1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
/*
Paul Moore's request:
As an example of a practical problem which is not restricted to graph
"experts", consider file dependencies. It's basically graph construction,
plus topological sort, but it might make a nice "tutorial" example. Build a
dependency graph of files, then use the algorithms to do things like
1. Produce a full recompilation order (topological sort, by modified date)
2. Produce a "parallel" recompilation order (same as above, but group files
which can be built in parallel)
3. Change analysis (if I change file x, which others need recompiling)
4. Dependency changes (if I add a dependency between file x and file y, what
are the effects)
*/
#include <boost/config.hpp> // put this first to suppress some VC++ warnings
#include <iostream>
#include <iterator>
#include <algorithm>
#include <time.h>
#include <boost/utility.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/topological_sort.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/visitors.hpp>
using namespace std;
using namespace boost;
enum files_e { dax_h, yow_h, boz_h, zow_h, foo_cpp,
foo_o, bar_cpp, bar_o, libfoobar_a,
zig_cpp, zig_o, zag_cpp, zag_o,
libzigzag_a, killerapp, N };
const char* name[] = { "dax.h", "yow.h", "boz.h", "zow.h", "foo.cpp",
"foo.o", "bar.cpp", "bar.o", "libfoobar.a",
"zig.cpp", "zig.o", "zag.cpp", "zag.o",
"libzigzag.a", "killerapp" };
struct print_visitor : public bfs_visitor<> {
template <class Vertex, class Graph>
void discover_vertex(Vertex v, Graph&) {
cout << name[v] << " ";
}
};
struct cycle_detector : public dfs_visitor<>
{
cycle_detector(bool& has_cycle)
: m_has_cycle(has_cycle) { }
template <class Edge, class Graph>
void back_edge(Edge, Graph&) { m_has_cycle = true; }
protected:
bool& m_has_cycle;
};
int main(int,char*[])
{
typedef pair<int,int> Edge;
Edge used_by[] = {
Edge(dax_h, foo_cpp), Edge(dax_h, bar_cpp), Edge(dax_h, yow_h),
Edge(yow_h, bar_cpp), Edge(yow_h, zag_cpp),
Edge(boz_h, bar_cpp), Edge(boz_h, zig_cpp), Edge(boz_h, zag_cpp),
Edge(zow_h, foo_cpp),
Edge(foo_cpp, foo_o),
Edge(foo_o, libfoobar_a),
Edge(bar_cpp, bar_o),
Edge(bar_o, libfoobar_a),
Edge(libfoobar_a, libzigzag_a),
Edge(zig_cpp, zig_o),
Edge(zig_o, libzigzag_a),
Edge(zag_cpp, zag_o),
Edge(zag_o, libzigzag_a),
Edge(libzigzag_a, killerapp)
};
const std::size_t nedges = sizeof(used_by)/sizeof(Edge);
int weights[nedges];
std::fill(weights, weights + nedges, 1);
typedef adjacency_list<vecS, vecS, directedS,
property<vertex_color_t, default_color_type>,
property<edge_weight_t, int>
> Graph;
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300
// VC++ can't handle the iterator constructor
Graph g(N);
property_map<Graph, edge_weight_t>::type weightmap = get(edge_weight, g);
for (std::size_t j = 0; j < nedges; ++j) {
graph_traits<Graph>::edge_descriptor e; bool inserted;
tie(e, inserted) = add_edge(used_by[j].first, used_by[j].second, g);
weightmap[e] = weights[j];
}
#else
Graph g(used_by, used_by + nedges, weights, N);
#endif
typedef graph_traits<Graph>::vertex_descriptor Vertex;
// Determine ordering for a full recompilation
{
typedef list<Vertex> MakeOrder;
MakeOrder make_order;
topological_sort(g, std::front_inserter(make_order));
cout << "make ordering: ";
for (MakeOrder::iterator i = make_order.begin();
i != make_order.end(); ++i)
cout << name[*i] << " ";
cout << endl;
}
cout << endl;
// Recompilation order with files that can be compiled in parallel
// grouped together
{
// Set up the necessary graph properties.
vector<int> time(N);
typedef vector<int>::iterator Time;
property_map<Graph, edge_weight_t>::type weight = get(edge_weight, g);
// Calculate the in_degree for each vertex.
vector<int> in_degree(N, 0);
graph_traits<Graph>::vertex_iterator i, iend;
graph_traits<Graph>::out_edge_iterator j, jend;
for (tie(i, iend) = vertices(g); i != iend; ++i)
for (tie(j, jend) = out_edges(*i,g); j != jend; ++j)
in_degree[target(*j,g)] += 1;
std::greater<int> compare;
closed_plus<int> combine;
// Run best-first-search from each vertex with zero in-degree.
for (tie(i, iend) = vertices(g); i != iend; ++i) {
if (in_degree[*i] == 0) {
std::vector<graph_traits<Graph>::vertex_descriptor>
pred(num_vertices(g));
property_map<Graph, vertex_index_t>::type
indexmap = get(vertex_index, g);
dijkstra_shortest_paths_no_init
(g, *i, &pred[0], &time[0], weight, indexmap,
compare, combine, 0, // Since we are using > instead of >, we
(std::numeric_limits<int>::max)(), // flip 0 and inf.
default_dijkstra_visitor());
}
}
cout << "parallel make ordering, " << endl
<< "vertices with same group number can be made in parallel" << endl;
for (tie(i,iend) = vertices(g); i != iend; ++i)
cout << "time_slot[" << name[*i] << "] = " << time[*i] << endl;
}
cout << endl;
// if I change yow.h what files need to be re-made?
{
cout << "A change to yow.h will cause what to be re-made?" << endl;
print_visitor vis;
breadth_first_search(g, vertex(yow_h, g), visitor(vis));
cout << endl;
}
cout << endl;
// are there any cycles in the graph?
{
bool has_cycle = false;
cycle_detector vis(has_cycle);
depth_first_search(g, visitor(vis));
cout << "The graph has a cycle? " << has_cycle << endl;
}
cout << endl;
// add a dependency going from bar.cpp to dax.h
{
cout << "adding edge bar_cpp -> dax_h" << endl;
add_edge(bar_cpp, dax_h, g);
}
cout << endl;
// are there any cycles in the graph?
{
bool has_cycle = false;
cycle_detector vis(has_cycle);
depth_first_search(g, visitor(vis));
cout << "The graph has a cycle now? " << has_cycle << endl;
}
return 0;
}
|