1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.9: http://docutils.sourceforge.net/" />
<title>Boost Pointer Container Library</title>
<link rel="stylesheet" href="default.css" type="text/css" />
</head>
<body>
<div class="document" id="boost-pointer-container-library">
<h1 class="title"><img alt="Boost" src="boost.png" /> Pointer Container Library</h1>
<h2 class="subtitle" id="tutorial">Tutorial</h2>
<p>The tutorial shows you the most simple usage of the
library. It is assumed that the reader is familiar
with the use of standard containers. Although
the tutorial is devided into sections, it is recommended
that you read it all from top to bottom.</p>
<ul class="simple">
<li><a class="reference" href="#basic-usage">Basic usage</a></li>
<li><a class="reference" href="#indirected-interface">Indirected interface</a></li>
<li><a class="reference" href="#sequence-containers">Sequence containers</a></li>
<li><a class="reference" href="#associative-containers">Associative containers</a></li>
<li><a class="reference" href="#null-values">Null values</a></li>
<li><a class="reference" href="#clonability">Clonability</a></li>
<li><a class="reference" href="#new-functions">New functions</a></li>
<li><a class="reference" href="#algorithms">Algorithms</a></li>
</ul>
<div class="section" id="basic-usage">
<h1><a name="basic-usage">Basic usage</a></h1>
<p>The most important aspect of a pointer container is that it manages
memory for you. This means that you in most cases do not need to worry
about deleting memory.</p>
<p>Let us assume that we have an OO-hierarchy of animals</p>
<pre class="literal-block">
class animal : <a class="reference" href="http://www.boost.org/libs/utility/utility.htm#Class_noncopyable">boost::noncopyable</a>
{
public:
virtual ~animal() {}
virtual void eat() = 0;
// ...
};
class mammal : public animal
{
// ...
};
class bird : public animal
{
// ...
};
</pre>
<p>Then the managing of the animals is straight-forward. Imagine a
Zoo:</p>
<pre class="literal-block">
class zoo
{
boost::ptr_vector<animal> the_animals;
public:
void add_animal( animal* a )
{
the_animals.push_back( a );
}
};
</pre>
<p>Notice how just pass the class name to the container; there
is no <tt class="docutils literal"><span class="pre">*</span></tt> to indicate it is a pointer.
With this declaration we can now say:</p>
<pre class="literal-block">
zoo the_zoo;
the_zoo.add_animal( new mammal("joe") );
the_zoo.add_animal( new bird("dodo") );
</pre>
<p>Thus we heap-allocate all elements of the container
and never rely on copy-semantics.</p>
</div>
<div class="section" id="indirected-interface">
<h1><a name="indirected-interface">Indirected interface</a></h1>
<p>As particular feature of the pointer containers is that
the query interface is indirected. For example,</p>
<pre class="literal-block">
boost::ptr_vector<animal> vec;
vec.push_back( new animal ); // you add it as pointer ...
vec[0].eat(); // but get a reference back
</pre>
<p>This indirection also happens to iterators, so</p>
<pre class="literal-block">
typedef std::vector<animal*> std_vec;
std_vec vec;
...
std_vec::iterator i = vec.begin();
(*i)->eat(); // '*' needed
</pre>
<p>now becomes</p>
<pre class="literal-block">
typedef boost::ptr_vector<animal> ptr_vec;
ptr_vec vec;
ptr_vec::iterator i = vec.begin();
i->eat(); // no indirection needed
</pre>
</div>
<div class="section" id="sequence-containers">
<h1><a name="sequence-containers">Sequence containers</a></h1>
<p>The sequence containers used when you do not need to
keep an ordering on your elements. You can basically
expect all operations of the normal standard containers
to be available. So, for example, with a <tt class="docutils literal"><span class="pre">ptr_deque</span></tt>
and <tt class="docutils literal"><span class="pre">ptr_list</span></tt> object you can say:</p>
<pre class="literal-block">
boost::ptr_deque<animal> deq;
deq.push_front( new animal );
deq.pop_front();
</pre>
<p>because <tt class="docutils literal"><span class="pre">std::deque</span></tt> and <tt class="docutils literal"><span class="pre">std::list</span></tt> has <tt class="docutils literal"><span class="pre">push_front()</span></tt>
and <tt class="docutils literal"><span class="pre">pop_front</span></tt> members.</p>
<p>If the standard sequence support
random access, so does the pointer container; for example:</p>
<pre class="literal-block">
for( boost::ptr_deque<animal>::size_type i = 0u;
i != deq.size(); ++i )
deq[i].eat();
</pre>
<p>The <tt class="docutils literal"><span class="pre">ptr_vector</span></tt> also allows you to specify the size of
the buffer to allocate; for example</p>
<pre class="literal-block">
boost::ptr_vector<animal> animals( 10u );
</pre>
<p>will reserve room for 10 animals.</p>
</div>
<div class="section" id="associative-containers">
<h1><a name="associative-containers">Associative containers</a></h1>
<p>To keep an ordering on our animals, we could use a <tt class="docutils literal"><span class="pre">ptr_set</span></tt>:</p>
<pre class="literal-block">
boost::ptr_set<animal> set;
set.insert( new monkey("bobo") );
set.insert( new whale("anna") );
...
</pre>
<p>This requires that <tt class="docutils literal"><span class="pre">operator<()</span></tt> is defined for animals. One
way to do this could be</p>
<pre class="literal-block">
inline bool operator<( const animal& l, const animal& r )
{
return l.name() < r.name();
}
</pre>
<p>if we wanted to keep the animals sorted by name.</p>
<p>Maybe you want to keep all the animals in zoo ordered wrt.
their name, but it so happens that many animals have the
same name. We can then use a <tt class="docutils literal"><span class="pre">ptr_multimap</span></tt>:</p>
<pre class="literal-block">
typedef boost::ptr_multimap<std::string,animal> zoo_type;
zoo_type zoo;
std::string bobo = "bobo",
anna = "anna";
zoo.insert( bobo, new monkey(bobo) );
zoo.insert( bobo, new elephant(bobo) );
zoo.insert( anna, new whale(anna) );
zoo.insert( anna, new emu(anna) );
</pre>
<p>Note that must create the key as an lvalue
(due to exception-safety issues); the following would not
have compiled</p>
<pre class="literal-block">
zoo.insert( "bobo", // this is bad, but you get compile error
new monkey("bobo") );
</pre>
<p>If a multimap is not needed, we can use <tt class="docutils literal"><span class="pre">operator[]()</span></tt>
to avoid the clumsiness:</p>
<pre class="literal-block">
boost::ptr_map<std::string,animal> animals;
animals["bobo"].set_name("bobo");
</pre>
<p>This requires a default constructor for animals and
a function to do the initialization, in this case <tt class="docutils literal"><span class="pre">set_name()</span></tt>;</p>
</div>
<div class="section" id="null-values">
<h1><a name="null-values">Null values</a></h1>
<p>By default, if you try to insert null into a container, an exception
is thrown. If you want to allow nulls, then you must
say so explicitly when declaring the container variable</p>
<pre class="literal-block">
boost::ptr_vector< boost::nullable<animal> > animals_type;
animals_type animals;
...
animals.insert( animals.end(), new dodo("fido") );
animals.insert( animals.begin(), 0 ) // ok
</pre>
<p>Once you have inserted a null into the container, you must
always check if the value is null before accessing the object</p>
<pre class="literal-block">
for( animals_type::iterator i = animals.begin();
i != animals.end(); ++i )
{
if( !boost::is_null(i) ) // always check for validity
i->eat();
}
</pre>
<p>If the container support random access, you may also check this as</p>
<pre class="literal-block">
for( animals_type::size_type i = 0u;
i != animals.size(); ++i )
{
if( !animals.is_null(i) )
animals[i].eat();
}
</pre>
<p>Note that it is meaningless to insert
null into <tt class="docutils literal"><span class="pre">ptr_set</span></tt> and <tt class="docutils literal"><span class="pre">ptr_multiset</span></tt>.</p>
</div>
<div class="section" id="clonability">
<h1><a name="clonability">Clonability</a></h1>
<p>In OO programming it is typical to prohibit copying of objects; the
objects may sometimes be allowed to be clonable; for example,:</p>
<pre class="literal-block">
animal* animal::clone() const
{
return do_clone(); // implemented by private virtual function
}
</pre>
<p>If the OO hierarchy thus allows cloning, we need to tell the
pointer containers how cloning is to be done. This is simply
done by defining a free-standing function, <tt class="docutils literal"><span class="pre">new_clone()</span></tt>,
in the same namespace as
the object hierarchy:</p>
<pre class="literal-block">
inline animal* new_clone( const animal& a )
{
return a.clone();
}
</pre>
<p>That is all, now a lot of functions in a pointer container
can exploit the clonability of the animal objects. For example</p>
<pre class="literal-block">
typedef boost::ptr_list<animal> zoo_type;
zoo_type zoo, another_zoo;
...
another_zoo.assign( zoo.begin(), zoo.end() );
</pre>
<p>will fill another zoo with clones of the first zoo. Similarly,
insert() can now insert clones into your pointer container</p>
<pre class="literal-block">
another_zoo.insert( another_zoo.begin(), zoo.begin(), zoo.end() );
</pre>
<p>The whole container can now also be cloned</p>
<pre class="literal-block">
zoo_type yet_another_zoo = zoo.clone();
</pre>
</div>
<div class="section" id="new-functions">
<h1><a name="new-functions">New functions</a></h1>
<p>Given that we know we are working with pointers, a few new functions
make sense. For example, say you want to remove an
animal from the zoo</p>
<pre class="literal-block">
zoo_type::auto_type the_animal = zoo.release( zoo.begin() );
the_animal->eat();
animal* the_animal_ptr = the_animal.release(); // now this is not deleted
zoo.release(2); // for random access containers
</pre>
<p>You can think of <tt class="docutils literal"><span class="pre">auto_type</span></tt> as a non-copyable form of
<tt class="docutils literal"><span class="pre">std::auto_ptr</span></tt>. Notice that when you release an object, the
pointer is removed from the container and the containers size
shrinks. You can also release the entire container if you
want to return it from a function</p>
<pre class="literal-block">
std::auto_ptr< boost::ptr_deque<animal> > get_zoo()
{
boost::ptr_deque<animal> result;
...
return result.release(); // give up ownership
}
...
boost::ptr_deque<animal> animals = get_zoo();
</pre>
<p>Let us assume we want to move an animal object from
one zoo to another. In other words, we want to move the
animal and the responsibility of it to another zoo</p>
<pre class="literal-block">
another_zoo.transfer( another_zoo.end(), // insert before end
zoo.begin(), // insert this animal ...
zoo ); // from this container
</pre>
<p>This kind of "move-semantics" is different from
normal value-based containers. You can think of <tt class="docutils literal"><span class="pre">transfer()</span></tt>
as the same as <tt class="docutils literal"><span class="pre">splice()</span></tt> on <tt class="docutils literal"><span class="pre">std::list</span></tt>.</p>
<p>If you want to replace an element, you can easily do so</p>
<pre class="literal-block">
zoo_type::auto_type old_animal = zoo.replace( zoo.begin(), new monkey("bibi") );
zoo.replace( 2, old_animal.release() ); // for random access containers
</pre>
<p>A map is a little different to iterator over than standard maps.
Now we say</p>
<pre class="literal-block">
typedef boost::ptr_map<std::string, boost::nullable<animal> > animal_map;
animal_map map;
...
for( animal_map::iterator i = map.begin();
i != map.end(); ++i )
{
std::cout << "\n key: " << i.key();
std::cout << "\n age: ";
if( boost::is_null(i) )
std::cout << "unknown";
else
std::cout << i->age();
}
</pre>
<p>Maps can also be indexed with bounds-checking</p>
<pre class="literal-block">
try
{
animal& bobo = map.at("bobo");
}
catch( boost::bad_ptr_container_operation& e )
{
// "bobo" not found
}
</pre>
</div>
<div class="section" id="algorithms">
<h1><a name="algorithms">Algorithms</a></h1>
<p>Unfortunately it is not possible to use pointer containers with
mutating algorithms from the standard library. However,
the most useful ones
are instead provided as member functions:</p>
<pre class="literal-block">
boost::ptr_vector<animal> zoo;
...
zoo.sort(); // assume 'bool operator<( const animal&, const animal& )'
zoo.sort( std::less<animal>() ); // the same, notice no '*' is present
zoo.sort( zoo.begin(), zoo.begin() + 5 ); // sort selected range
</pre>
<p>Notice that predicates are automatically wrapped in an <a class="reference" href="indirect_fun.html">indirect_fun</a> object.</p>
<p>You can remove equal and adjacent elements using <tt class="docutils literal"><span class="pre">unique()</span></tt>:</p>
<pre class="literal-block">
zoo.unique(); // assume 'bool operator==( const animal&, const animal& )'
zoo.unique( zoo.begin(), zoo.begin() + 5, my_comparison_predicate() );
</pre>
<p>If you just want to remove certain elements, use <tt class="docutils literal"><span class="pre">erase_if</span></tt>:</p>
<pre class="literal-block">
zoo.erase_if( my_predicate() );
</pre>
<p>Finally you may want to merge together two sorted containers:</p>
<pre class="literal-block">
boost::ptr_vector<animal> another_zoo = ...;
another_zoo.sort(); // sorted wrt. to same order as 'zoo'
zoo.merge( another_zoo );
BOOST_ASSERT( another_zoo.empty() );
</pre>
<p>That is all; now you have learned all the basics!</p>
<p><strong>Navigate</strong></p>
<blockquote>
<ul class="simple">
<li><a class="reference" href="ptr_container.html">home</a></li>
<li><a class="reference" href="examples.html">examples</a></li>
</ul>
</blockquote>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field"><th class="field-name">copyright:</th><td class="field-body">Thorsten Ottosen 2004-2005.</td>
</tr>
</tbody>
</table>
</div>
</div>
</body>
</html>
|