1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Windows (vers 1st August 2002), see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href="../boost.css">
<title>Boost.Python - <boost/python/iterator.hpp></title>
</head>
<body>
<table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
"header">
<tr>
<td valign="top" width="300">
<h3><a href="../../../../index.htm"><img height="86" width="277"
alt="C++ Boost" src="../../../../boost.png" border="0"></a></h3>
</td>
<td valign="top">
<h1 align="center"><a href="../index.html">Boost.Python</a></h1>
<h2 align="center">Header <boost/python/iterator.hpp></h2>
</td>
</tr>
</table>
<hr>
<h2>Contents</h2>
<dl class="page-index">
<dt><a href="#introduction">Introduction</a></dt>
<dt><a href="#classes">Classes</a></dt>
<dd>
<dl class="page-index">
<dt><a href="#iterator-spec">Class template
<code>iterator</code></a></dt>
<dd>
<dl class="page-index">
<dt><a href="#iterator-spec-synopsis">Class
<code>iterator</code> synopsis</a></dt>
<dt><a href="#iterator-spec-constructors">Class template
<code>iterator</code> constructor</a></dt>
</dl>
</dd>
</dl>
<dl class="page-index">
<dt><a href="#iterators-spec">Class template
<code>iterators</code></a></dt>
<dd>
<dl class="page-index">
<dt><a href="#iterators-spec-synopsis">Class
<code>iterators</code> synopsis</a></dt>
<dt><a href="#iterators-spec-types">Class template
<code>iterators</code> nested types</a></dt>
<dt><a href="#iterators-spec-statics">Class template
<code>iterators</code> static functions</a></dt>
</dl>
</dd>
</dl>
</dd>
<dt><a href="#functions">Functions</a></dt>
<dd>
<dl class="page-index">
<dt><a href="#range-spec">range</a></dt>
</dl>
</dd>
<dt><a href="#examples">Examples</a></dt>
</dl>
<hr>
<h2><a name="introduction"></a>Introduction</h2>
<p><code><boost/python/iterator.hpp></code> provides types and
functions for creating <a href=
"http://www.python.org/doc/current/lib/typeiter.html">Python
iterators</a> from <a href=
"http://www.sgi.com/tech/stl/Container.html">C++ Containers</a> and <a
href="http://www.sgi.com/tech/stl/Iterators.html">Iterators</a>. Note
that if your <code>class_</code> supports random-access iterators,
implementing <code><a href=
"http://www.python.org/doc/current/ref/sequence-types.html#l2h-128">__getitem__</a></code>
(also known as the Sequence Protocol) may serve you better than using
this facility: Python will automatically create an iterator type for you
(see <a href=
"http://www.python.org/doc/current/lib/built-in-funcs.html#l2h-35">iter()</a>),
and each access can be range-checked, leaving no possiblity of accessing
through an invalidated C++ iterator.</p>
<h2><a name="classes"></a>Classes</h2>
<h3><a name="iterator-spec"></a>Class Template <code>iterator</code></h3>
<p>Instances of <code>iterator<C,P></code> hold a reference to a
callable Python object which, when invoked from Python, expects a single
argument <code>c</code> convertible to <code>C</code> and creates a
Python iterator that traverses [<code>c.begin()</code>,
<code>c.end()</code>). The optional <a href=
"CallPolicies.html">CallPolicies</a> <code>P</code> can be used to
control how elements are returned during iteration.</p>
<p>In the table below, <code><b>c</b></code> is an instance of
<code>Container</code>.</p>
<table border="1" summary="iterator template parameters">
<tr>
<th>Template Parameter</th>
<th>Requirements</th>
<th>Semantics</th>
<th>Default</th>
</tr>
<tr>
<td><code>Container</code></td>
<td>[c.begin(),c.end()) is a valid <a href=
"http://www.sgi.com/tech/stl/Iterators.html">Iterator range</a>.</td>
<td>The result will convert its argument to <code>c</code> and call
<code>c.begin()</code> and <code>c.end()</code> to acquire iterators.
To invoke <code>Container</code>'s <code>const</code>
<code>begin()</code> and <code>end()</code> functions, make it
<code>const</code>.</td>
</tr>
<tr>
<td><code>NextPolicies</code></td>
<td>A default-constructible model of <a href=
"CallPolicies.html#CallPolicies-concept">CallPolicies</a>.</td>
<td>Applied to the resulting iterators' <code>next()</code>
method.</td>
<td>An unspecified model of <a href=
"CallPolicies.html#CallPolicies-concept">CallPolicies</a> which
always makes a copy of the result of deferencing the underlying C++
iterator</td>
</tr>
</table>
<h4><a name="iterator-spec-synopsis"></a>Class Template iterator
synopsis</h4>
<pre>
namespace boost { namespace python
{
template <class Container
, class NextPolicies = <i>unspecified</i>>
struct iterator : <a href="object.html#object-spec">object</a>
{
iterator();
};
}}
</pre>
<h4><a name="iterator-spec-constructors"></a>Class Template iterator
constructor</h4>
<pre>
iterator()
</pre>
<dl class="function-semantics">
<dt><b>Effects:</b></dt>
<dd>
Initializes its base class with the result of:
<pre>
range<NextPolicies>(&iterators<Container>::begin, &iterators<Container>::end)
</pre>
</dd>
<dt><b>Postconditions:</b> <code>this->get()</code> points to a
Python callable object which creates a Python iterator as described
above.</dt>
<dt><b>Rationale:</b> Provides an easy way to create iterators for the
common case where a C++ class being wrapped provides
<code>begin()</code> and <code>end()</code>.</dt>
</dl>
<!-- -->
<h3><a name="iterators-spec"></a>Class Template
<code>iterators</code></h3>
<p>A utility class template which provides a way to reliably call its
argument's <code>begin()</code> and <code>end()</code> member functions.
Note that there is no portable way to take the address of a member
function of a C++ standard library container, so
<code>iterators<></code> can be particularly helpful when wrapping
them.</p>
<p>In the table below, <code><b>x</b></code> is an instance of
<code>C</code>.</p>
<table border="1" summary="iterator template parameters">
<tr>
<th>Required Valid Expression</th>
<th>Type</th>
</tr>
<tr>
<td><code>x.begin()</code></td>
<td>Convertible to <code>C::const_iterator</code> if <code>C</code>
is a <code>const</code> type; convertible to <code>C::iterator</code>
otherwise.</td>
</tr>
<tr>
<td><code>x.end()</code></td>
<td>Convertible to <code>C::const_iterator</code> if <code>C</code>
is a <code>const</code> type; convertible to <code>C::iterator</code>
otherwise.</td>
</tr>
</table>
<h4><a name="iterators-spec-synopsis"></a>Class Template iterators
synopsis</h4>
<pre>
namespace boost { namespace python
{
template <class C>
struct iterators
{
typedef typename C::[const_]iterator iterator;
static iterator begin(C& x);
static iterator end(C& x);
};
}}
</pre>
<h4><a name="iterators-spec-types"></a>Class Template iterators nested
types</h4>
If C is a <code>const</code> type,
<pre>
typedef typename C::const_iterator iterator;
</pre>
Otherwise:
<pre>
typedef typename C::iterator iterator;
</pre>
<h4><a name="iterators-spec-statics"></a>Class Template iterators static
functions</h4>
<pre>
static iterator begin(C&);
</pre>
<dl class="function-semantics">
<dt><b>Returns:</b> <code>x.begin()</code></dt>
</dl>
<pre>
static iterator end(C&);
</pre>
<dl class="function-semantics">
<dt><b>Returns:</b> <code>x.end()</code></dt>
</dl>
<!-- -->
<h2><a name="functions"></a>Functions</h2>
<pre>
<a name=
"range-spec">template</a> <class NextPolicies, class Target, class Accessor1, class Accessor2>
<a href=
"object.html#object-spec">object</a> range(Accessor1 start, Accessor2 finish);
template <class NextPolicies, class Accessor1, class Accessor2>
<a href=
"object.html#object-spec">object</a> range(Accessor1 start, Accessor2 finish);
template <class Accessor1, class Accessor2>
<a href=
"object.html#object-spec">object</a> range(Accessor1 start, Accessor2 finish);
</pre>
<dl class="range-semantics">
<dt><b>Requires:</b> <code>NextPolicies</code> is a
default-constructible model of <a href=
"CallPolicies.html#CallPolicies-concept">CallPolicies</a>.</dt>
<dt><b>Effects:</b></dt>
<dd>
<dl>
<dt>The first form creates a Python callable object which, when
invoked, converts its argument to a <code>Target</code> object
<code>x</code>, and creates a Python iterator which traverses
[<code><a href=
"../../../bind/bind.html">bind</a>(start,_1)(x)</code>, <code><a
href="../../../bind/bind.html">bind</a>(finish,_1)(x)</code>),
applying <code>NextPolicies</code> to the iterator's
<code>next()</code> function.</dt>
<dt>The second form is identical to the first, except that
<code>Target</code> is deduced from <code>Accessor1</code> as
follows:</dt>
<dd>
<ol>
<li>If <code>Accessor1</code> is a function type,
<code>Target</code> is the type of its first argument.</li>
<li>If <code>Accessor1</code> is a data member pointer of the
form <code>R (T::*)</code>, <code>Target</code> is
identical to <code>T</code>.</li>
<li>If <code>Accessor1</code> is a member function pointer of
the form
<code>R (T::*)(</code><i>arguments...</i><code>)</code>
<i>cv-opt</i>, where <i>cv-opt</i> is an optional
<code>cv-qualifier</code>, <code>Target</code> is identical to
<code>T</code>.</li>
</ol>
</dd>
<dt>The third form is identical to the second, except that
<code>NextPolicies</code> is an unspecified model of <a href=
"CallPolicies.html#CallPolicies-concept">CallPolicies</a> which
always makes a copy of the result of deferencing the underlying C++
iterator</dt>
</dl>
</dd>
<dt><b>Rationale:</b> The use of <code><a href=
"../../../bind/bind.html">boost::bind</a>()</code> allows C++ iterators
to be accessed through functions, member functions or data member
pointers. Customization of <code>NextPolicies</code> (e.g. using
<code><a href=
"return_internal_reference.html#return_internal_reference-spec">return_internal_reference</a></code>)
is useful when it is expensive to copy sequence elements of a wrapped
class type. Customization of <code>Target</code> is useful when
<code>Accessor1</code> is a function object, or when a base class of
the intended target type would otherwise be deduced.</dt>
</dl>
<h2><a name="examples"></a>Examples</h2>
<pre>
#include <boost/python/module.hpp>
#include <boost/python/class.hpp>
#include <vector>
using namespace boost::python;
BOOST_PYTHON_MODULE(demo)
{
class_<std::vector<double> >("dvec")
.def("__iter__", iterator<std::vector<double> >())
;
}
</pre>
A more comprehensive example can be found in:
<dl>
<dt><code><a href=
"../../test/iterator.cpp">libs/python/test/iterator.cpp</a></code></dt>
<dt><code><a href=
"../../test/input_iterator.cpp">libs/python/test/input_iterator.cpp</a></code></dt>
<dt><code><a href=
"../../test/iterator.py">libs/python/test/input_iterator.py</a></code></dt>
</dl>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->
13 November, 2002
<!--webbot bot="Timestamp" endspan i-checksum="39359" -->
</p>
<p><i>© Copyright <a href=
"../../../../people/dave_abrahams.htm">Dave Abrahams</a> 2002.</i></p>
</body>
</html>
|