File: expression_concept.htm

package info (click to toggle)
boost 1.34.1-14
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 116,412 kB
  • ctags: 259,566
  • sloc: cpp: 642,395; xml: 56,450; python: 17,612; ansic: 14,520; sh: 2,265; yacc: 858; perl: 481; makefile: 478; lex: 94; sql: 74; csh: 6
file content (1038 lines) | stat: -rw-r--r-- 29,374 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />
<link href="ublas.css" type="text/css" />
<title>Expression Concepts</title>
</head>
<body>
<h1><img src="../../../../boost.png" align="middle" />
Expression Concepts</h1>
<h2><a name="scalar_expression" id="scalar_expression"></a>Scalar Expression</h2>
<h4>Description</h4>
<p>A Scalar Expression is an expression convertible to a scalar
type.</p>
<h4>Refinement of</h4>
<p>Default Constructible.</p>
<h4>Associated types</h4>
<table border="1" summary="associated types">
<tbody>
<tr>
<td>Public base</td>
<td>scaler_expression&lt;S&gt;</td>
<td>S must be derived from this public base type.</td>
</tr>
<tr>
<td>Value type</td>
<td><code>value_type</code></td>
<td>The type of the scalar expression.</td>
</tr>
</tbody>
</table>
<h4>Notation</h4>
<table border="0" summary="notation">
<tbody>
<tr>
<td><code>S</code></td>
<td>A type that is a model of Scalar Expression</td>
</tr>
</tbody>
</table>
<h4>Definitions</h4>
<h4>Valid expressions</h4>
<p>In addition to the expressions defined in Default Constructible
the following expressions must be valid.</p>
<table border="1" summary="expressions">
<tbody>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Type requirements</th>
<th>Return type</th>
</tr>
<tr>
<td>Evaluation</td>
<td><code>operator value_type () const</code></td>
<td>&nbsp;</td>
<td><code>value_type</code></td>
</tr>
</tbody>
</table>
<h4>Expression semantics</h4>
<p>Semantics of an expression is defined only where it differs
from, or is not defined in Default Constructible.</p>
<table border="1" summary="semantics">
<tbody>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Precondition</th>
<th>Semantics</th>
<th>Postcondition</th>
</tr>
<tr>
<td>Evaluation</td>
<td><code>operator value_type () const</code></td>
<td>&nbsp;</td>
<td>&nbsp; Evaluates the scalar expression.</td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
<h4>Complexity guarantees</h4>
<p>The run-time complexity of the evaluation is specific for the
evaluated scalar expression.</p>
<h4>Invariants</h4>
<h4>Models</h4>
<ul>
<li><code>vector_scalar_unary</code></li>
<li><code>vector_scalar_binary</code></li>
</ul>
<h2><a name="vector_expression" id="vector_expression"></a>Vector Expression</h2>
<h4>Description</h4>
<p>A Vector Expression is an expression evaluatable to a vector.
Vector Expression provides an <a href=
"iterator_concept.htm#indexed_bidirectional_iterator">Indexed Bidirectional
Iterator</a> or an <a href=
"iterator_concept.htm#indexed_random_access_iterator">Indexed Random Access
Iterator</a> .</p>
<h4>Refinement of</h4>
<p>Default Constructible.</p>
<h4>Associated types</h4>
<table border="1" summary="associated types">
<tbody>
<tr>
<td>Public base</td>
<td>vector_expression&lt;V&gt;</td>
<td>V must be derived from this public base type.</td>
</tr>
<tr>
<td>Value type</td>
<td><code>value_type</code></td>
<td>
The element type of the vector expression.
</td>
</tr>
<tr>
<td>Reference type</td>
<td><code>reference</code></td>
<td>
The return type when accessing an element of a vector expression.
<br />
Convertable to a<code>value_type</code>.
</td>
</tr>
<tr>
<td>Const reference type</td>
<td><code>const_reference</code></td>
<td>
The return type when accessing an element of a constant vector expression.
<br />
Convertable to a<code>value_type</code>.
</td>
</tr>
<tr>
<td>Size type</td>
<td><code>size_type</code></td>
<td>
The index type of the vector expression. Am unsigned integral type used to represent size and index values.
<br />
Can represent any nonnegative value of <code>difference_type</code>.
</td>
</tr>
<tr>
<td>Distance type</td>
<td><code>difference_type</code></td>
<td>
A signed integral type used to represent the distance between two of the vector expression&#039;s iterators.
</td>
</tr>
<tr>
<td>Const iterator type</td>
<td><code>const_iterator</code></td>
<td>A type of iterator that may be used to examine a vector
expression's elements.</td>
</tr>
<tr>
<td>Iterator type</td>
<td><code>iterator</code></td>
<td>A type of iterator that may be used to modify a vector
expression's elements.</td>
</tr>
<tr>
<td>Const reverse iterator type</td>
<td><code>const_reverse_iterator</code></td>
<td>A Reverse Iterator adaptor whose base iterator type is the
vector expression's const iterator type.</td>
</tr>
<tr>
<td>Reverse iterator type</td>
<td><code>reverse_iterator</code></td>
<td>A Reverse Iterator adaptor whose base iterator type is the
vector expression's iterator type.</td>
</tr>
</tbody>
</table>
<h4>Notation</h4>
<table border="0" summary="notation">
<tbody>
<tr>
<td><code>V</code></td>
<td>A type that is a model of Vector Expression</td>
</tr>
<tr>
<td><code>v, v1, v2</code></td>
<td>Object of type <code>V</code></td>
</tr>
<tr>
<td><code>i</code></td>
<td>Object of a type convertible to <code>size_type</code></td>
</tr>
<tr>
<td><code>t</code></td>
<td>Object of a type convertible to <code>value_type</code></td>
</tr>
</tbody>
</table>
<h4>Definitions</h4>
<h4>Valid expressions</h4>
<p>In addition to the expressions defined in Default Constructible
the following expressions must be valid.</p>
<table border="1" summary="expressions">
<tbody>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Type requirements</th>
<th>Return type</th>
</tr>
<tr>
<td rowspan="2">Beginning of range</td>
<td><code>v.begin ()</code></td>
<td>&nbsp;</td>
<td><code>const_iterator</code></td>
</tr>
<tr>
<td><code>v.begin ()</code></td>
<td><code>v</code> is mutable.</td>
<td><code>iterator</code></td>
</tr>
<tr>
<td rowspan="2">End of range</td>
<td><code>v.end ()</code></td>
<td>&nbsp;</td>
<td><code>const_iterator</code></td>
</tr>
<tr>
<td><code>v.end ()</code></td>
<td><code>v</code> is mutable.</td>
<td><code>iterator</code></td>
</tr>
<tr>
<td>Size</td>
<td><code>v.size ()</code></td>
<td>&nbsp;</td>
<td><code>size_type</code></td>
</tr>
<tr>
<td>Swap</td>
<td><code>v1.swap (v2)</code></td>
<td><code>v1</code> and <code>v2</code> are mutable.</td>
<td><code>void</code></td>
</tr>
<tr>
<td rowspan="2">Beginning of reverse range</td>
<td><code>v.rbegin ()</code></td>
<td>&nbsp;</td>
<td><code>const_reverse_iterator</code></td>
</tr>
<tr>
<td><code>v.rbegin ()</code></td>
<td><code>v</code> is mutable.</td>
<td><code>reverse_iterator</code></td>
</tr>
<tr>
<td rowspan="2">End of reverse range</td>
<td><code>v.rend ()</code></td>
<td>&nbsp;</td>
<td><code>const_reverse_iterator</code></td>
</tr>
<tr>
<td><code>v.rend ()</code></td>
<td><code>v</code> is mutable.</td>
<td><code>reverse_iterator</code></td>
</tr>
<tr>
<td>Element access</td>
<td><code>v (i)</code></td>
<td><code>i</code> is convertible to <code>size_type</code>.</td>
<td>Convertible to <code>value_type</code>.</td>
</tr>
<tr>
<td rowspan="2">Assignment</td>
<td><code>v2 = v1</code></td>
<td><code>v2</code> is mutable and <code>v1</code> is convertible
to <code>V</code>.</td>
<td><code>V &amp;</code></td>
</tr>
<tr>
<td><code>v2.assign (v1)</code></td>
<td><code>v2</code> is mutable and <code>v1</code> is convertible
to <code>V</code>.</td>
<td><code>V &amp;</code></td>
</tr>
<tr>
<td rowspan="5">Computed assignment</td>
<td><code>v2 += v1</code></td>
<td><code>v2</code> is mutable and <code>v1</code> is convertible
to <code>V</code>.</td>
<td><code>V &amp;</code></td>
</tr>
<tr>
<td><code>v2.plus_assign (v1)</code></td>
<td><code>v2</code> is mutable and <code>v1</code> is convertible
to <code>V</code>.</td>
<td><code>V &amp;</code></td>
</tr>
<tr>
<td><code>v2 -= v1</code></td>
<td><code>v2</code> is mutable and <code>v1</code> is convertible
to <code>V</code>.</td>
<td><code>V &amp;</code></td>
</tr>
<tr>
<td><code>v2.minus_assign (v1)</code></td>
<td><code>v2</code> is mutable and <code>v1</code> is convertible
to <code>V</code>.</td>
<td><code>V &amp;</code></td>
</tr>
<tr>
<td><code>v *= t</code></td>
<td><code>v</code> is mutable and <code>t</code> is convertible to
<code>value_type</code>.</td>
<td><code>V &amp;</code></td>
</tr>
</tbody>
</table>
<h4>Expression semantics</h4>
<p>Semantics of an expression is defined only where it differs
from, or is not defined in Default Constructible.</p>
<table border="1" summary="semantics">
<tbody>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Precondition</th>
<th>Semantics</th>
<th>Postcondition</th>
</tr>
<tr>
<td>Beginning of range</td>
<td><code>v.begin ()</code></td>
<td>&nbsp;</td>
<td>Returns an iterator pointing to the first element in the vector
expression.</td>
<td><code>v.begin ()</code> is either dereferenceable or
past-the-end. It is past-the-end if and only if <code>v.size () ==
0</code>.</td>
</tr>
<tr>
<td>End of range</td>
<td><code>v.end ()</code></td>
<td>&nbsp;</td>
<td>Returns an iterator pointing one past the last element in the
vector expression.</td>
<td><code>v.end ()</code> is past-the-end.</td>
</tr>
<tr>
<td>Size</td>
<td><code>v.size ()</code></td>
<td>&nbsp;</td>
<td>Returns the size of the vector expression, that is, its number
of elements.</td>
<td><code>v.size () &gt;= 0</code></td>
</tr>
<tr>
<td>Swap</td>
<td><code>v1.swap (v2)</code></td>
<td>&nbsp;</td>
<td>Equivalent to <code>swap (v1, v2)</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>Beginning of reverse range</td>
<td><code>v.rbegin ()</code></td>
<td>&nbsp;</td>
<td>Equivalent to <code>reverse_iterator (v.end ())</code>.</td>
<td><code>v.rbegin ()</code> is either dereferenceable or
past-the-end. It is past-the-end if and only if <code>v.size () ==
0</code>.</td>
</tr>
<tr>
<td>End of reverse range</td>
<td><code>v.rend ()</code></td>
<td>&nbsp;</td>
<td>Equivalent to <code>reverse_iterator (v.begin ())</code>.</td>
<td><code>v.rend ()</code> is past-the-end.</td>
</tr>
<tr>
<td>Element access</td>
<td><code>v (i)</code></td>
<td><code>0 &lt;= i &lt; v.size ()</code></td>
<td>Returns the <code>i</code>-th element of the vector
expression.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td rowspan="2">Assignment</td>
<td><code>v2 = v1</code></td>
<td><code>v1.size () == v2.size ()</code></td>
<td>Assigns every element of the evaluated vector expression
<code>v1</code> to the corresponding element of <code>v2</code>
.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>v2.assign (v1)</code></td>
<td><code>v1.size () == v2.size ()</code></td>
<td>Assigns every element of <code>v1</code> to the corresponding
element of <code>v2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td rowspan="5">Computed assignment</td>
<td><code>v2 += v1</code></td>
<td><code>v1.size () == v2.size ()</code></td>
<td>Adds every element of the evaluated vector expression
<code>v1</code> to the corresponding element of
<code>v2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>v2.plus_assign (v1)</code></td>
<td><code>v1.size () == v2.size ()</code></td>
<td>Adds every element of <code>v1</code> to the corresponding
element of <code>v2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>v2 -= v1</code></td>
<td><code>v1.size () == v2.size ()</code></td>
<td>Subtracts every element of the evaluated vector expression
<code>v1</code> from the corresponding element of <code>v2</code>
.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>v2.minus_assign (v1)</code></td>
<td><code>v1.size () == v2.size ()</code></td>
<td>Subtracts every element of <code>v1</code> from the
corresponding element of <code>v2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>v *= t</code></td>
<td>&nbsp;</td>
<td>Multiplies every element of <code>v</code> with <code>t</code>
.</td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
<h4>Complexity guarantees</h4>
<p>The run-time complexity of <code>begin ()</code> and <code>end
()</code> is specific for the evaluated vector expression,
typically amortized constant time.</p>
<p>The run-time complexity of <code>size ()</code> is constant
time.</p>
<p>The run-time complexity of <code>swap ()</code> is specific for
the evaluated vector expression, typically constant time.</p>
<p>The run-time complexity of <code>rbegin ()</code> and <code>rend
()</code> is specific for the evaluated vector expression,
typically amortized constant time.</p>
<p>The run-time complexity of the element access is specific for
the evaluated vector expression, typically amortized constant time
for the dense and logarithmic for the sparse case.</p>
<p>The run-time complexity of the arithmetic operations is specific
for the evaluated vector expressions, typically linear in the size
of the expressions.</p>
<h4>Invariants</h4>
<table border="1" summary="invariants">
<tbody>
<tr>
<td>Valid range</td>
<td>For any vector expression <code>v</code>, <code>[v.begin (),
v.end ())</code> is a valid range.</td>
</tr>
<tr>
<td>Completeness</td>
<td>An algorithm that iterates through the range <code>[v.begin (),
v.end ())</code> will pass through every element of <code>v</code>
.</td>
</tr>
<tr>
<td>Valid reverse range</td>
<td><code>[v.rbegin (), v.rend ())</code> is a valid range.</td>
</tr>
<tr>
<td>Equivalence of ranges</td>
<td>The distance from <code>v.begin ()</code> to <code>v.end
()</code> is the same as the distance from <code>v.rbegin ()</code>
to <code>v.rend ()</code>.</td>
</tr>
</tbody>
</table>
<h4>Models</h4>
<ul>
<li><code>vector_range;</code></li>
<li><code>vector_slice</code></li>
<li><code>matrix_row</code></li>
<li><code>matrix_column</code></li>
<li><code>matrix_vector_range</code></li>
<li><code>matrix_vector_slice</code></li>
<li><code>vector_unary</code></li>
<li><code>vector_binary</code></li>
<li><code>vector_binary_scalar1</code></li>
<li><code>vector_binary_scalar2</code></li>
<li><code>matrix_vector_unary1</code></li>
<li><code>matrix_vector_unary2</code></li>
<li><code>matrix_vector_binary1</code></li>
<li><code>matrix_vector_binary2</code></li>
</ul>

<h2><a name="matrix_expression" id="matrix_expression"></a>Matrix Expression</h2>
<h4>Description</h4>
<p>A Matrix Expression is an expression evaluatable to a matrix.
Matrix Expression provides an <a href=
"iterator_concept.htm#indexed_bidirectional_cr_iterator">Indexed
Bidirectional Column/Row Iterator</a> or an <a href=
"iterator_concept.htm#indexed_random_access_cr_iterator">Indexed Random
Access Column/Row Iterator</a> .</p>
<h4>Refinement of</h4>
<p>Default Constructible.</p>
<h4>Associated types</h4>
<table border="1" summary="associated types">
<tbody>
<tr>
<td>Public base</td>
<td>matrix_expression&lt;M&gt;</td>
<td>M must be derived from this public base type.</td>
</tr>
<tr>
<td>Value type</td>
<td><code>value_type</code></td>
<td>
The element type of the matrix expression.
</td>
</tr>
<tr>
<td>Reference type</td>
<td><code>reference</code></td>
<td>
The return type when accessing an element of a matrix expression.
<br />
Convertable to a<code>value_type</code>.
</td>
</tr>
<tr>
<td>Const reference type</td>
<td><code>const_reference</code></td>
<td>
The return type when accessing an element of a constant matrix expression.
<br />
Convertable to a<code>value_type</code>.
</td>
</tr>
<tr>
<td>Size type</td>
<td><code>size_type</code></td>
<td>
The index type of the matrix expression. Am unsigned integral type used to represent size and index values.
<br />
Can represent any nonnegative value of <code>difference_type</code>.
</td>
</tr>
<tr>
<td>Distance type</td>
<td><code>difference_type</code></td>
<td>
A signed integral type used to represent the distance between two of the matrix expression&#039;s iterators.
</td>
</tr>
<tr>
<td rowspan="2">Const iterator types</td>
<td><code>const_iterator1</code></td>
<td>A type of column iterator that may be used to examine a matrix
expression's elements.</td>
</tr>
<tr>
<td><code>const_iterator2</code></td>
<td>A type of row iterator that may be used to examine a matrix
expression's elements.</td>
</tr>
<tr>
<td rowspan="2">Iterator types</td>
<td><code>iterator1</code></td>
<td>A type of column iterator that may be used to modify a matrix
expression's elements.</td>
</tr>
<tr>
<td><code>iterator2</code></td>
<td>A type of row iterator that may be used to modify a matrix
expression's elements.</td>
</tr>
<tr>
<td rowspan="2">Const reverse iterator types</td>
<td><code>const_reverse_iterator1</code></td>
<td>A Reverse Iterator adaptor whose base iterator type is the
matrix expression's const column iterator type.</td>
</tr>
<tr>
<td><code>const_reverse_iterator2</code></td>
<td>A Reverse Iterator adaptor whose base iterator type is the
matrix expression's const row iterator type.</td>
</tr>
<tr>
<td rowspan="2">Reverse iterator types</td>
<td><code>reverse_iterator1</code></td>
<td>A Reverse Iterator adaptor whose base iterator type is the
matrix expression's column iterator type.</td>
</tr>
<tr>
<td><code>reverse_iterator2</code></td>
<td>A Reverse Iterator adaptor whose base iterator type is the
matrix expression's row iterator type.</td>
</tr>
</tbody>
</table>
<h4>Notation</h4>
<table border="0" summary="notation">
<tbody>
<tr>
<td><code>M</code></td>
<td>A type that is a model of Matrix Expression</td>
</tr>
<tr>
<td><code>m, m1, m2</code></td>
<td>Object of type <code>M</code></td>
</tr>
<tr>
<td><code>i, j</code></td>
<td>Objects of a type convertible to <code>size_type</code></td>
</tr>
<tr>
<td><code>t</code></td>
<td>Object of a type convertible to <code>value_type</code></td>
</tr>
</tbody>
</table>
<h4>Definitions</h4>
<h4>Valid expressions</h4>
<p>In addition to the expressions defined in Default Constructible
the following expressions must be valid.</p>
<table border="1" summary="expressions">
<tbody>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Type requirements</th>
<th>Return type</th>
</tr>
<tr>
<td rowspan="4">Beginning of range</td>
<td><code>m.begin1 ()</code></td>
<td>&nbsp;</td>
<td><code>const_iterator1</code></td>
</tr>
<tr>
<td><code>m.begin2 ()</code></td>
<td>&nbsp;</td>
<td><code>const_iterator2</code></td>
</tr>
<tr>
<td><code>m.begin1 ()</code></td>
<td><code>m</code> is mutable.&nbsp;</td>
<td><code>iterator1</code></td>
</tr>
<tr>
<td><code>m.begin2 ()</code></td>
<td><code>m</code> is mutable.</td>
<td><code>iterator2</code></td>
</tr>
<tr>
<td rowspan="4">End of range</td>
<td><code>m.end1 ()</code></td>
<td>&nbsp;</td>
<td><code>const_iterator1</code></td>
</tr>
<tr>
<td><code>m.end2 ()</code></td>
<td>&nbsp;</td>
<td><code>const_iterator2</code></td>
</tr>
<tr>
<td><code>m.end1 ()</code></td>
<td><code>m</code> is mutable.&nbsp;</td>
<td><code>iterator1</code></td>
</tr>
<tr>
<td><code>m.end2 ()</code></td>
<td><code>m</code> is mutable.</td>
<td><code>iterator2</code></td>
</tr>
<tr>
<td rowspan="2">Size</td>
<td><code>m.size1 ()</code></td>
<td>&nbsp;</td>
<td><code>size_type</code></td>
</tr>
<tr>
<td><code>m.size2 ()</code></td>
<td>&nbsp;</td>
<td><code>size_type</code></td>
</tr>
<tr>
<td>Swap</td>
<td><code>m1.swap (m2)</code></td>
<td><code>m1</code> and <code>m2</code> are mutable.&nbsp;</td>
<td><code>void</code></td>
</tr>
<tr>
<td rowspan="4">Beginning of reverse range</td>
<td><code>m.rbegin1 ()</code></td>
<td>&nbsp;</td>
<td><code>const_reverse_iterator1</code></td>
</tr>
<tr>
<td><code>m.rbegin2 ()</code></td>
<td>&nbsp;</td>
<td><code>const_reverse_iterator2</code></td>
</tr>
<tr>
<td><code>m.rbegin1 ()</code></td>
<td><code>m</code> is mutable.&nbsp;</td>
<td><code>reverse_iterator1</code></td>
</tr>
<tr>
<td><code>m.rbegin2 ()</code></td>
<td><code>m</code> is mutable.</td>
<td><code>reverse_iterator2</code></td>
</tr>
<tr>
<td rowspan="4">End of reverse range</td>
<td><code>m.rend1 ()</code></td>
<td>&nbsp;</td>
<td><code>const_reverse_iterator1</code></td>
</tr>
<tr>
<td><code>m.rend2 ()</code></td>
<td>&nbsp;</td>
<td><code>const_reverse_iterator2</code></td>
</tr>
<tr>
<td><code>m.rend1 ()</code></td>
<td><code>m</code> is mutable.</td>
<td><code>reverse_iterator1</code></td>
</tr>
<tr>
<td><code>m.rend2 ()</code></td>
<td><code>m</code> is mutable.</td>
<td><code>reverse_iterator2</code></td>
</tr>
<tr>
<td>Element access</td>
<td><code>m (i, j)</code></td>
<td><code>i</code> and <code>j</code> are convertible to
<code>size_type</code> .</td>
<td>Convertible to <code>value_type</code>.</td>
</tr>
<tr>
<td rowspan="2">Assignment</td>
<td><code>m2 = m1</code></td>
<td><code>m2</code> is mutable and <code>m1</code> is convertible
to <code>M</code>.</td>
<td><code>M &amp;</code></td>
</tr>
<tr>
<td><code>m2.assign (m1)</code></td>
<td><code>m2</code> is mutable and <code>m1</code> is convertible
to <code>M</code>.</td>
<td><code>M &amp;</code></td>
</tr>
<tr>
<td rowspan="5">Computed assignment</td>
<td><code>m2 += m1</code></td>
<td><code>m2</code> is mutable and <code>m1</code> is convertible
to <code>M</code>.</td>
<td><code>M &amp;</code></td>
</tr>
<tr>
<td><code>m2.plus_assign (m1)</code></td>
<td><code>m2</code> is mutable and <code>m1</code> is convertible
to <code>M</code>.</td>
<td><code>M &amp;</code></td>
</tr>
<tr>
<td><code>m2 -= m1</code></td>
<td><code>m2</code> is mutable and <code>m1</code> is convertible
to <code>M</code>.</td>
<td><code>M &amp;</code></td>
</tr>
<tr>
<td><code>m2.minus_assign (m1)</code></td>
<td><code>m2</code> is mutable and <code>m1</code> is convertible
to <code>M</code>.</td>
<td><code>M &amp;</code></td>
</tr>
<tr>
<td><code>m *= t</code></td>
<td><code>m</code> is mutable and <code>t</code> is convertible to
<code>value_type</code>.</td>
<td><code>M &amp;</code></td>
</tr>
</tbody>
</table>
<h4>Expression semantics</h4>
<p>Semantics of an expression is defined only where it differs
from, or is not defined in Default Constructible.</p>
<table border="1" summary="semantics">
<tbody>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Precondition</th>
<th>Semantics</th>
<th>Postcondition</th>
</tr>
<tr>
<td rowspan="2">Beginning of range</td>
<td><code>m.begin1 ()</code></td>
<td>&nbsp;</td>
<td>Returns an iterator pointing to the first element in the first
column of a matrix expression.</td>
<td><code>m.begin1 ()</code> is either dereferenceable or
past-the-end. It is past-the-end if and only if <code>m.size1 () ==
0</code>.</td>
</tr>
<tr>
<td><code>m.begin2 ()</code></td>
<td>&nbsp;</td>
<td>Returns an iterator pointing to the first element in the first
row of a matrix expression.</td>
<td><code>m.begin2 ()</code> is either dereferenceable or
past-the-end. It is past-the-end if and only if <code>m.size2 () ==
0</code>.</td>
</tr>
<tr>
<td rowspan="2">End of range</td>
<td><code>m.end1 ()</code></td>
<td>&nbsp;</td>
<td>Returns an iterator pointing one past the last element in the
matrix expression.</td>
<td><code>m.end1 ()</code> is past-the-end.</td>
</tr>
<tr>
<td><code>m.end2 ()</code></td>
<td>&nbsp;</td>
<td>Returns an iterator pointing one past the last element in the
matrix expression.</td>
<td><code>m.end2 ()</code> is past-the-end.</td>
</tr>
<tr>
<td rowspan="2">Size</td>
<td><code>m.size1 ()</code></td>
<td>&nbsp;</td>
<td>Returns the number of rows of the matrix expression.</td>
<td><code>m.size1 () &gt;= 0</code></td>
</tr>
<tr>
<td><code>m.size2 ()</code></td>
<td>&nbsp;</td>
<td>Returns the number of columns of the matrix expression.</td>
<td><code>m.size2 () &gt;= 0</code></td>
</tr>
<tr>
<td>Swap</td>
<td><code>m1.swap (m2)</code></td>
<td>&nbsp;</td>
<td>Equivalent to <code>swap (m1, m2)</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td rowspan="2">Beginning of reverse range</td>
<td><code>m.rbegin1 ()</code></td>
<td>&nbsp;</td>
<td>Equivalent to <code>reverse_iterator1 (m.end1 ())</code>.</td>
<td><code>m.rbegin1 ()</code> is either dereferenceable or
past-the-end. It is past-the-end if and only if <code>m.size1 () ==
0</code>.</td>
</tr>
<tr>
<td><code>m.rbegin2 ()</code></td>
<td>&nbsp;</td>
<td>Equivalent to <code>reverse_iterator2 (m.end2 ())</code>.</td>
<td><code>m.rbegin2 ()</code> is either dereferenceable or
past-the-end. It is past-the-end if and only if <code>m.size2 () ==
0</code>.</td>
</tr>
<tr>
<td rowspan="2">End of reverse range</td>
<td><code>m.rend1 ()</code></td>
<td>&nbsp;</td>
<td>Equivalent to <code>reverse_iterator1 (m.begin1
())</code>.</td>
<td><code>m.rend1 ()</code> is past-the-end.</td>
</tr>
<tr>
<td><code>m.rend2 ()</code></td>
<td>&nbsp;</td>
<td>Equivalent to <code>reverse_iterator2 (m.begin2
())</code>.</td>
<td><code>m.rend2 ()</code> is past-the-end.</td>
</tr>
<tr>
<td>Element access</td>
<td><code>m (i, j)</code></td>
<td><code>0 &lt;= i &lt; m.size1 ()</code> and <code>0 &lt;= j &lt;
m.size2 ()</code></td>
<td>Returns the <code>j</code>-th element of the <code>i</code>-th
row of the matrix expression.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td rowspan="2">Assignment</td>
<td><code>m2 = m1</code></td>
<td><code>m1.size1 () == m2.size1 ()</code> and <code><br />
m1.size2 () == m2.size2 ()</code></td>
<td>Assigns every element of the evaluated matrix expression
<code>m1</code> to the corresponding element of <code>m2</code>
.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>m2.assign (m1)</code></td>
<td><code>m1.size1 () == m2.size1 ()</code> and <code><br />
m1.size2 () == m2.size2 ()</code></td>
<td>Assigns every element of <code>m1</code> to the corresponding
element of <code>m2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td rowspan="5">Computed assignment</td>
<td><code>m2 += m1</code></td>
<td><code>m1.size1 () == m2.size1 ()</code> and <code><br />
m1.size2 () == m2.size2 ()</code></td>
<td>Adds every element of the evaluated matrix expression
<code>m1</code> to the corresponding element of
<code>m2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>m2.plus_assign (m1)</code></td>
<td><code>m1.size1 () == m2.size1 ()</code> and <code><br />
m1.size2 () == m2.size2 ()</code></td>
<td>Adds every element of <code>m1</code> to the corresponding
element of <code>m2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>m2 -= m1</code></td>
<td><code>m1.size1 () == m2.size1 ()</code> and <code><br />
m1.size2 () == m2.size2 ()</code></td>
<td>Subtracts every element of the evaluated matrix expression
<code>m1</code> from the corresponding element of <code>m2</code>
.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>m2.minus_assign (m1)</code></td>
<td><code>m1.size1 () == m2.size1 ()</code> and <code><br />
m1.size2 () == m2.size2 ()</code></td>
<td>Subtracts every element of <code>m1</code> from the
corresponding element of <code>m2</code>.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>m *= t</code></td>
<td>&nbsp;</td>
<td>Multiplies every element of <code>m</code> with <code>t</code>
.</td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
<h4>Complexity guarantees</h4>
<p>The run-time complexity of <code>begin1 ()</code>, <code>begin2
()</code> , <code>end1 ()</code> and <code>end2 ()</code> is
specific for the evaluated matrix expression.</p>
<p>The run-time complexity of <code>size1 ()</code> and <code>size2
()</code> is constant time.</p>
<p>The run-time complexity of <code>swap ()</code> is specific for
the evaluated matrix expression, typically constant time.</p>
<p>The run-time complexity of <code>rbegin1 ()</code>,
<code>rbegin2 ()</code> , <code>rend1 ()</code> and <code>rend2
()</code> is specific for the evaluated matrix expression.</p>
<p>The run-time complexity of the element access is specific for
the evaluated matrix expression, typically amortized constant time
for the dense and logarithmic for the sparse case.</p>
<p>The run-time complexity of the arithmetic operations is specific
for the evaluated matrix expressions, typically quadratic in the
size of the proxies.</p>
<h4>Invariants</h4>
<table border="1" summary="invariants">
<tbody>
<tr>
<td>Valid range</td>
<td>For any matrix expression <code>m</code>, <code>[m.begin1 (),
m.end1 ())</code> and <code>[m.begin2 (), m.end2 ())</code> are
valid ranges.</td>
</tr>
<tr>
<td>Completeness</td>
<td>An algorithm that iterates through the range <code>[m.begin1
(), m.end1 ())</code> will pass through every row of <code>m</code>
, an algorithm that iterates through the range <code>[m.begin2 (),
m.end2 ())</code> will pass through every column of <code>m</code>
.</td>
</tr>
<tr>
<td>Valid reverse range</td>
<td><code>[m.rbegin1 (), m.rend1 ())</code> and <code>[m.rbegin2
(), m.rend2 ())</code> are valid ranges.</td>
</tr>
<tr>
<td>Equivalence of ranges</td>
<td>The distance from <code>m.begin1 ()</code> to <code>m.end1
()</code> is the same as the distance from <code>m.rbegin1
()</code> to <code>m.rend1 ()</code> and the distance from
<code>m.begin2 ()</code> to <code>m.end2 ()</code> is the same as
the distance from <code>m.rbegin2 ()</code> to <code>m.rend2
()</code>.</td>
</tr>
</tbody>
</table>
<h4>Models</h4>
<ul>
<li><code>matrix_range</code></li>
<li><code>matrix_slice;</code></li>
<li><code>triangular_adaptor</code></li>
<li><code>symmetric_adaptor</code></li>
<li><code>banded_adaptor</code></li>
<li><code>vector_matrix_binary</code></li>
<li><code>matrix_unary1</code></li>
<li><code>matrix_unary2</code></li>
<li><code>matrix_binary</code></li>
<li><code>matrix_binary_scalar1</code></li>
<li><code>matrix_binary_scalar2</code></li>
<li><code>matrix_matrix_binary</code></li>
</ul>
<hr />
<p>Copyright (&copy;) 2000-2002 Joerg Walter, Mathias Koch<br />
Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies.
This document is provided ``as is'' without express or implied
warranty, and with no claim as to its suitability for any
purpose.</p>
</body>
</html>