1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
//
//=======================================================================
// Copyright (c) 2004 Kristopher Beevers
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
//
#include <boost/graph/astar_search.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/random.hpp>
#include <boost/random.hpp>
#include <boost/graph/graphviz.hpp>
#include <sys/time.h>
#include <vector>
#include <list>
#include <iostream>
#include <fstream>
#include <math.h> // for sqrt
using namespace boost;
using namespace std;
// auxiliary types
struct location
{
float y, x; // lat, long
};
typedef float cost;
template <class Name, class LocMap>
class city_writer {
public:
city_writer(Name n, LocMap l, float _minx, float _maxx,
float _miny, float _maxy,
unsigned int _ptx, unsigned int _pty)
: name(n), loc(l), minx(_minx), maxx(_maxx), miny(_miny),
maxy(_maxy), ptx(_ptx), pty(_pty) {}
template <class Vertex>
void operator()(ostream& out, const Vertex& v) const {
float px = 1 - (loc[v].x - minx) / (maxx - minx);
float py = (loc[v].y - miny) / (maxy - miny);
out << "[label=\"" << name[v] << "\", pos=\""
<< static_cast<unsigned int>(ptx * px) << ","
<< static_cast<unsigned int>(pty * py)
<< "\", fontsize=\"11\"]";
}
private:
Name name;
LocMap loc;
float minx, maxx, miny, maxy;
unsigned int ptx, pty;
};
template <class WeightMap>
class time_writer {
public:
time_writer(WeightMap w) : wm(w) {}
template <class Edge>
void operator()(ostream &out, const Edge& e) const {
out << "[label=\"" << wm[e] << "\", fontsize=\"11\"]";
}
private:
WeightMap wm;
};
// euclidean distance heuristic
template <class Graph, class CostType, class LocMap>
class distance_heuristic : public astar_heuristic<Graph, CostType>
{
public:
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
distance_heuristic(LocMap l, Vertex goal)
: m_location(l), m_goal(goal) {}
CostType operator()(Vertex u)
{
CostType dx = m_location[m_goal].x - m_location[u].x;
CostType dy = m_location[m_goal].y - m_location[u].y;
return ::sqrt(dx * dx + dy * dy);
}
private:
LocMap m_location;
Vertex m_goal;
};
struct found_goal {}; // exception for termination
// visitor that terminates when we find the goal
template <class Vertex>
class astar_goal_visitor : public boost::default_astar_visitor
{
public:
astar_goal_visitor(Vertex goal) : m_goal(goal) {}
template <class Graph>
void examine_vertex(Vertex u, Graph& g) {
if(u == m_goal)
throw found_goal();
}
private:
Vertex m_goal;
};
int main(int argc, char **argv)
{
// specify some types
typedef adjacency_list<listS, vecS, undirectedS, no_property,
property<edge_weight_t, cost> > mygraph_t;
typedef property_map<mygraph_t, edge_weight_t>::type WeightMap;
typedef mygraph_t::vertex_descriptor vertex;
typedef mygraph_t::edge_descriptor edge_descriptor;
typedef mygraph_t::vertex_iterator vertex_iterator;
typedef std::pair<int, int> edge;
// specify data
enum nodes {
Troy, LakePlacid, Plattsburgh, Massena, Watertown, Utica,
Syracuse, Rochester, Buffalo, Ithaca, Binghamton, Woodstock,
NewYork, N
};
const char *name[] = {
"Troy", "Lake Placid", "Plattsburgh", "Massena",
"Watertown", "Utica", "Syracuse", "Rochester", "Buffalo",
"Ithaca", "Binghamton", "Woodstock", "New York"
};
location locations[] = { // lat/long
{42.73, 73.68}, {44.28, 73.99}, {44.70, 73.46},
{44.93, 74.89}, {43.97, 75.91}, {43.10, 75.23},
{43.04, 76.14}, {43.17, 77.61}, {42.89, 78.86},
{42.44, 76.50}, {42.10, 75.91}, {42.04, 74.11},
{40.67, 73.94}
};
edge edge_array[] = {
edge(Troy,Utica), edge(Troy,LakePlacid),
edge(Troy,Plattsburgh), edge(LakePlacid,Plattsburgh),
edge(Plattsburgh,Massena), edge(LakePlacid,Massena),
edge(Massena,Watertown), edge(Watertown,Utica),
edge(Watertown,Syracuse), edge(Utica,Syracuse),
edge(Syracuse,Rochester), edge(Rochester,Buffalo),
edge(Syracuse,Ithaca), edge(Ithaca,Binghamton),
edge(Ithaca,Rochester), edge(Binghamton,Troy),
edge(Binghamton,Woodstock), edge(Binghamton,NewYork),
edge(Syracuse,Binghamton), edge(Woodstock,Troy),
edge(Woodstock,NewYork)
};
unsigned int num_edges = sizeof(edge_array) / sizeof(edge);
cost weights[] = { // estimated travel time (mins)
96, 134, 143, 65, 115, 133, 117, 116, 74, 56,
84, 73, 69, 70, 116, 147, 173, 183, 74, 71, 124
};
// create graph
mygraph_t g(N);
WeightMap weightmap = get(edge_weight, g);
for(std::size_t j = 0; j < num_edges; ++j) {
edge_descriptor e; bool inserted;
tie(e, inserted) = add_edge(edge_array[j].first,
edge_array[j].second, g);
weightmap[e] = weights[j];
}
// pick random start/goal
mt19937 gen(time(0));
vertex start = random_vertex(g, gen);
vertex goal = random_vertex(g, gen);
cout << "Start vertex: " << name[start] << endl;
cout << "Goal vertex: " << name[goal] << endl;
ofstream dotfile;
dotfile.open("test-astar-cities.dot");
write_graphviz(dotfile, g,
city_writer<const char **, location*>
(name, locations, 73.46, 78.86, 40.67, 44.93,
480, 400),
time_writer<WeightMap>(weightmap));
vector<mygraph_t::vertex_descriptor> p(num_vertices(g));
vector<cost> d(num_vertices(g));
try {
// call astar named parameter interface
astar_search
(g, start,
distance_heuristic<mygraph_t, cost, location*>
(locations, goal),
predecessor_map(&p[0]).distance_map(&d[0]).
visitor(astar_goal_visitor<vertex>(goal)));
} catch(found_goal fg) { // found a path to the goal
list<vertex> shortest_path;
for(vertex v = goal;; v = p[v]) {
shortest_path.push_front(v);
if(p[v] == v)
break;
}
cout << "Shortest path from " << name[start] << " to "
<< name[goal] << ": ";
list<vertex>::iterator spi = shortest_path.begin();
cout << name[start];
for(++spi; spi != shortest_path.end(); ++spi)
cout << " -> " << name[*spi];
cout << endl << "Total travel time: " << d[goal] << endl;
return 0;
}
cout << "Didn't find a path from " << name[start] << "to"
<< name[goal] << "!" << endl;
return 0;
}
|