1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#include <boost/config.hpp>
#include <algorithm>
#include <vector>
#include <utility>
#include <iostream>
#include <boost/graph/visitors.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/property_map.hpp>
#include <boost/graph/graph_utility.hpp>
/*
This examples shows how to use the breadth_first_search() GGCL
algorithm, specifically the 3 argument variant of bfs that assumes
the graph has a color property (property) stored internally.
Two pre-defined visitors are used to record the distance of each
vertex from the source vertex, and also to record the parent of each
vertex. Any number of visitors can be layered and passed to a GGCL
algorithm.
The call to vertices(G) returns an STL-compatible container which
contains all of the vertices in the graph. In this example we use
the vertices container in the STL for_each() function.
Sample Output:
0 --> 2
1 --> 1 3 4
2 --> 1 3 4
3 --> 1 4
4 --> 0 1
0 --> 2
1 --> 1 3 4
2 --> 1 3 4
3 --> 1 4
4 --> 0 1
distances: 0 2 1 2 2
parent[0] = 0
parent[1] = 2
parent[2] = 0
parent[3] = 2
parent[4] = 2
*/
template <class ParentDecorator>
struct print_parent {
print_parent(const ParentDecorator& p_) : p(p_) { }
template <class Vertex>
void operator()(const Vertex& v) const {
std::cout << "parent[" << v << "] = " << p[v] << std::endl;
}
ParentDecorator p;
};
template <class NewGraph, class Tag>
struct graph_copier
: public boost::base_visitor<graph_copier<NewGraph, Tag> >
{
typedef Tag event_filter;
graph_copier(NewGraph& graph) : new_g(graph) { }
template <class Edge, class Graph>
void operator()(Edge e, Graph& g) {
boost::add_edge(boost::source(e, g), boost::target(e, g), new_g);
}
private:
NewGraph& new_g;
};
template <class NewGraph, class Tag>
inline graph_copier<NewGraph, Tag>
copy_graph(NewGraph& g, Tag) {
return graph_copier<NewGraph, Tag>(g);
}
int main(int , char* [])
{
typedef boost::adjacency_list<
boost::mapS, boost::vecS, boost::bidirectionalS,
boost::property<boost::vertex_color_t, boost::default_color_type,
boost::property<boost::vertex_degree_t, int,
boost::property<boost::vertex_in_degree_t, int,
boost::property<boost::vertex_out_degree_t, int> > > >
> Graph;
Graph G(5);
boost::add_edge(0, 2, G);
boost::add_edge(1, 1, G);
boost::add_edge(1, 3, G);
boost::add_edge(1, 4, G);
boost::add_edge(2, 1, G);
boost::add_edge(2, 3, G);
boost::add_edge(2, 4, G);
boost::add_edge(3, 1, G);
boost::add_edge(3, 4, G);
boost::add_edge(4, 0, G);
boost::add_edge(4, 1, G);
typedef Graph::vertex_descriptor Vertex;
Graph G_copy(5);
// Array to store predecessor (parent) of each vertex. This will be
// used as a Decorator (actually, its iterator will be).
std::vector<Vertex> p(boost::num_vertices(G));
// VC++ version of std::vector has no ::pointer, so
// I use ::value_type* instead.
typedef std::vector<Vertex>::value_type* Piter;
// Array to store distances from the source to each vertex . We use
// a built-in array here just for variety. This will also be used as
// a Decorator.
boost::graph_traits<Graph>::vertices_size_type d[5];
std::fill_n(d, 5, 0);
// The source vertex
Vertex s = *(boost::vertices(G).first);
p[s] = s;
boost::breadth_first_search
(G, s,
boost::visitor(boost::make_bfs_visitor
(std::make_pair(boost::record_distances(d, boost::on_tree_edge()),
std::make_pair
(boost::record_predecessors(&p[0],
boost::on_tree_edge()),
copy_graph(G_copy, boost::on_examine_edge())))) ));
boost::print_graph(G);
boost::print_graph(G_copy);
if (boost::num_vertices(G) < 11) {
std::cout << "distances: ";
#ifdef BOOST_OLD_STREAM_ITERATORS
std::copy(d, d + 5, std::ostream_iterator<int, char>(std::cout, " "));
#else
std::copy(d, d + 5, std::ostream_iterator<int>(std::cout, " "));
#endif
std::cout << std::endl;
std::for_each(boost::vertices(G).first, boost::vertices(G).second,
print_parent<Piter>(&p[0]));
}
return 0;
}
|