt class="literal"><span class="pre">node_iterator</span></tt> then becomes:</p>
<pre class="literal-block">
# include "node.hpp"
# include <boost/iterator/iterator_facade.hpp>
class node_iterator
: public boost::iterator_facade<
node_iterator
, node_base
, boost::forward_traversal_tag
>
{
public:
node_iterator()
: m_node(0)
{}
explicit node_iterator(node_base* p)
: m_node(p)
{}
private:
...
node_base* m_node;
};
</pre>
<table class="footnote" frame="void" id="default" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id13" name="default">[2]</a></td><td>Technically, the C++ standard places almost no
requirements on a default-constructed iterator, so if we were
really concerned with efficiency, we could've written the
default constructor to leave <tt class="literal"><span class="pre">m_node</span></tt> uninitialized.</td></tr>
</tbody>
</table>
</div>
<div class="section" id="implementing-the-core-operations">
<h3><a class="toc-backref" href="#id41" name="implementing-the-core-operations">Implementing the Core Operations</a></h3>
<p>The last step is to implement the <a class="reference" href="#core-operations">core operations</a> required by
the concepts we want our iterator to model. Referring to the
<a class="reference" href="#core-operations">table</a>, we can see that the first three rows are applicable
because <tt class="literal"><span class="pre">node_iterator</span></tt> needs to satisfy the requirements for
<a class="reference" href="new-iter-concepts.html#readable-iterators-lib-readable-iterators">readable iterator</a>, <a class="reference" href="new-iter-concepts.html#single-pass-iterators-lib-single-pass-iterators">single pass iterator</a>, and <a class="reference" href="new-iter-concepts.html#incrementable-iterators-lib-incrementable-iterators">incrementable
iterator</a>.</p>
<p>We therefore need to supply <tt class="literal"><span class="pre">dereference</span></tt>,
<tt class="literal"><span class="pre">equal</span></tt>, and <tt class="literal"><span class="pre">increment</span></tt> members. We don't want these members
to become part of <tt class="literal"><span class="pre">node_iterator</span></tt>'s public interface, so we can
make them private and grant friendship to
<tt class="literal"><span class="pre">boost::iterator_core_access</span></tt>, a "back-door" that
<tt class="literal"><span class="pre">iterator_facade</span></tt> uses to get access to the core operations:</p>
<pre class="literal-block">
# include "node.hpp"
# include <boost/iterator/iterator_facade.hpp>
class node_iterator
: public boost::iterator_facade<
node_iterator
, node_base
, boost::forward_traversal_tag
>
{
public:
node_iterator()
: m_node(0) {}
explicit node_iterator(node_base* p)
: m_node(p) {}
private:
friend class boost::iterator_core_access;
void increment() { m_node = m_node->next(); }
bool equal(node_iterator const& other) const
{
return this->m_node == other.m_node;
}
node_base& dereference() const { return *m_node; }
node_base* m_node;
};
</pre>
<p>VoilĂ ; a complete and conforming readable, forward-traversal
iterator! For a working example of its use, see <a class="reference" href="../example/node_iterator1.cpp">this program</a>.</p>
</div>
</div>
<div class="section" id="a-constant-node-iterator">
<h2><a class="toc-backref" href="#id42" name="a-constant-node-iterator">A constant <tt class="literal"><span class="pre">node_iterator</span></tt></a></h2>
<div class="sidebar">
<p class="sidebar-title first">Constant and Mutable iterators</p>
<p>The term <strong>mutable iterator</strong> means an iterator through which
the object it references (its "referent") can be modified. A
<strong>constant iterator</strong> is one which doesn't allow modification of
its referent.</p>
<p>The words <em>constant</em> and <em>mutable</em> don't refer to the ability to
modify the iterator itself. For example, an <tt class="literal"><span class="pre">int</span> <span class="pre">const*</span></tt> is a
non-<tt class="literal"><span class="pre">const</span></tt> <em>constant iterator</em>, which can be incremented
but doesn't allow modification of its referent, and <tt class="literal"><span class="pre">int*</span>
<span class="pre">const</span></tt> is a <tt class="literal"><span class="pre">const</span></tt> <em>mutable iterator</em>, which cannot be
modified but which allows modification of its referent.</p>
<p>Confusing? We agree, but those are the standard terms. It
probably doesn't help much that a container's constant iterator
is called <tt class="literal"><span class="pre">const_iterator</span></tt>.</p>
</div>
<p>Now, our <tt class="literal"><span class="pre">node_iterator</span></tt> gives clients access to both <tt class="literal"><span class="pre">node</span></tt>'s <tt class="literal"><span class="pre">print(std::ostream&)</span> <span class="pre">const</span></tt> member function, but also its
mutating <tt class="literal"><span class="pre">double_me()</span></tt> member. If we wanted to build a
<em>constant</em> <tt class="literal"><span class="pre">node_iterator</span></tt>, we'd only have to make three
changes:</p>
<pre class="literal-block">
class const_node_iterator
: public boost::iterator_facade<
node_iterator
, node_base <strong>const</strong>
, boost::forward_traversal_tag
>
{
public:
const_node_iterator()
: m_node(0) {}
explicit const_node_iterator(node_base* p)
: m_node(p) {}
private:
friend class boost::iterator_core_access;
void increment() { m_node = m_node->next(); }
bool equal(const_node_iterator const& other) const
{
return this->m_node == other.m_node;
}
node_base <strong>const</strong>& dereference() const { return *m_node; }
node_base <strong>const</strong>* m_node;
};
</pre>
<div class="sidebar">
<p class="sidebar-title first"><tt class="literal"><span class="pre">const</span></tt> and an iterator's <tt class="literal"><span class="pre">value_type</span></tt></p>
<p>The C++ standard requires an iterator's <tt class="literal"><span class="pre">value_type</span></tt> <em>not</em> be
<tt class="literal"><span class="pre">const</span></tt>-qualified, so <tt class="literal"><span class="pre">iterator_facade</span></tt> strips the
<tt class="literal"><span class="pre">const</span></tt> from its <tt class="literal"><span class="pre">Value</span></tt> parameter in order to produce the
iterator's <tt class="literal"><span class="pre">value_type</span></tt>. Making the <tt class="literal"><span class="pre">Value</span></tt> argument
<tt class="literal"><span class="pre">const</span></tt> provides a useful hint to <tt class="literal"><span class="pre">iterator_facade</span></tt> that the
iterator is a <em>constant iterator</em>, and the default <tt class="literal"><span class="pre">Reference</span></tt>
argument will be correct for all lvalue iterators.</p>
</div>
<p>As a matter of fact, <tt class="literal"><span class="pre">node_iterator</span></tt> and <tt class="literal"><span class="pre">const_node_iterator</span></tt>
are so similar that it makes sense to factor the common code out
into a template as follows:</p>
<pre class="literal-block">
template <class Value>
class node_iter
: public boost::iterator_facade<
node_iter<Value>
, Value
, boost::forward_traversal_tag
>
{
public:
node_iter()
: m_node(0) {}
explicit node_iter(Value* p)
: m_node(p) {}
private:
friend class boost::iterator_core_access;
bool equal(node_iter<Value> const& other) const
{
return this->m_node == other.m_node;
}
void increment()
{ m_node = m_node->next(); }
Value& dereference() const
{ return *m_node; }
Value* m_node;
};
typedef node_iter<node_base> node_iterator;
typedef node_iter<node_base const> node_const_iterator;
</pre>
</div>
<div class="section" id="interoperability">
<h2><a class="toc-backref" href="#id43" name="interoperability">Interoperability</a></h2>
<p>Our <tt class="literal"><span class="pre">const_node_iterator</span></tt> works perfectly well on its own, but
taken together with <tt class="literal"><span class="pre">node_iterator</span></tt> it doesn't quite meet
expectations. For example, we'd like to be able to pass a
<tt class="literal"><span class="pre">node_iterator</span></tt> where a <tt class="literal"><span class="pre">node_const_iterator</span></tt> was expected,
just as you can with <tt class="literal"><span class="pre">std::list<int></span></tt>'s <tt class="literal"><span class="pre">iterator</span></tt> and
<tt class="literal"><span class="pre">const_iterator</span></tt>. Furthermore, given a <tt class="literal"><span class="pre">node_iterator</span></tt> and a
<tt class="literal"><span class="pre">node_const_iterator</span></tt> into the same list, we should be able to
compare them for equality.</p>
<p>This expected ability to use two different iterator types together
is known as <a class="reference" href="new-iter-concepts.html#interoperable-iterators-lib-interoperable-iterators"><strong>interoperability</strong></a>. Achieving interoperability in
our case is as simple as templatizing the <tt class="literal"><span class="pre">equal</span></tt> function and
adding a templatized converting constructor <a class="footnote-reference" href="#broken" id="id16" name="id16"><sup>3</sup></a> <a class="footnote-reference" href="#random" id="id17" name="id17"><sup>4</sup></a>:</p>
<pre class="literal-block">
template <class Value>
class node_iter
: public boost::iterator_facade<
node_iter<Value>
, Value
, boost::forward_traversal_tag
>
{
public:
node_iter()
: m_node(0) {}
explicit node_iter(Value* p)
: m_node(p) {}
template <class OtherValue>
node_iter(node_iter<OtherValue> const& other)
: m_node(other.m_node) {}
private:
friend class boost::iterator_core_access;
template <class> friend class node_iter;
template <class OtherValue>
bool equal(node_iter<OtherValue> const& other) const
{
return this->m_node == other.m_node;
}
void increment()
{ m_node = m_node->next(); }
Value& dereference() const
{ return *m_node; }
Value* m_node;
};
typedef impl::node_iterator<node_base> node_iterator;
typedef impl::node_iterator<node_base const> node_const_iterator;
</pre>
<table class="footnote" frame="void" id="broken" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id16" name="broken">[3]</a></td><td>If you're using an older compiler and it can't handle
this example, see the <a class="reference" href="../example/node_iterator2.hpp">example code</a> for workarounds.</td></tr>
</tbody>
</table>
<table class="footnote" frame="void" id="random" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id17" name="random">[4]</a></td><td>If <tt class="literal"><span class="pre">node_iterator</span></tt> had been a <a class="reference" href="new-iter-concepts.html#random-access-traversal-iterators-lib-random-access-traversal-iterators">random access
traversal iterator</a>, we'd have had to templatize its
<tt class="literal"><span class="pre">distance_to</span></tt> function as well.</td></tr>
</tbody>
</table>
<p>You can see an example program which exercises our interoperable
iterators <a class="reference" href="../example/node_iterator2.cpp">here</a>.</p>
</div>
<div class="section" id="telling-the-truth">
<h2><a class="toc-backref" href="#id44" name="telling-the-truth">Telling the Truth</a></h2>
<p>Now <tt class="literal"><span class="pre">node_iterator</span></tt> and <tt class="literal"><span class="pre">node_const_iterator</span></tt> behave exactly as
you'd expect... almost. We can compare them and we can convert in
one direction: from <tt class="literal"><span class="pre">node_iterator</span></tt> to <tt class="literal"><span class="pre">node_const_iterator</span></tt>.
If we try to convert from <tt class="literal"><span class="pre">node_const_iterator</span></tt> to
<tt class="literal"><span class="pre">node_iterator</span></tt>, we'll get an error when the converting
constructor tries to initialize <tt class="literal"><span class="pre">node_iterator</span></tt>'s <tt class="literal"><span class="pre">m_node</span></tt>, a
<tt class="literal"><span class="pre">node*</span></tt> with a <tt class="literal"><span class="pre">node</span> <span class="pre">const*</span></tt>. So what's the problem?</p>
<p>The problem is that
<tt class="literal"><span class="pre">boost::</span></tt><a class="reference" href="../../type_traits/index.html#relationships"><tt class="literal"><span class="pre">is_convertible</span></tt></a><tt class="literal"><span class="pre"><node_const_iterator,node_iterator>::value</span></tt>
will be <tt class="literal"><span class="pre">true</span></tt>, but it should be <tt class="literal"><span class="pre">false</span></tt>. <a class="reference" href="../../type_traits/index.html#relationships"><tt class="literal"><span class="pre">is_convertible</span></tt></a>
lies because it can only see as far as the <em>declaration</em> of
<tt class="literal"><span class="pre">node_iter</span></tt>'s converting constructor, but can't look inside at
the <em>definition</em> to make sure it will compile. A perfect solution
would make <tt class="literal"><span class="pre">node_iter</span></tt>'s converting constructor disappear when
the <tt class="literal"><span class="pre">m_node</span></tt> conversion would fail.</p>
<p>In fact, that sort of magic is possible using
<a class="reference" href="../../utility/enable_if.html"><tt class="literal"><span class="pre">boost::enable_if</span></tt></a>. By rewriting the converting constructor as
follows, we can remove it from the overload set when it's not
appropriate:</p>
<pre class="literal-block">
#include <boost/type_traits/is_convertible.hpp>
#include <boost/utility/enable_if.hpp>
...
private:
struct enabler {};
public:
template <class OtherValue>
node_iter(
node_iter<OtherValue> const& other
, typename boost::enable_if<
boost::is_convertible<OtherValue*,Value*>
, enabler
>::type = enabler()
)
: m_node(other.m_node) {}
</pre>
</div>
<div class="section" id="wrap-up">
<h2><a class="toc-backref" href="#id45" name="wrap-up">Wrap Up</a></h2>
<p>This concludes our <tt class="literal"><span class="pre">iterator_facade</span></tt> tutorial, but before you
stop reading we urge you to take a look at <a class="reference" href="iterator_adaptor.html"><tt class="literal"><span class="pre">iterator_adaptor</span></tt></a>.
There's another way to approach writing these iterators which might
even be superior.</p>
</div>
</div>
</div>
<hr class="footer" />
<div class="footer">
<a class="reference" href="iterator_facade.rst">View document source</a>.
Generated by <a class="reference" href="http://docutils.sourceforge.net/">Docutils</a> from <a class="reference" href="http://docutils.sourceforge.net/rst.html">reStructuredText</a> source.
</div>
</body>
</html>
|