1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|
<HTML>
<!--
-- Copyright (c) Jeremy Siek 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
-->
<Head>
<Title>Collection</Title>
</HEAD>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<h1>
<img src="../../boost.png" alt="boost logo"
width="277" align="middle" height="86">
<br>Collection
</h1>
<h3>Description</h3>
A Collection is a <i>concept</i> similar to the STL <a
href="http://www.sgi.com/tech/stl/Container.html">Container</a>
concept. A Collection provides iterators for accessing a range of
elements and provides information about the number of elements in the
Collection. However, a Collection has fewer requirements than a
Container. The motivation for the Collection concept is that there are
many useful Container-like types that do not meet the full
requirements of Container, and many algorithms that can be written
with this reduced set of requirements. To summarize the reduction
in requirements:
<UL>
<LI>It is not required to "own" its elements: the lifetime
of an element in a Collection does not have to match the lifetime of
the Collection object, though the lifetime of the element should cover
the lifetime of the Collection object.
<LI>The semantics of copying a Collection object is not defined (it
could be a deep or shallow copy or not even support copying).
<LI>The associated reference type of a Collection does
not have to be a real C++ reference.
</UL>
Because of the reduced requirements, some care must be taken when
writing code that is meant to be generic for all Collection types.
In particular, a Collection object should be passed by-reference
since assumptions can not be made about the behaviour of the
copy constructor.
<p>
<h3>Associated types</h3>
<Table border>
<TR>
<TD VAlign=top>
Value type
</TD>
<TD VAlign=top>
<tt>X::value_type</tt>
</TD>
<TD VAlign=top>
The type of the object stored in a Collection.
If the Collection is <i>mutable</i> then
the value type must be <A
href="http://www.sgi.com/tech/stl/Assignable.html">Assignable</A>.
Otherwise the value type must be <a href="./CopyConstructible.html">CopyConstructible</a>.
</TD>
</TR>
<TR>
<TD VAlign=top>
Iterator type
</TD>
<TD VAlign=top>
<tt>X::iterator</tt>
</TD>
<TD VAlign=top>
The type of iterator used to iterate through a Collection's
elements. The iterator's value type is expected to be the
Collection's value type. A conversion
from the iterator type to the const iterator type must exist.
The iterator type must be an <A href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</A>.
</TD>
</TR>
<TR>
<TD VAlign=top>
Const iterator type
</TD>
<TD VAlign=top>
<tt>X::const_iterator</tt>
</TD>
<TD VAlign=top>
A type of iterator that may be used to examine, but not to modify,
a Collection's elements.
</TD>
</TR>
<TR>
<TD VAlign=top>
Reference type
</TD>
<TD VAlign=top>
<tt>X::reference</tt>
</TD>
<TD VAlign=top>
A type that behaves like a reference to the Collection's value type.
<a href="#1">[1]</a>
</TD>
</TR>
<TR>
<TD VAlign=top>
Const reference type
</TD>
<TD VAlign=top>
<tt>X::const_reference</tt>
</TD>
<TD VAlign=top>
A type that behaves like a const reference to the Collection's value type.
</TD>
</TR>
<TR>
<TD VAlign=top>
Pointer type
</TD>
<TD VAlign=top>
<tt>X::pointer</tt>
</TD>
<TD VAlign=top>
A type that behaves as a pointer to the Collection's value type.
</TD>
</TR>
<TR>
<TD VAlign=top>
Distance type
</TD>
<TD VAlign=top>
<tt>X::difference_type</tt>
</TD>
<TD VAlign=top>
A signed integral type used to represent the distance between two
of the Collection's iterators. This type must be the same as
the iterator's distance type.
</TD>
</TR>
<TR>
<TD VAlign=top>
Size type
</TD>
<TD VAlign=top>
<tt>X::size_type</tt>
</TD>
<TD VAlign=top>
An unsigned integral type that can represent any nonnegative value
of the Collection's distance type.
</TD>
</tr>
</table>
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign=top>
<tt>X</tt>
</TD>
<TD VAlign=top>
A type that is a model of Collection.
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>a</tt>, <tt>b</tt>
</TD>
<TD VAlign=top>
Object of type <tt>X</tt>.
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>T</tt>
</TD>
<TD VAlign=top>
The value type of <tt>X</tt>.
</TD>
</tr>
</table>
<h3>Valid expressions</h3>
The following expressions must be valid.
<p>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Return type
</TH>
</TR>
<TR>
<TD VAlign=top>
Beginning of range
</TD>
<TD VAlign=top>
<tt>a.begin()</tt>
</TD>
<TD VAlign=top>
<tt>iterator</tt> if <tt>a</tt> is mutable, <tt>const_iterator</tt> otherwise
</TD>
</TR>
<TR>
<TD VAlign=top>
End of range
</TD>
<TD VAlign=top>
<tt>a.end()</tt>
</TD>
<TD VAlign=top>
<tt>iterator</tt> if <tt>a</tt> is mutable, <tt>const_iterator</tt> otherwise
</TD>
</TR>
<TR>
<TD VAlign=top>
Size
</TD>
<TD VAlign=top>
<tt>a.size()</tt>
</TD>
<TD VAlign=top>
<tt>size_type</tt>
</TD>
</TR>
<!--
<TR>
<TD VAlign=top>
Maximum size
</TD>
<TD VAlign=top>
<tt>a.max_size()</tt>
</TD>
<TD VAlign=top>
<tt>size_type</tt>
</TD>
</TR>
<TR>
-->
<TD VAlign=top>
Empty Collection
</TD>
<TD VAlign=top>
<tt>a.empty()</tt>
</TD>
<TD VAlign=top>
Convertible to <tt>bool</tt>
</TD>
</TR>
<TR>
<TD VAlign=top>
Swap
</TD>
<TD VAlign=top>
<tt>a.swap(b)</tt>
</TD>
<TD VAlign=top>
<tt>void</tt>
</TD>
</tr>
</table>
<h3>Expression semantics</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Semantics
</TH>
<TH>
Postcondition
</TH>
</TR>
<TD VAlign=top>
<TR>
<TD VAlign=top>
Beginning of range
</TD>
<TD VAlign=top>
<tt>a.begin()</tt>
</TD>
<TD VAlign=top>
Returns an iterator pointing to the first element in the Collection.
</TD>
<TD VAlign=top>
<tt>a.begin()</tt> is either dereferenceable or past-the-end. It is
past-the-end if and only if <tt>a.size() == 0</tt>.
</TD>
</TR>
<TR>
<TD VAlign=top>
End of range
</TD>
<TD VAlign=top>
<tt>a.end()</tt>
</TD>
<TD VAlign=top>
Returns an iterator pointing one past the last element in the
Collection.
</TD>
<TD VAlign=top>
<tt>a.end()</tt> is past-the-end.
</TD>
</TR>
<TR>
<TD VAlign=top>
Size
</TD>
<TD VAlign=top>
<tt>a.size()</tt>
</TD>
<TD VAlign=top>
Returns the size of the Collection, that is, its number of elements.
</TD>
<TD VAlign=top>
<tt>a.size() >= 0
</TD>
</TR>
<!--
<TR>
<TD VAlign=top>
Maximum size
</TD>
<TD VAlign=top>
<tt>a.max_size()</tt>
</TD>
<TD VAlign=top>
</TD>
<TD VAlign=top>
Returns the largest size that this Collection can ever have. <A href="#8">[8]</A>
</TD>
<TD VAlign=top>
<tt>a.max_size() >= 0 && a.max_size() >= a.size()</tt>
</TD>
</TR>
-->
<TR>
<TD VAlign=top>
Empty Collection
</TD>
<TD VAlign=top>
<tt>a.empty()</tt>
</TD>
<TD VAlign=top>
Equivalent to <tt>a.size() == 0</tt>. (But possibly faster.)
</TD>
<TD VAlign=top>
</TD>
</TR>
<TR>
<TD VAlign=top>
Swap
</TD>
<TD VAlign=top>
<tt>a.swap(b)</tt>
</TD>
<TD VAlign=top>
Equivalent to <tt>swap(a,b)</tt>
</TD>
<TD VAlign=top>
</TD>
</tr>
</table>
<h3>Complexity guarantees</h3>
<tt>begin()</tt> and <tt>end()</tt> are amortized constant time.
<P>
<tt>size()</tt> is at most linear in the Collection's
size. <tt>empty()</tt> is amortized constant time.
<P>
<tt>swap()</tt> is at most linear in the size of the two collections.
<h3>Invariants</h3>
<Table border>
<TR>
<TD VAlign=top>
Valid range
</TD>
<TD VAlign=top>
For any Collection <tt>a</tt>, <tt>[a.begin(), a.end())</tt> is a valid
range.
</TD>
</TR>
<TR>
<TD VAlign=top>
Range size
</TD>
<TD VAlign=top>
<tt>a.size()</tt> is equal to the distance from <tt>a.begin()</tt> to <tt>a.end()</tt>.
</TD>
</TR>
<TR>
<TD VAlign=top>
Completeness
</TD>
<TD VAlign=top>
An algorithm that iterates through the range <tt>[a.begin(), a.end())</tt>
will pass through every element of <tt>a</tt>.
</TD>
</tr>
</table>
<h3>Models</h3>
<UL>
<LI> <tt>array</tt>
<LI> <tt>array_ptr</tt>
<LI> <tt>vector<bool></tt>
</UL>
<h3>Collection Refinements</h3>
There are quite a few concepts that refine the Collection concept,
similar to the concepts that refine the Container concept. Here
is a brief overview of the refining concepts.
<h4>ForwardCollection</h4>
The elements are arranged in some order that
does not change spontaneously from one iteration to the next. As
a result, a ForwardCollection is
<A
href="http://www.sgi.com/tech/stl/EqualityComparable.html">EqualityComparable</A>
and
<A
href="http://www.sgi.com/tech/stl/LessThanComparable.html">LessThanComparable</A>.
In addition, the iterator type of a ForwardCollection is a
MultiPassInputIterator which is just an InputIterator with the added
requirements that the iterator can be used to make multiple passes
through a range, and that if <tt>it1 == it2</tt> and <tt>it1</tt> is
dereferenceable then <tt>++it1 == ++it2</tt>. The ForwardCollection
also has a <tt>front()</tt> method.
<p>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Return type
</TH>
<TH>
Semantics
</TH>
</TR>
<TR>
<TD VAlign=top>
Front
</TD>
<TD VAlign=top>
<tt>a.front()</tt>
</TD>
<TD VAlign=top>
<tt>reference</tt> if <tt>a</tt> is mutable, <br> <tt>const_reference</tt>
otherwise.
</TD>
<TD VAlign=top>
Equivalent to <tt>*(a.begin())</tt>.
</TD>
</TR>
</table>
<h4>ReversibleCollection</h4>
The container provides access to iterators that traverse in both
directions (forward and reverse). The iterator type must meet all of
the requirements of
<a href="http://www.sgi.com/tech/stl/BidirectionalIterator.html">BidirectionalIterator</a>
except that the reference type does not have to be a real C++
reference. The ReversibleCollection adds the following requirements
to those of ForwardCollection.
<p>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Return type
</TH>
<TH>
Semantics
</TH>
</TR>
<TR>
<TD VAlign=top>
Beginning of range
</TD>
<TD VAlign=top>
<tt>a.rbegin()</tt>
</TD>
<TD VAlign=top>
<tt>reverse_iterator</tt> if <tt>a</tt> is mutable,
<tt>const_reverse_iterator</tt> otherwise.
</TD>
<TD VAlign=top>
Equivalent to <tt>X::reverse_iterator(a.end())</tt>.
</TD>
</TR>
<TR>
<TD VAlign=top>
End of range
</TD>
<TD VAlign=top>
<tt>a.rend()</tt>
</TD>
<TD VAlign=top>
<tt>reverse_iterator</tt> if <tt>a</tt> is mutable,
<tt>const_reverse_iterator</tt> otherwise.
</TD>
<TD VAlign=top>
Equivalent to <tt>X::reverse_iterator(a.begin())</tt>.
</TD>
</tr>
<TR>
<TD VAlign=top>
Back
</TD>
<TD VAlign=top>
<tt>a.back()</tt>
</TD>
<TD VAlign=top>
<tt>reference</tt> if <tt>a</tt> is mutable, <br> <tt>const_reference</tt>
otherwise.
</TD>
<TD VAlign=top>
Equivalent to <tt>*(--a.end())</tt>.
</TD>
</TR>
</table>
<h4>SequentialCollection</h4>
The elements are arranged in a strict linear order. No extra methods
are required.
<h4>RandomAccessCollection</h4>
The iterators of a RandomAccessCollection satisfy all of the
requirements of <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>
except that the reference type does not have to be a real C++
reference. In addition, a RandomAccessCollection provides
an element access operator.
<p>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Return type
</TH>
<TH>
Semantics
</TH>
</TR>
<TR>
<TD VAlign=top>
Element Access
</TD>
<TD VAlign=top>
<tt>a[n]</tt>
</TD>
<TD VAlign=top>
<tt>reference</tt> if <tt>a</tt> is mutable,
<tt>const_reference</tt> otherwise.
</TD>
<TD VAlign=top>
Returns the nth element of the Collection.
<tt>n</tt> must be convertible to <tt>size_type</tt>.
Precondition: <tt>0 <= n < a.size()</tt>.
</TD>
</TR>
</table>
<h3>Notes</h3>
<P><A name="1">[1]</A>
The reference type does not have to be a real C++ reference. The
requirements of the reference type depend on the context within which
the Collection is being used. Specifically it depends on the
requirements the context places on the value type of the Collection.
The reference type of the Collection must meet the same requirements
as the value type. In addition, the reference objects must be
equivalent to the value type objects in the collection (which is
trivially true if they are the same object). Also, in a mutable
Collection, an assignment to the reference object must result in an
assignment to the object in the Collection (again, which is trivially
true if they are the same object, but non-trivial if the reference
type is a proxy class).
<h3>See also</h3>
<A href="http://www.sgi.com/tech/stl/Container.html">Container</A>
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright © 2000</TD><TD>
<A HREF=http://www.boost.org/people/jeremy_siek.htm>Jeremy Siek</A>, Univ.of Notre Dame and C++ Library & Compiler Group/SGI (<A HREF="mailto:jsiek@engr.sgi.com">jsiek@engr.sgi.com</A>)
</TD></TR></TABLE>
</BODY>
</HTML>
|