1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
// Boost.Signals library
// Copyright Douglas Gregor 2001-2004. Use, modification and
// distribution is subject to the Boost Software License, Version
// 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org
#include <boost/signal.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/property_map.hpp>
#include <boost/random.hpp>
#include <map>
#include <set>
#include <stdlib.h>
#include <time.h>
using namespace boost;
using namespace boost::signals;
struct signal_tag {
typedef vertex_property_tag kind;
};
struct connection_tag {
typedef edge_property_tag kind;
};
typedef signal4<void, int, int, double, int&> signal_type;
typedef adjacency_list<listS, listS, directedS,
// Vertex properties
property<signal_tag, signal_type*,
// property<vertex_color_t, default_color_type,
property<vertex_index_t, int> >,
// Edge properties
property<connection_tag, connection,
property<edge_weight_t, int> > >
signal_graph_type;
typedef signal_graph_type::vertex_descriptor vertex_descriptor;
typedef signal_graph_type::edge_descriptor edge_descriptor;
// The signal graph
static signal_graph_type signal_graph;
// Mapping from a signal to its associated vertex descriptor
static std::map<signal_type*, vertex_descriptor> signal_to_descriptor;
// Mapping from a connection to its associated edge descriptor
static std::map<connection, edge_descriptor> connection_to_descriptor;
std::map<signal_type*, int> min_signal_propagate_distance;
void remove_disconnected_connections()
{
// remove disconnected connections
std::map<connection, edge_descriptor>::iterator i =
connection_to_descriptor.begin();
while (i != connection_to_descriptor.end()) {
if (!i->first.connected()) {
connection_to_descriptor.erase(i++);
}
else {
++i;
}
}
}
void remove_signal(signal_type* sig)
{
clear_vertex(signal_to_descriptor[sig], signal_graph);
remove_vertex(signal_to_descriptor[sig], signal_graph);
delete sig;
signal_to_descriptor.erase(sig);
remove_disconnected_connections();
}
void random_remove_signal(minstd_rand& rand_gen);
struct tracking_bridge {
tracking_bridge(signal_type* s, minstd_rand& rg) : sig(s), rand_gen(rg) {}
void operator()(int cur_dist, int max_dist, double deletion_prob,
int& deletions_left) const
{
if (signal_to_descriptor.find(sig) == signal_to_descriptor.end())
return;
++cur_dist;
// Update the directed Bacon distance
if (min_signal_propagate_distance.find(sig) ==
min_signal_propagate_distance.end()) {
min_signal_propagate_distance[sig] = cur_dist;
}
else if (cur_dist < min_signal_propagate_distance[sig]) {
min_signal_propagate_distance[sig] = cur_dist;
}
else if (deletion_prob == 0.0) {
// don't bother calling because we've already found a better route here
return;
}
// Maybe delete the signal
if (uniform_01<minstd_rand>(rand_gen)() < deletion_prob &&
deletions_left-- && signal_to_descriptor.size() > 1) {
random_remove_signal(rand_gen);
}
// propagate the signal
else if (cur_dist < max_dist) {
(*sig)(cur_dist, max_dist, deletion_prob, deletions_left);
}
}
signal_type* sig;
minstd_rand& rand_gen;
};
namespace boost {
template<typename V>
void visit_each(V& v, const tracking_bridge& t, int)
{
v(t);
v(t.sig);
}
}
signal_type* add_signal()
{
signal_type* sig = new signal_type();
vertex_descriptor v = add_vertex(signal_graph);
signal_to_descriptor[sig] = v;
put(signal_tag(), signal_graph, v, sig);
return sig;
}
connection add_connection(signal_type* sig1, signal_type* sig2,
minstd_rand& rand_gen)
{
std::cout << " Adding connection: " << sig1 << " -> " << sig2 << std::endl;
connection c = sig1->connect(tracking_bridge(sig2, rand_gen));
edge_descriptor e =
add_edge(signal_to_descriptor[sig1], signal_to_descriptor[sig2],
signal_graph).first;
connection_to_descriptor[c] = e;
put(connection_tag(), signal_graph, e, c);
put(edge_weight, signal_graph, e, 1);
return c;
}
void remove_connection(connection c)
{
signal_type* sig1 = get(signal_tag(), signal_graph,
source(connection_to_descriptor[c], signal_graph));
signal_type* sig2 = get(signal_tag(), signal_graph,
target(connection_to_descriptor[c], signal_graph));
std::cout << " Removing connection: " << sig1 << " -> " << sig2
<< std::endl;
c.disconnect();
remove_edge(connection_to_descriptor[c], signal_graph);
connection_to_descriptor.erase(c);
}
bool signal_connection_exists(signal_type* sig1, signal_type* sig2,
edge_descriptor& edge_desc)
{
vertex_descriptor source_sig = signal_to_descriptor[sig1];
vertex_descriptor target_sig = signal_to_descriptor[sig2];
signal_graph_type::out_edge_iterator e;
for (e = out_edges(source_sig, signal_graph).first;
e != out_edges(source_sig, signal_graph).second; ++e) {
if (target(*e, signal_graph) == target_sig) {
edge_desc = *e;
return true;
}
}
return false;
}
bool signal_connection_exists(signal_type* sig1, signal_type* sig2)
{
edge_descriptor e;
return signal_connection_exists(sig1, sig2, e);
}
std::map<signal_type*, vertex_descriptor>::iterator
choose_random_signal(minstd_rand& rand_gen)
{
int signal_idx
= uniform_int<>(0, signal_to_descriptor.size() - 1)(rand_gen);
std::map<signal_type*, vertex_descriptor>::iterator result =
signal_to_descriptor.begin();
for(; signal_idx; --signal_idx)
++result;
return result;
}
void random_remove_signal(minstd_rand& rand_gen)
{
std::map<signal_type*, vertex_descriptor>::iterator victim =
choose_random_signal(rand_gen);
std::cout << " Removing signal " << victim->first << std::endl;
remove_signal(victim->first);
}
void random_add_connection(minstd_rand& rand_gen)
{
std::map<signal_type*, vertex_descriptor>::iterator source;
std::map<signal_type*, vertex_descriptor>::iterator target;
do {
source = choose_random_signal(rand_gen);
target = choose_random_signal(rand_gen);
} while (signal_connection_exists(source->first, target->first));
add_connection(source->first, target->first, rand_gen);
}
void random_remove_connection(minstd_rand& rand_gen)
{
int victim_idx =
uniform_int<>(0, num_edges(signal_graph)-1)(rand_gen);
signal_graph_type::edge_iterator e = edges(signal_graph).first;
while (victim_idx--) {
++e;
}
remove_connection(get(connection_tag(), signal_graph, *e));
}
void random_bacon_test(minstd_rand& rand_gen)
{
signal_type* kevin = choose_random_signal(rand_gen)->first;
min_signal_propagate_distance.clear();
min_signal_propagate_distance[kevin] = 0;
const int horizon = 10; // only go to depth 10 at most
std::cout << " Bacon test: kevin is " << kevin
<< "\n Propagating signal...";
// Propagate the signal out to the horizon
int deletions_left = 0;
(*kevin)(0, horizon, 0.0, deletions_left);
std::cout << "OK\n Finding shortest paths...";
// Initialize all colors to white
{
unsigned int num = 0;
for (signal_graph_type::vertex_iterator v = vertices(signal_graph).first;
v != vertices(signal_graph).second;
++v) {
// put(vertex_color, signal_graph, *v, white_color);
put(vertex_index, signal_graph, *v, num++);
}
assert(num == num_vertices(signal_graph));
}
// Perform a breadth-first search starting at kevin, and record the
// distances from kevin to each reachable node.
std::map<vertex_descriptor, int> bacon_distance_map;
#if 0
bacon_distance_map[signal_to_descriptor[kevin]] = 0;
breadth_first_visit(signal_graph, signal_to_descriptor[kevin],
visitor(
make_bfs_visitor(
record_distances(
make_assoc_property_map(bacon_distance_map),
on_examine_edge()))).
color_map(get(vertex_color, signal_graph)));
#endif
dijkstra_shortest_paths(signal_graph, signal_to_descriptor[kevin],
distance_map(make_assoc_property_map(bacon_distance_map)));
std::cout << "OK\n";
// Make sure the bacon distances agree (prior to the horizon)
{
std::map<signal_type*, int>::iterator i;
for (i = min_signal_propagate_distance.begin();
i != min_signal_propagate_distance.end();
++i) {
if (i->second != bacon_distance_map[signal_to_descriptor[i->first]]) {
std::cout << "Signal distance to " << i->first << " was "
<< i->second << std::endl;
std::cout << "Graph distance was "
<< bacon_distance_map[signal_to_descriptor[i->first]]
<< std::endl;
}
assert(i->second == bacon_distance_map[signal_to_descriptor[i->first]]);
}
}
}
void randomly_create_connections(minstd_rand& rand_gen, double edge_probability)
{
// Randomly create connections
uniform_01<minstd_rand> random(rand_gen);
for (signal_graph_type::vertex_iterator v1 = vertices(signal_graph).first;
v1 != vertices(signal_graph).second; ++v1) {
for (signal_graph_type::vertex_iterator v2 = vertices(signal_graph).first;
v2 != vertices(signal_graph).second; ++v2) {
if (random() < edge_probability) {
add_connection(get(signal_tag(), signal_graph, *v1),
get(signal_tag(), signal_graph, *v2),
rand_gen);
}
}
}
}
void random_recursive_deletion(minstd_rand& rand_gen)
{
signal_type* kevin = choose_random_signal(rand_gen)->first;
min_signal_propagate_distance.clear();
min_signal_propagate_distance[kevin] = 0;
const int horizon = 4; // only go to depth "horizon" at most
std::cout << " Recursive deletion test: start is " << kevin << std::endl;
// Propagate the signal out to the horizon
int deletions_left = (int)(0.05*num_vertices(signal_graph));
(*kevin)(0, horizon, 0.05, deletions_left);
}
int main(int argc, char* argv[])
{
if (argc < 4) {
std::cerr << "Usage: random_signal_system <# of initial signals> "
<< "<edge probability> <iterations>" << std::endl;
return 1;
}
int number_of_initial_signals = atoi(argv[1]);
double edge_probability = atof(argv[2]);
int iterations = atoi(argv[3]);
int seed;
if (argc == 5)
seed = atoi(argv[4]);
else
seed = time(0);
std::cout << "Number of initial signals: " << number_of_initial_signals
<< std::endl;
std::cout << "Edge probability: " << edge_probability << std::endl;
std::cout << "Iterations: " << iterations << std::endl;
std::cout << "Seed: " << seed << std::endl;
// Initialize random number generator
minstd_rand rand_gen;
rand_gen.seed(seed);
for (int iter = 0; iter < iterations; ++iter) {
if (num_vertices(signal_graph) < 2) {
for (int i = 0; i < number_of_initial_signals; ++i)
add_signal();
}
while (num_edges(signal_graph) < 2) {
randomly_create_connections(rand_gen, edge_probability);
}
std::cerr << "Iteration #" << (iter+1) << std::endl;
uniform_int<> random_action(0, 7);
switch (random_action(rand_gen)) {
case 0:
std::cout << " Adding new signal: " << add_signal() << std::endl;
break;
case 1:
random_remove_signal(rand_gen);
break;
case 2:
if (num_edges(signal_graph) <
num_vertices(signal_graph)*num_vertices(signal_graph)) {
random_add_connection(rand_gen);
}
break;
case 3:
random_remove_connection(rand_gen);
break;
case 4:
case 5:
case 6:
random_bacon_test(rand_gen);
break;
case 7:
random_recursive_deletion(rand_gen);
break;
}
}
return 0;
}
|