1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
//-*-c++-*-
//=======================================================================
// Copyright 1997-2001 University of Notre Dame.
// Authors: Lie-Quan Lee
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
/*
This file is to demo how to use minimum_degree_ordering algorithm.
Important Note: This implementation requires the BGL graph to be
directed. Therefore, nonzero entry (i, j) in a symmetrical matrix
A coresponds to two directed edges (i->j and j->i).
The bcsstk01.rsa is an example graph in Harwell-Boeing format,
and bcsstk01 is the ordering produced by Liu's MMD implementation.
Link this file with iohb.c to get the harwell-boeing I/O functions.
To run this example, type:
./minimum_degree_ordering bcsstk01.rsa bcsstk01
*/
#include <boost/config.hpp>
#include <fstream>
#include <iostream>
#include "boost/graph/adjacency_list.hpp"
#include "boost/graph/graph_utility.hpp"
#include "boost/graph/minimum_degree_ordering.hpp"
#include "iohb.h"
//copy and modify from mtl harwell boeing stream
struct harwell_boeing
{
harwell_boeing(char* filename) {
int Nrhs;
char* Type;
Type = new char[4];
isComplex = false;
readHB_info(filename, &M, &N, &nonzeros, &Type, &Nrhs);
colptr = (int *)malloc((N+1)*sizeof(int));
if ( colptr == NULL ) IOHBTerminate("Insufficient memory for colptr.\n");
rowind = (int *)malloc(nonzeros*sizeof(int));
if ( rowind == NULL ) IOHBTerminate("Insufficient memory for rowind.\n");
if ( Type[0] == 'C' ) {
isComplex = true;
val = (double *)malloc(nonzeros*sizeof(double)*2);
if ( val == NULL ) IOHBTerminate("Insufficient memory for val.\n");
} else {
if ( Type[0] != 'P' ) {
val = (double *)malloc(nonzeros*sizeof(double));
if ( val == NULL ) IOHBTerminate("Insufficient memory for val.\n");
}
}
readHB_mat_double(filename, colptr, rowind, val);
cnt = 0;
col = 0;
delete [] Type;
}
~harwell_boeing() {
free(colptr);
free(rowind);
free(val);
}
inline int nrows() const { return M; }
int cnt;
int col;
int* colptr;
bool isComplex;
int M;
int N;
int nonzeros;
int* rowind;
double* val;
};
int main(int argc, char* argv[])
{
using namespace std;
using namespace boost;
if (argc < 2) {
cout << argv[0] << " HB file" << endl;
return -1;
}
int delta = 0;
if ( argc >= 4 )
delta = atoi(argv[3]);
typedef double Type;
harwell_boeing hbs(argv[1]);
//must be BGL directed graph now
typedef adjacency_list<vecS, vecS, directedS> Graph;
typedef graph_traits<Graph>::vertex_descriptor Vertex;
int n = hbs.nrows();
cout << "n is " << n << endl;
Graph G(n);
int num_edge = 0;
for (int i = 0; i < n; ++i)
for (int j = hbs.colptr[i]; j < hbs.colptr[i+1]; ++j)
if ( (hbs.rowind[j - 1] - 1 ) > i ) {
add_edge(hbs.rowind[j - 1] - 1, i, G);
add_edge(i, hbs.rowind[j - 1] - 1, G);
num_edge++;
}
cout << "number of off-diagnal elements: " << num_edge << endl;
typedef std::vector<int> Vector;
Vector inverse_perm(n, 0);
Vector perm(n, 0);
Vector supernode_sizes(n, 1); // init has to be 1
boost::property_map<Graph, vertex_index_t>::type
id = get(vertex_index, G);
Vector degree(n, 0);
minimum_degree_ordering
(G,
make_iterator_property_map(°ree[0], id, degree[0]),
&inverse_perm[0],
&perm[0],
make_iterator_property_map(&supernode_sizes[0], id, supernode_sizes[0]),
delta, id);
if ( argc >= 3 ) {
ifstream input(argv[2]);
if ( input.fail() ) {
cout << argv[3] << " is failed to open!. " << endl;
return -1;
}
int comp;
bool is_correct = true;
int i;
for ( i=0; i<n; i++ ) {
input >> comp;
if ( comp != inverse_perm[i]+1 ) {
cout << "at i= " << i << ": " << comp
<< " ***is NOT EQUAL to*** " << inverse_perm[i]+1 << endl;
is_correct = false;
}
}
for ( i=0; i<n; i++ ) {
input >> comp;
if ( comp != perm[i]+1 ) {
cout << "at i= " << i << ": " << comp
<< " ***is NOT EQUAL to*** " << perm[i]+1 << endl;
is_correct = false;
}
}
if ( is_correct )
cout << "Permutation and inverse permutation are correct. "<< endl;
else
cout << "WARNING -- Permutation or inverse permutation is not the "
<< "same ones generated by Liu's " << endl;
}
return 0;
}
|