File: file_dependencies.cpp

package info (click to toggle)
boost 1.33.1-10
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 100,948 kB
  • ctags: 145,103
  • sloc: cpp: 573,492; xml: 49,055; python: 15,626; ansic: 13,588; sh: 2,099; yacc: 858; makefile: 660; perl: 427; lex: 111; csh: 6
file content (207 lines) | stat: -rw-r--r-- 6,646 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
/*

  Paul Moore's request:

  As an example of a practical problem which is not restricted to graph
  "experts", consider file dependencies. It's basically graph construction,
  plus topological sort, but it might make a nice "tutorial" example. Build a
  dependency graph of files, then use the algorithms to do things like
  
  1. Produce a full recompilation order (topological sort, by modified date)
  2. Produce a "parallel" recompilation order (same as above, but group files
  which can be built in parallel)
  3. Change analysis (if I change file x, which others need recompiling)
  4. Dependency changes (if I add a dependency between file x and file y, what
  are the effects)
  
*/

#include <boost/config.hpp> // put this first to suppress some VC++ warnings

#include <iostream>
#include <iterator>
#include <algorithm>
#include <time.h>

#include <boost/utility.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/topological_sort.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/visitors.hpp>

using namespace std;
using namespace boost;

enum files_e { dax_h, yow_h, boz_h, zow_h, foo_cpp, 
               foo_o, bar_cpp, bar_o, libfoobar_a,
               zig_cpp, zig_o, zag_cpp, zag_o, 
                 libzigzag_a, killerapp, N };
const char* name[] = { "dax.h", "yow.h", "boz.h", "zow.h", "foo.cpp",
                       "foo.o", "bar.cpp", "bar.o", "libfoobar.a",
                       "zig.cpp", "zig.o", "zag.cpp", "zag.o",
                       "libzigzag.a", "killerapp" };


struct print_visitor : public bfs_visitor<> {
  template <class Vertex, class Graph>
  void discover_vertex(Vertex v, Graph&) {
    cout << name[v] << " ";
  }
};


struct cycle_detector : public dfs_visitor<>
{
  cycle_detector(bool& has_cycle) 
    : m_has_cycle(has_cycle) { }

  template <class Edge, class Graph>
  void back_edge(Edge, Graph&) { m_has_cycle = true; }
protected:
  bool& m_has_cycle;
};




int main(int,char*[])
{
    
  typedef pair<int,int> Edge;
  Edge used_by[] = {
    Edge(dax_h, foo_cpp), Edge(dax_h, bar_cpp), Edge(dax_h, yow_h),
    Edge(yow_h, bar_cpp), Edge(yow_h, zag_cpp),
    Edge(boz_h, bar_cpp), Edge(boz_h, zig_cpp), Edge(boz_h, zag_cpp),
    Edge(zow_h, foo_cpp), 
    Edge(foo_cpp, foo_o),
    Edge(foo_o, libfoobar_a),
    Edge(bar_cpp, bar_o),
    Edge(bar_o, libfoobar_a),
    Edge(libfoobar_a, libzigzag_a),
    Edge(zig_cpp, zig_o),
    Edge(zig_o, libzigzag_a),
    Edge(zag_cpp, zag_o),
    Edge(zag_o, libzigzag_a),
    Edge(libzigzag_a, killerapp)
  };
  const std::size_t nedges = sizeof(used_by)/sizeof(Edge);
  int weights[nedges];
  std::fill(weights, weights + nedges, 1);

  typedef adjacency_list<vecS, vecS, directedS, 
      property<vertex_color_t, default_color_type>,
      property<edge_weight_t, int>
    > Graph;
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300
  // VC++ can't handle the iterator constructor
  Graph g(N);
  property_map<Graph, edge_weight_t>::type weightmap = get(edge_weight, g);
  for (std::size_t j = 0; j < nedges; ++j) {
    graph_traits<Graph>::edge_descriptor e; bool inserted;
    tie(e, inserted) = add_edge(used_by[j].first, used_by[j].second, g);
    weightmap[e] = weights[j];
  }
#else
  Graph g(used_by, used_by + nedges, weights, N);
#endif
  typedef graph_traits<Graph>::vertex_descriptor Vertex;

  // Determine ordering for a full recompilation
  {
    typedef list<Vertex> MakeOrder;
    MakeOrder make_order;
    topological_sort(g, std::front_inserter(make_order));
    
    cout << "make ordering: ";
    for (MakeOrder::iterator i = make_order.begin();
         i != make_order.end(); ++i)
      cout << name[*i] << " ";
    cout << endl;
  }
  cout << endl;

  // Recompilation order with files that can be compiled in parallel
  // grouped together
  {
    // Set up the necessary graph properties.
    vector<int> time(N);
    typedef vector<int>::iterator Time;
    property_map<Graph, edge_weight_t>::type weight = get(edge_weight, g);

    // Calculate the in_degree for each vertex.
    vector<int> in_degree(N, 0);
    graph_traits<Graph>::vertex_iterator i, iend;
    graph_traits<Graph>::out_edge_iterator j, jend;
    for (tie(i, iend) = vertices(g); i != iend; ++i)
      for (tie(j, jend) = out_edges(*i,g); j != jend; ++j)
        in_degree[target(*j,g)] += 1;

    std::greater<int> compare;
    closed_plus<int> combine;

    // Run best-first-search from each vertex with zero in-degree.
    for (tie(i, iend) = vertices(g); i != iend; ++i) {
      if (in_degree[*i] == 0) {
        std::vector<graph_traits<Graph>::vertex_descriptor> 
          pred(num_vertices(g));
        property_map<Graph, vertex_index_t>::type 
          indexmap = get(vertex_index, g);
        dijkstra_shortest_paths_no_init
          (g, *i, &pred[0], &time[0], weight, indexmap, 
           compare, combine, 0,  // Since we are using > instead of >, we
           (std::numeric_limits<int>::max)(), // flip 0 and inf.
           default_dijkstra_visitor());
      }
    }

    cout << "parallel make ordering, " << endl
         << "vertices with same group number can be made in parallel" << endl;
    for (tie(i,iend) = vertices(g); i != iend; ++i)
      cout << "time_slot[" << name[*i] << "] = " << time[*i] << endl;
  }
  cout << endl;

  // if I change yow.h what files need to be re-made?
  {
    cout << "A change to yow.h will cause what to be re-made?" << endl;
    print_visitor vis;
    breadth_first_search(g, vertex(yow_h, g), visitor(vis));
    cout << endl;
  }
  cout << endl;

  // are there any cycles in the graph?
  {
    bool has_cycle = false;
    cycle_detector vis(has_cycle);
    depth_first_search(g, visitor(vis));
    cout << "The graph has a cycle? " << has_cycle << endl;
  }
  cout << endl;

  // add a dependency going from bar.cpp to dax.h
  {
    cout << "adding edge bar_cpp -> dax_h" << endl;
    add_edge(bar_cpp, dax_h, g);
  }
  cout << endl;

  // are there any cycles in the graph?
  {
    bool has_cycle = false;
    cycle_detector vis(has_cycle);
    depth_first_search(g, visitor(vis));
    cout << "The graph has a cycle now? " << has_cycle << endl;
  }

  return 0;
}