1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta name="generator" content=
"HTML Tidy for Linux/x86 (vers 1st March 2004), see www.w3.org" />
<meta http-equiv="Content-Type" content=
"text/html; charset=us-ascii" />
<link href="ublas.css" type="text/css" />
<title>Container Concepts</title>
</head>
<body>
<h1><img src="../../../../boost.png" align="middle" />
Container Concepts</h1>
<h2><a name="vector" id="vector"></a>Vector</h2>
<h4>Description</h4>
<p>A Vector describes common aspects of dense, packed and sparse
vectors.</p>
<h4>Refinement of</h4>
<p><a href="http://www.sgi.com/tech/stl/DefaultConstructible.html">DefaultConstructible</a>,
<a href="expression_concept.htm#vector_expression">Vector Expression</a>
<a href="#vector_expression_note">[1]</a>.</p>
<h4>Associated types</h4>
<p>In addition to the types defined by <a href="expression_concept.htm#vector_expression">Vector Expression</a></p>
<table border="1" summary="types">
<tbody>
<tr>
<td>Public base</td>
<td>vector_container<V></td>
<td>V must be derived from this public base type.</td>
</tr>
<tr>
<td>Storage array</td>
<td>V::array_type</td>
<td>
Dense Vector ONLY. The type of underlying storage array used to store the elements. The array_type must model the
<a href="storage_concept.htm"><b>Storage</b></a> concept.</td>
</tr>
</tbody>
</table>
<h4>Notation</h4>
<table border="0" summary="notation">
<tbody>
<tr>
<td><code>V</code></td>
<td>A type that is a model of Vector</td>
</tr>
<tr>
<td><code>v</code></td>
<td>Objects of type <code>V</code></td>
</tr>
<tr>
<td><code>n, i</code></td>
<td>Objects of a type convertible to <code>size_type</code></td>
</tr>
<tr>
<td><code>t</code></td>
<td>Object of a type convertible to <code>value_type</code></td>
</tr>
<tr>
<td><code>p</code></td>
<td>Object of a type convertible to <code>bool</code></td>
</tr>
</tbody>
</table>
<h4>Definitions</h4>
<h4>Valid expressions</h4>
<p>In addition to the expressions defined in <a href="http://www.sgi.com/tech/stl/DefaultConstructible.html">DefaultConstructible</a>,
<a href="expression_concept.htm#vector_expression">Vector Expression</a> the following expressions must be valid.</p>
<table border="1" summary="expressions">
<tbody>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Type requirements</th>
<th>Return type</th>
</tr>
<tr>
<td>Sizing constructor</td>
<td><code>V v (n)</code></td>
<td> </td>
<td><code>V</code></td>
</tr>
<tr>
<td>Insert</td>
<td><code>v.insert_element (i, t)</code></td>
<td><code>v</code> is mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td>Erase</td>
<td><code>v.erase_element (i)</code></td>
<td><code>v</code> is mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td>Clear</td>
<td><code>v.clear ()</code></td>
<td><code>v</code> is mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td>Resize</td>
<td><code>v.resize (n)</code><br />
<code>v.resize (n, p)</code></td>
<td><code>v</code> is mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td>Storage</td>
<td><code>v.data()</code></td>
<td><code>v</code> is mutable and Dense.</td>
<td><code>array_type&</code> if a is mutable, <code>const array_type&</code> otherwise</td>
</tr>
</tbody>
</table>
<h4>Expression semantics</h4>
<p>Semantics of an expression is defined only where it differs
from, or is not defined in <a href=
"expression_concept.htm#vector_expression">Vector Expression</a> .</p>
<table border="1" summary="semantics">
<tr>
<th>Name</th>
<th>Expression</th>
<th>Precondition</th>
<th>Semantics</th>
<th>Postcondition</th>
</tr>
<tr>
<td>Sizing constructor</td>
<td><code>V v (n)</code></td>
<td><code>n >= 0</code></td>
<td>Allocates a vector of<code>n</code> elements.</td>
<td><code>v.size () == n</code>.</td>
</tr>
<tr>
<td>Element access <a href="#element_access_note">[2]</a></td>
<td><code>v[n]</code></td>
<td><code>0<n>v.size()</code></td>
<td>returns the n-th element in v</td>
<td> </td>
</tr>
<tr>
<td>Insert</td>
<td><code>v.insert_element (i, t)</code></td>
<td><code>0 <= i < v.size ()</code>.</td>
<td>Inserts an element at <code>v (i)</code> with value <code>t</code>.
The storage requirement of the Vector may be increased.</td>
<td><code>v (i)</code> is equal to <code>t</code>.</td>
</tr>
<tr>
<td>Erase</td>
<td><code>v.erase_element (i)</code></td>
<td><code>0 <= i < v.size ()</code></td>
<td>Destroys the element as <code>v (i)</code> and replaces it with the default
<code>value_type ()</code>.
The storage requirement of the Vector may be decreased.</td>
<td><code>v (i)</code> is equal to <code>value_type ()</code>.</td>
</tr>
<tr>
<td>Clear</td>
<td><code>v.clear ()</code></td>
<td> </td>
<td>Equivalent to<br />
<code>for (i = 0; i < v.size (); ++ i)</code><br />
<code>v.erase_element (i);</code></td>
<td> </td>
</tr>
<tr>
<td>Resize</td>
<td><code>v.resize (n)
<br />v.resize (n, p)</code></td>
<td> </td>
<td>Reallocates the vector so that it can hold <code>n</code>
elements.<br />
Erases or appends elements in order to bring the vector to the prescribed size. Appended elements copies of <code>value_type()</code>.
<br />
When <code>p == false</code> then existing elements are not preserved and elements will not appended as normal. Instead the vector is in the same state as that after an equivalent sizing constructor.</td>
<td><code>v.size () == n</code>.</td>
</tr>
<tr>
<td>Storage</td>
<td><code>v.data()</code></td>
<td></td>
<td>Returns a reference to the underlying dense storage.</td>
<td> </td>
</tr>
</table>
<h4>Complexity guarantees</h4>
<p>The run-time complexity of the sizing constructor is linear in
the vector's size.</p>
<p>The run-time complexity of insert_element and erase_element is specific for the
Vector model and it depends on increases/decreases in storage requirements.</p>
<p>The run-time complexity of resize is linear in the vector's
size.</p>
<h4>Invariants</h4>
<h4>Models</h4>
<ul>
<li><code>vector</code>, <code>bounded_vector</code>, <code>c_vector</code></li>
<li><code>unit_vector</code>, <code>zero_vector</code>, <code>scalar_vector</code></li>
<li><code>mapped_vector;</code>, <code>compressed_vector</code>, <code>coordinate_vector</code></li>
</ul>
<h4>Notes</h4>
<p><a name="vector_expression_note">[1]</a>
As a user you need not care about <tt>Vector</tt> being a refinement of the VectorExpression. Being a refinement of the VectorExpression is only important for the template-expression engine but not the user.</p>
<p><a name="element_access_note">[2]</a>
The <code>operator[]</code> is added purely for convenience
and compatibility with the <code>std::vector</code>. In uBLAS however,
generally <code>operator()</code> is used for indexing because this can be
used for both vectors and matrices.</p>
<h2><a name="matrix" id="matrix"></a>Matrix</h2>
<h4>Description</h4>
<p>A Matrix describes common aspects of dense, packed and sparse
matrices.</p>
<h4>Refinement of</h4>
<p><a href="http://www.sgi.com/tech/stl/DefaultConstructible.html">DefaultConstructible</a>,
<a href="expression_concept.htm#matrix_expression">Matrix Expression</a>
<a href="#matrix_expression_note">[1]</a>
.</p>
<h4>Associated types</h4>
<p>In addition to the types defined by <a href="expression_concept.htm#matrix_expression">Matrix Expression</a></p>
<table border="1" summary="types">
<tbody>
<tr>
<td>Public base</td>
<td>matrix_container<M></td>
<td>M must be derived from this public base type.</td>
</tr>
<tr>
<td>Storage array</td>
<td>M::array_type</td>
<td>Dense Matrix ONLY. The type of underlying storage array used to store the elements. The array_type must model
the <a href="storage_concept.htm"><b>Storage</b></a> concept.</td>
</tr>
</tbody>
</table>
<h4>Notation</h4>
<table border="0" summary="notation">
<tbody>
<tr>
<td><code>M</code></td>
<td>A type that is a model of Matrix</td>
</tr>
<tr>
<td><code>m</code></td>
<td>Objects of type <code>M</code></td>
</tr>
<tr>
<td><code>n1, n2, i, j</code></td>
<td>Objects of a type convertible to <code>size_type</code></td>
</tr>
<tr>
<td><code>t</code></td>
<td>Object of a type convertible to <code>value_type</code></td>
</tr>
<tr>
<td><code>p</code></td>
<td>Object of a type convertible to <code>bool</code></td>
</tr>
</tbody>
</table>
<h4>Definitions</h4>
<h4>Valid expressions</h4>
<p>In addition to the expressions defined in <a href=
"expression_concept.htm#matrix_expression">Matrix Expression</a> the
following expressions must be valid.</p>
<table border="1" summary="expressions">
<tbody>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Type requirements</th>
<th>Return type</th>
</tr>
<tr>
<td>Sizing constructor</td>
<td><code>M m (n1, n2)</code></td>
<td> </td>
<td><code>M</code></td>
</tr>
<tr>
<td>Insert</td>
<td><code>m.insert_element (i, j, t)</code></td>
<td><code>m</code> is mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td>Erase</td>
<td><code>m.erase_element (i, j)</code></td>
<td><code>m</code> is mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td>Clear</td>
<td><code>m.clear ()</code></td>
<td><code>m</code> is mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td>Resize</td>
<td><code>m.resize (n1, n2)</code><br />
<code>m.resize (n1, n2, p)</code></td>
<td><code>m</code> is mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td>Storage</td>
<td><code>m.data()</code></td>
<td><code>m</code> is mutable and Dense.</td>
<td><code>array_type&</code> if a is mutable, <code>const array_type&</code> otherwise</td>
</tr>
</tbody>
</table>
<h4>Expression semantics</h4>
<p>Semantics of an expression is defined only where it differs
from, or is not defined in <a href=
"expression_concept.htm#matrix_expression">Matrix Expression</a> .</p>
<table border="1" summary="semantics">
<tbody>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Precondition</th>
<th>Semantics</th>
<th>Postcondition</th>
</tr>
<tr>
<td>Sizing constructor</td>
<td><code>M m (n1, n2)</code></td>
<td><code>n1 >= 0</code> and <code>n2 >= 0</code></td>
<td>Allocates a matrix of <code>n1</code> rows and <code>n2</code>
columns.</td>
<td><code>m.size1 () == n1</code> and <code>m.size2 () ==
n2</code>.</td>
</tr>
<tr>
<td>Insert</td>
<td><code>m.insert_element (i, j, t)</code></td>
<td><code>0 <= i < m.size1 ()</code>,<br />
<code>0 <= j < m.size2 ()</code>.</td>
<td>Inserts an element at <code>m (i, j)</code> with value <code>t</code>.
The storage requirement of the Matrix may be increased.</td>
<td><code>m (i, j)</code> is equal to <code>t</code>.</td>
</tr>
<tr>
<td>Erase</td>
<td><code>m.erase_element (i, j)</code></td>
<td><code>0 <= i < m.size1 ()</code>and <code><br />
0 <= j < m.size2</code></td>
<td>Destroys the element as <code>m (i, j)</code> and replaces it with the default
<code>value_type ()</code>.
The storage requirement of the Matrix may be decreased.</td>
<td><code>m (i, j)</code> is equal to <code>value_type ()</code>.</td>
</tr>
<tr>
<td>Clear</td>
<td><code>m.clear ()</code></td>
<td> </td>
<td>Equivalent to<br />
<code>for (i = 0; i < m.size1 (); ++ i)</code><br />
<code>for (j = 0; j < m.size2 (); ++ j)</code><br />
<code>m.erase_element (i, j);</code></td>
<td> </td>
</tr>
<tr>
<td>Resize</td>
<td><code>m.resize (n1, n2)
<br />
m.resize (n1, n2, p)
</code></td>
<td> </td>
<td>Reallocate the matrix so that it can hold <code>n1</code> rows
and <code>n2</code> columns.<br />
Erases or appends elements in order to bring the matrix to the
prescribed size. Appended elements are <code>value_type()</code>
copies.<br />
When <code>p == false</code> then existing elements are not preserved and elements will not appended as normal. Instead the matrix is in the same state as that after an equivalent sizing constructor.</td>
<td><code>m.size1 () == n1</code> and <code>m.size2 () == n2</code>.</td>
</tr>
<tr>
<td>Storage</td>
<td><code>m.data()</code></td>
<td></td>
<td>Returns a reference to the underlying dense storage.</td>
<td> </td>
</tbody>
</table>
<h4>Complexity guarantees</h4>
<p>The run-time complexity of the sizing constructor is quadratic
in the matrix's size.</p>
<p>The run-time complexity of insert_element and erase_element is specific for the
Matrix model and it depends on increases/decreases in storage requirements.</p>
<p>The run-time complexity of resize is quadratic in the matrix's
size.</p>
<h4>Invariants</h4>
<h4>Models</h4>
<ul>
<li><code>matrix</code>, <code>bounded_matrix</code>, <code>c_matrix</code></li>
<li><code>identity_matrix</code> , <code>zero_matrix</code> , <code>scalar_matrix</code></li>
<li><code>triangular_matrix</code> , <code>symmetric_matrix</code> , <code>banded_matrix</code></li>
<li><code>mapped_matrix</code> , <code>compressed_matrix</code> , <code>coordinate_matrix</code></li>
</ul>
<h4>Notes</h4>
<p><a name="matrix_expression_note">[1]</a>
As a user you need not care about <tt>Matrix</tt> being a refinement of the MatrixExpression. Being a refinement of the MatrixExpression is only important for the template-expression engine but not the user.</p>
<hr />
<p>Copyright (©) 2000-2002 Joerg Walter, Mathias Koch<br />
Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies.
This document is provided ``as is'' without express or implied
warranty, and with no claim as to its suitability for any
purpose.</p>
</body>
</html>
|