1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
::
template <class Iterator>
class reverse_iterator
{
public:
typedef iterator_traits<Iterator>::value_type value_type;
typedef iterator_traits<Iterator>::reference reference;
typedef iterator_traits<Iterator>::pointer pointer;
typedef iterator_traits<Iterator>::difference_type difference_type;
typedef /* see below */ iterator_category;
reverse_iterator() {}
explicit reverse_iterator(Iterator x) ;
template<class OtherIterator>
reverse_iterator(
reverse_iterator<OtherIterator> const& r
, typename enable_if_convertible<OtherIterator, Iterator>::type* = 0 // exposition
);
Iterator const& base() const;
reference operator*() const;
reverse_iterator& operator++();
reverse_iterator& operator--();
private:
Iterator m_iterator; // exposition
};
If ``Iterator`` models Random Access Traversal Iterator and Readable
Lvalue Iterator, then ``iterator_category`` is convertible to
``random_access_iterator_tag``. Otherwise, if
``Iterator`` models Bidirectional Traversal Iterator and Readable
Lvalue Iterator, then ``iterator_category`` is convertible to
``bidirectional_iterator_tag``. Otherwise, ``iterator_category`` is
convertible to ``input_iterator_tag``.
``reverse_iterator`` requirements
.................................
``Iterator`` must be a model of Bidirectional Traversal Iterator. The
type ``iterator_traits<Iterator>::reference`` must be the type of
``*i``, where ``i`` is an object of type ``Iterator``.
``reverse_iterator`` models
...........................
A specialization of ``reverse_iterator`` models the same iterator
traversal and iterator access concepts modeled by its ``Iterator``
argument. In addition, it may model old iterator concepts
specified in the following table:
+---------------------------------------+-----------------------------------+
| If ``I`` models |then ``reverse_iterator<I>`` models|
+=======================================+===================================+
| Readable Lvalue Iterator, | Bidirectional Iterator |
| Bidirectional Traversal Iterator | |
+---------------------------------------+-----------------------------------+
| Writable Lvalue Iterator, | Mutable Bidirectional Iterator |
| Bidirectional Traversal Iterator | |
+---------------------------------------+-----------------------------------+
| Readable Lvalue Iterator, | Random Access Iterator |
| Random Access Traversal Iterator | |
+---------------------------------------+-----------------------------------+
| Writable Lvalue Iterator, | Mutable Random Access Iterator |
| Random Access Traversal Iterator | |
+---------------------------------------+-----------------------------------+
``reverse_iterator<X>`` is interoperable with
``reverse_iterator<Y>`` if and only if ``X`` is interoperable with
``Y``.
``reverse_iterator`` operations
...............................
In addition to the operations required by the concepts modeled by
``reverse_iterator``, ``reverse_iterator`` provides the following
operations.
``reverse_iterator();``
:Requires: ``Iterator`` must be Default Constructible.
:Effects: Constructs an instance of ``reverse_iterator`` with ``m_iterator``
default constructed.
``explicit reverse_iterator(Iterator x);``
:Effects: Constructs an instance of ``reverse_iterator`` with
``m_iterator`` copy constructed from ``x``.
::
template<class OtherIterator>
reverse_iterator(
reverse_iterator<OtherIterator> const& r
, typename enable_if_convertible<OtherIterator, Iterator>::type* = 0 // exposition
);
:Requires: ``OtherIterator`` is implicitly convertible to ``Iterator``.
:Effects: Constructs instance of ``reverse_iterator`` whose
``m_iterator`` subobject is constructed from ``y.base()``.
``Iterator const& base() const;``
:Returns: ``m_iterator``
``reference operator*() const;``
:Effects:
::
Iterator tmp = m_iterator;
return *--tmp;
``reverse_iterator& operator++();``
:Effects: ``--m_iterator``
:Returns: ``*this``
``reverse_iterator& operator--();``
:Effects: ``++m_iterator``
:Returns: ``*this``
|