1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
// Copyright 2004 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_GRAPH_DIJKSTRA_TESTING_DIETMAR
# define BOOST_GRAPH_DIJKSTRA_TESTING
#endif
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/test/minimal.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/timer.hpp>
#include <vector>
#include <iostream>
#include <iterator>
#include <utility>
#include <boost/random/uniform_int.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/type_traits/is_base_and_derived.hpp>
#include <boost/type_traits/is_same.hpp>
namespace boost {
template<typename RandomGenerator, typename Graph>
class erdos_renyi_iterator
{
typedef typename graph_traits<Graph>::directed_category directed_category;
typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
typedef typename graph_traits<Graph>::edges_size_type edges_size_type;
BOOST_STATIC_CONSTANT
(bool,
is_undirected = (is_base_and_derived<undirected_tag,
directed_category>::value
|| is_same<undirected_tag, directed_category>::value));
public:
typedef std::input_iterator_tag iterator_category;
typedef std::pair<vertices_size_type, vertices_size_type> value_type;
typedef const value_type& reference;
typedef const value_type* pointer;
typedef void difference_type;
erdos_renyi_iterator() : gen(0), n(0), edges(0), allow_self_loops(false) {}
erdos_renyi_iterator(RandomGenerator& gen, vertices_size_type n,
double prob = 0.0, bool allow_self_loops = false)
: gen(&gen), n(n), edges(edges_size_type(prob * n * n)),
allow_self_loops(allow_self_loops)
{
if (is_undirected) edges = edges / 2;
next();
}
reference operator*() const { return current; }
pointer operator->() const { return ¤t; }
erdos_renyi_iterator& operator++()
{
--edges;
next();
return *this;
}
erdos_renyi_iterator operator++(int)
{
erdos_renyi_iterator temp(*this);
++(*this);
return temp;
}
bool operator==(const erdos_renyi_iterator& other) const
{ return edges == other.edges; }
bool operator!=(const erdos_renyi_iterator& other) const
{ return !(*this == other); }
private:
void next()
{
uniform_int<vertices_size_type> rand_vertex(0, n-1);
current.first = rand_vertex(*gen);
do {
current.second = rand_vertex(*gen);
} while (current.first == current.second && !allow_self_loops);
}
RandomGenerator* gen;
vertices_size_type n;
edges_size_type edges;
bool allow_self_loops;
value_type current;
};
} // end namespace boost
using namespace boost;
#ifdef BOOST_GRAPH_DIJKSTRA_TESTING_DIETMAR
struct show_events_visitor : dijkstra_visitor<>
{
template<typename Vertex, typename Graph>
void discover_vertex(Vertex v, const Graph&)
{
std::cerr << "on_discover_vertex(" << v << ")\n";
}
template<typename Vertex, typename Graph>
void examine_vertex(Vertex v, const Graph&)
{
std::cerr << "on_discover_vertex(" << v << ")\n";
}
};
template<typename Graph, typename Kind>
void run_test(const Graph& g, const char* name, Kind kind,
const std::vector<double>& correct_distances)
{
std::vector<double> distances(num_vertices(g));
std::cout << "Running Dijkstra's with " << name << "...";
std::cout.flush();
timer t;
dijkstra_heap_kind = kind;
dijkstra_shortest_paths(g, vertex(0, g),
distance_map(&distances[0]).
visitor(show_events_visitor()));
double run_time = t.elapsed();
std::cout << run_time << " seconds.\n";
BOOST_TEST(distances == correct_distances);
if (distances != correct_distances)
{
std::cout << "Expected: ";
std::copy(correct_distances.begin(), correct_distances.end(),
std::ostream_iterator<double>(std::cout, " "));
std::cout << "\nReceived: ";
std::copy(distances.begin(), distances.end(),
std::ostream_iterator<double>(std::cout, " "));
std::cout << std::endl;
}
}
#endif
int test_main(int argc, char* argv[])
{
unsigned n = (argc > 1? lexical_cast<unsigned>(argv[1]) : 10000u);
unsigned m = (argc > 2? lexical_cast<unsigned>(argv[2]) : 10*n);
int seed = (argc > 3? lexical_cast<int>(argv[3]) : 1);
// Build random graph
typedef adjacency_list<vecS, vecS, directedS, no_property,
property<edge_weight_t, double> > Graph;
std::cout << "Generating graph...";
std::cout.flush();
minstd_rand gen(seed);
double p = double(m)/(double(n)*double(n));
Graph g(erdos_renyi_iterator<minstd_rand, Graph>(gen, n, p),
erdos_renyi_iterator<minstd_rand, Graph>(),
n);
std::cout << n << " vertices, " << num_edges(g) << " edges.\n";
uniform_real<double> rand01(0.0, 1.0);
graph_traits<Graph>::edge_iterator ei, ei_end;
for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
put(edge_weight, g, *ei, rand01(gen));
std::vector<double> binary_heap_distances(n);
std::vector<double> relaxed_heap_distances(n);
// Run binary heap version
std::cout << "Running Dijkstra's with binary heap...";
std::cout.flush();
timer t;
#ifdef BOOST_GRAPH_DIJKSTRA_TESTING_DIETMAR
dijkstra_heap_kind = dijkstra_binary_heap;
#else
dijkstra_relaxed_heap = false;
#endif
dijkstra_shortest_paths(g, vertex(0, g),
distance_map(&binary_heap_distances[0]));
double binary_heap_time = t.elapsed();
std::cout << binary_heap_time << " seconds.\n";
// Run relaxed heap version
std::cout << "Running Dijkstra's with relaxed heap...";
std::cout.flush();
t.restart();
#ifdef BOOST_GRAPH_DIJKSTRA_TESTING_DIETMAR
dijkstra_heap_kind = dijkstra_relaxed_heap;
#else
dijkstra_relaxed_heap = true;
#endif
dijkstra_shortest_paths(g, vertex(0, g),
distance_map(&relaxed_heap_distances[0]));
double relaxed_heap_time = t.elapsed();
std::cout << relaxed_heap_time << " seconds.\n"
<< "Speedup = " << (binary_heap_time / relaxed_heap_time) << ".\n";
// Verify that the results are equivalent
BOOST_CHECK(binary_heap_distances == relaxed_heap_distances);
#ifdef BOOST_GRAPH_DIJKSTRA_TESTING_DIETMAR
run_test(g, "d-ary heap (d=2)", dijkstra_d_heap_2, binary_heap_distances);
run_test(g, "d-ary heap (d=3)", dijkstra_d_heap_3, binary_heap_distances);
run_test(g, "Fibonacci heap", dijkstra_fibonacci_heap, binary_heap_distances);
run_test(g, "Lazy Fibonacci heap", dijkstra_lazy_fibonacci_heap, binary_heap_distances);
run_test(g, "Pairing heap", dijkstra_pairing_heap, binary_heap_distances);
run_test(g, "Splay heap", dijkstra_splay_heap, binary_heap_distances);
#endif
return 0;
}
|