1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta name="generator" content=
"HTML Tidy for Linux/x86 (vers 1st March 2004), see www.w3.org" />
<meta http-equiv="Content-Type" content=
"text/html; charset=us-ascii" />
<link href="ublas.css" type="text/css" />
<title>uBLAS Overview</title>
</head>
<body>
<h1><img src="../../../../boost.png" align="middle" />
uBLAS Overview</h1>
<h2><a name="rationale" id="rationale">Rationale</h2>
<p><cite>It would be nice if every kind of numeric software could
be written in C++ without loss of efficiency, but unless something
can be found that achieves this without compromising the C++ type
system it may be preferable to rely on Fortran, assembler or
architecture-specific extensions (Bjarne Stroustrup).</cite></p>
<p>This C++ library is directed towards scientific computing on the
level of basic linear algebra constructions with matrices and
vectors and their corresponding abstract operations. The primary
design goals were:</p>
<ul type="Disc">
<li>mathematical notation</li>
<li>efficiency</li>
<li>functionality</li>
<li>compatibility</li>
</ul>
<p>Another intention was to evaluate, if the abstraction penalty
resulting from the use of such matrix and vector classes is
acceptable.</p>
<h2>Resources</h2>
<p>The development of this library was guided by a couple of
similar efforts:</p>
<ul type="Disc">
<li><a href="http://www.netlib.org/blas/index.html">BLAS</a> by
Jack Dongarra et al.</li>
<li><a href="http://www.oonumerics.org/blitz/">Blitz++</a> by Todd
Veldhuizen</li>
<li><a href="http://acts.nersc.gov/pooma/">POOMA</a> by Scott
Haney et al.</li>
<li><a href="http://www.lsc.nd.edu/research/mtl/">MTL</a> by Jeremy
Siek et al.</li>
</ul>
<p>BLAS seems to be the most widely used library for basic linear
algebra constructions, so it could be called a de-facto standard.
Its interface is procedural, the individual functions are somewhat
abstracted from simple linear algebra operations. Due to the fact
that is has been implemented using Fortran and its optimizations,
it also seems to be one of the fastest libraries available. As we
decided to design and implement our library in an object-oriented
way, the technical approaches are distinct. However anyone should
be able to express BLAS abstractions in terms of our library
operators and to compare the efficiency of the implementations.</p>
<p>Blitz++ is an impressive library implemented in C++. Its main
design seems to be oriented towards multidimensional arrays and
their associated operators including tensors. The author of Blitz++
states, that the library achieves performance on par or better than
corresponding Fortran code due to his implementation technique
using expression templates and template metaprograms. However we
see some reasons, to develop an own design and implementation
approach. We do not know whether anybody tries to implement
traditional linear algebra and other numerical algorithms using
Blitz++. We also presume that even today Blitz++ needs the most
advanced C++ compiler technology due to its implementation idioms.
On the other hand, Blitz++ convinced us, that the use of expression
templates is mandatory to reduce the abstraction penalty to an
acceptable limit.</p>
<p>POOMA's design goals seem to parallel Blitz++'s in many parts .
It extends Blitz++'s concepts with classes from the domains of
partial differential equations and theoretical physics. The
implementation supports even parallel architectures.</p>
<p>MTL is another approach supporting basic linear algebra
operations in C++. Its design mainly seems to be influenced by BLAS
and the C++ Standard Template Library. We share the insight that a
linear algebra library has to provide functionality comparable to
BLAS. On the other hand we think, that the concepts of the C++
standard library have not yet been proven to support numerical
computations as needed. As another difference MTL currently does
not seem to use expression templates. This may result in one of two
consequences: a possible loss of expressiveness or a possible loss
of performance.</p>
<h2>Concepts</h2>
<h3>Mathematical Notation</h3>
<p>The usage of mathematical notation may ease the development of
scientific algorithms. So a C++ library implementing basic linear
algebra concepts carefully should overload selected C++ operators
on matrix and vector classes.</p>
<p>We decided to use operator overloading for the following
primitives:</p>
<table border="1" summary="operators">
<tbody>
<tr>
<th align="left">Description</th>
<th align="left">Operator</th>
</tr>
<tr>
<td>Indexing of vectors and matrices</td>
<td><code>vector::operator(size_t i);<br />
matrix::operator(size_t i, size_t j);</code></td>
</tr>
<tr>
<td>Assignment of vectors and matrices</td>
<td><code>vector::operator = (const vector_expression &);<br />
vector::operator += (const vector_expression &);<br />
vector::operator -= (const vector_expression &);<br />
vector::operator *= (const scalar_expression &);<br />
matrix::operator = (const matrix_expression &);<br />
matrix::operator += (const matrix_expression &);<br />
matrix::operator -= (const matrix_expression &);<br />
matrix::operator *= (const scalar_expression &);</code></td>
</tr>
<tr>
<td>Unary operations on vectors and matrices</td>
<td><code>vector_expression operator - (const vector_expression
&);<br />
matrix_expression operator - (const matrix_expression
&);</code></td>
</tr>
<tr>
<td>Binary operations on vectors and matrices</td>
<td><code>vector_expression operator + (const vector_expression
&, const vector_expression &);<br />
vector_expression operator - (const vector_expression &, const
vector_expression &);<br />
matrix_expression operator + (const matrix_expression &, const
matrix_expression &);<br />
matrix_expression operator - (const matrix_expression &, const
matrix_expression &);</code></td>
</tr>
<tr>
<td>Multiplication of vectors and matrices with a scalar</td>
<td><code>vector_expression operator * (const scalar_expression
&, const vector_expression &);<br />
vector_expression operator * (const vector_expression &, const
scalar_expression &);<br />
matrix_expression operator * (const scalar_expression &, const
matrix_expression &);<br />
matrix_expression operator * (const matrix_expression &, const
scalar_expression &);</code></td>
</tr>
</tbody>
</table>
<p>We decided to use no operator overloading for the following
other primitives:</p>
<table border="1" summary="functions">
<tbody>
<tr>
<th align="left">Description</th>
<th align="left">Function</th>
</tr>
<tr>
<td>Left multiplication of vectors with a matrix</td>
<td><code>vector_expression
prod<</code><code><em>vector_type</em></code> <code>> (const
matrix_expression &, const vector_expression &);<br />
vector_expression prod (const matrix_expression &, const
vector_expression &);</code></td>
</tr>
<tr>
<td>Right multiplication of vectors with a matrix</td>
<td><code>vector_expression
prod<</code><code><em>vector_type</em></code> <code>> (const
vector_expression &, const matrix_expression &);<br />
vector_expression prod (const vector_expression &, const
matrix_expression &);<br /></code></td>
</tr>
<tr>
<td>Multiplication of matrices</td>
<td><code>matrix_expression
prod<</code><code><em>matrix_type</em></code> <code>> (const
matrix_expression &, const matrix_expression &);<br />
matrix_expression prod (const matrix_expression &, const
matrix_expression &);</code></td>
</tr>
<tr>
<td>Inner product of vectors</td>
<td><code>scalar_expression inner_prod (const vector_expression
&, const vector_expression &);</code></td>
</tr>
<tr>
<td>Outer product of vectors</td>
<td><code>matrix_expression outer_prod (const vector_expression
&, const vector_expression &);</code></td>
</tr>
<tr>
<td>Transpose of a matrix</td>
<td><code>matrix_expression trans (const matrix_expression
&);</code></td>
</tr>
</tbody>
</table>
<h3>Efficiency</h3>
<p>To achieve the goal of efficiency for numerical computing, one
has to overcome two difficulties in formulating abstractions with
C++, namely temporaries and virtual function calls. Expression
templates solve these problems, but tend to slow down compilation
times.</p>
<h4>Eliminating Temporaries</h4>
<p>Abstract formulas on vectors and matrices normally compose a
couple of unary and binary operations. The conventional way of
evaluating such a formula is first to evaluate every leaf operation
of a composition into a temporary and next to evaluate the
composite resulting in another temporary. This method is expensive
in terms of time especially for small and space especially for
large vectors and matrices. The approach to solve this problem is
to use lazy evaluation as known from modern functional programming
languages. The principle of this approach is to evaluate a complex
expression element wise and to assign it directly to the
target.</p>
<p>Two interesting and dangerous facts result:</p>
<h4>Aliases</h4>
<p>One may get serious side effects using element wise
evaluation on vectors or matrices. Consider the matrix vector
product <em>x = A x</em>. Evaluation of
<em>A</em><sub><em>1</em></sub><em>x</em> and assignment to
<em>x</em><sub><em>1</em></sub> changes the right hand side, so
that the evaluation of <em>A</em><sub><em>2</em></sub><em>x</em>
returns a wrong result. In this case there are <strong>aliases</strong> of the elements
<em>x</em><sub><em>n</em></sub> on both the left and right hand side of the assignment.</p>
<p>Our solution for this problem is to
evaluate the right hand side of an assignment into a temporary and
then to assign this temporary to the left hand side. To allow
further optimizations, we provide a corresponding member function
for every assignment operator and also a
<a href="operations_overview.htm#noalias"> <code>noalias</code> syntax.</a>
By using this syntax a programmer can confirm, that the left and right hand sides of an
assignment are independent, so that element wise evaluation and
direct assignment to the target is safe.</p>
<h4>Complexity</h4>
<p>The computational complexity may be unexpectedly large under certain
cirumstances. Consider the chained matrix vector product <em>A (B
x)</em>. Conventional evaluation of <em>A (B x)</em> is quadratic.
Deferred evaluation of <em>B x</em><sub><em>i</em></sub> is linear.
As every element <em>B x</em><sub><em>i</em></sub> is needed
linearly depending of the size, a completely deferred evaluation of
the chained matrix vector product <em>A (B x)</em> is cubic. In
such cases one needs to reintroduce temporaries in the
expression.</p>
<h4>Eliminating Virtual Function Calls</h4>
<p>Lazy expression evaluation normally leads to the definition of a
class hierarchy of terms. This results in the usage of dynamic
polymorphism to access single elements of vectors and matrices,
which is also known to be expensive in terms of time. A solution
was found a couple of years ago independently by David Vandervoorde
and Todd Veldhuizen and is commonly called expression templates.
Expression templates contain lazy evaluation and replace dynamic
polymorphism with static, i.e. compile time polymorphism.
Expression templates heavily depend on the famous Barton-Nackman
trick, also coined 'curiously defined recursive templates' by Jim
Coplien.</p>
<p>Expression templates form the base of our implementation.</p>
<h4>Compilation times</h4>
<p>It is also a well known fact, that expression templates
challenge currently available compilers. We were able to
significantly reduce the amount of needed expression templates
using the Barton-Nackman trick consequently.</p>
<p>We also decided to support a dual conventional implementation
(i.e. not using expression templates) with extensive bounds and
type checking of vector and matrix operations to support the
development cycle. Switching from debug mode to release mode is
controlled by the <code>NDEBUG</code> preprocessor symbol of
<code><cassert></code>.</p>
<h2><a name="functionality" id="functionality">Functionality</h2>
<p>Every C++ library supporting linear algebra will be measured
against the long-standing Fortran package BLAS. We now describe how
BLAS calls may be mapped onto our classes.</p>
<p>The page <a href="operations_overview.htm">Overview of Matrix and Vector Operations</a>
gives a short summary of the most used operations on vectors and
matrices.</p>
<h4>Blas Level 1</h4>
<table border="1" summary="level 1 blas">
<tbody>
<tr>
<th align="left">BLAS Call</th>
<th align="left">Mapped Library Expression</th>
<th align="left">Mathematical Description</th>
<th align="left">Comment</th>
</tr>
<tr>
<td><code>sasum</code> OR <code>dasum</code></td>
<td><code>norm_1 (x)</code></td>
<td><em>sum x<sub>i</sub></em></td>
<td>Computes the <em>l<sub>1</sub></em> (sum) norm of a real vector.</td>
</tr>
<tr>
<td><code>scasum</code> OR <code>dzasum</code></td>
<td><em><code>real (sum (v)) + imag (sum (v))</code></em></td>
<td><em>sum re(x<sub>i</sub>) + sum im(x<sub>i</sub>)</em></td>
<td>Computes the sum of elements of a complex vector.</td>
</tr>
<tr>
<td><code>_nrm2</code></td>
<td><code>norm_2 (x)</code></td>
<td><em>sqrt (sum
|x</em><sub><em>i</em></sub>|<sup><em>2</em></sup> <em>)</em></td>
<td>Computes the <em>l<sub>inf</sub></em> (euclidean) norm of a vector.</td>
</tr>
<tr>
<td><code>i_amax</code></td>
<td><code>norm_inf (x)<br />
norm_inf_index (x)</code></td>
<td><em>max |x</em><sub><em>i</em></sub><em>|</em></td>
<td>Computes the <em>l<sub>2</sub></em> (maximum) norm of a vector.<br />
BLAS computes the index of the first element having this
value.</td>
</tr>
<tr>
<td><code>_dot<br />
_dotu<br />
_dotc</code></td>
<td><code>inner_prod (x, y)</code>or<code><br />
inner_prod (conj (x), y)</code></td>
<td><em>x</em><sup><em>T</em></sup> <em>y</em> or<br />
<em>x</em><sup><em>H</em></sup> <em>y</em></td>
<td>Computes the inner product of two vectors.<br />
BLAS implements certain loop unrollment.</td>
</tr>
<tr>
<td><code>dsdot<br />
sdsdot</code></td>
<td><code>a + prec_inner_prod (x, y)</code></td>
<td><em>a + x</em><sup><em>T</em></sup> <em>y</em></td>
<td>Computes the inner product in double precision.</td>
</tr>
<tr>
<td><code>_copy</code></td>
<td><code>x = y<br />
y.assign (x)</code></td>
<td><em>x <- y</em></td>
<td>Copies one vector to another.<br />
BLAS implements certain loop unrollment.</td>
</tr>
<tr>
<td><code>_swap</code></td>
<td><code>swap (x, y)</code></td>
<td><em>x <-> y</em></td>
<td>Swaps two vectors.<br />
BLAS implements certain loop unrollment.</td>
</tr>
<tr>
<td><code>_scal<br />
csscal<br />
zdscal</code></td>
<td><code>x *= a</code></td>
<td><em>x <- a x</em></td>
<td>Scales a vector.<br />
BLAS implements certain loop unrollment.</td>
</tr>
<tr>
<td><code>_axpy</code></td>
<td><code>y += a * x</code></td>
<td><em>y <- a x + y</em></td>
<td>Adds a scaled vector.<br />
BLAS implements certain loop unrollment.</td>
</tr>
<tr>
<td><code>_rot<br />
_rotm<br />
csrot<br />
zdrot</code></td>
<td><code>t.assign (a * x + b * y),<br />
y.assign (- b * x + a * y),<br />
x.assign (t)</code></td>
<td><em>(x, y) <- (a x + b y, -b x + a y)</em></td>
<td>Applies a plane rotation.</td>
</tr>
<tr>
<td><code>_rotg<br />
_rotmg</code></td>
<td> </td>
<td><em>(a, b) <-<br />
(? a / sqrt (a</em><sup><em>2</em></sup> +
<em>b</em><sup><em>2</em></sup><em>),<br />
? b / sqrt (a</em><sup><em>2</em></sup> +
<em>b</em><sup><em>2</em></sup><em>))</em> or<em><br />
(1, 0) <- (0, 0)</em></td>
<td>Constructs a plane rotation.</td>
</tr>
</tbody>
</table>
<h4>Blas Level 2</h4>
<table border="1" summary="level 2 blas">
<tbody>
<tr>
<th align="left">BLAS Call</th>
<th align="left">Mapped Library Expression</th>
<th align="left">Mathematical Description</th>
<th align="left">Comment</th>
</tr>
<tr>
<td><code>_t_mv</code></td>
<td><code>x = prod (A, x)</code> or<code><br />
x = prod (trans (A), x)</code> or<code><br />
x = prod (herm (A), x)</code></td>
<td><em>x <- A x</em> or<em><br />
x <- A</em><sup><em>T</em></sup> <em>x</em> or<em><br />
x <- A</em><sup><em>H</em></sup> <em>x</em></td>
<td>Computes the product of a matrix with a vector.</td>
</tr>
<tr>
<td><code>_t_sv</code></td>
<td><code>y = solve (A, x, tag)</code> or<br />
<code>inplace_solve (A, x, tag)</code> or<br />
<code>y = solve (trans (A), x, tag)</code> or<br />
<code>inplace_solve (trans (A), x, tag)</code> or<br />
<code>y = solve (herm (A), x, tag)</code>or<br />
<code>inplace_solve (herm (A), x, tag)</code></td>
<!-- TODO: replace nested sub/sup -->
<td><em>y <- A</em><sup><em>-1</em></sup> <em>x</em>
or<em><br />
x <- A</em><sup><em>-1</em></sup> <em>x</em> or<em><br />
y <-
A</em><sup><em>T</em></sup><sup><sup><em>-1</em></sup></sup>
<em>x</em> or<em><br />
x <-
A</em><sup><em>T</em></sup><sup><sup><em>-1</em></sup></sup>
<em>x</em> or<em><br />
y <-
A</em><sup><em>H</em></sup><sup><sup><em>-1</em></sup></sup>
<em>x</em> or<em><br />
x <-
A</em><sup><em>H</em></sup><sup><sup><em>-1</em></sup></sup>
<em>x</em></td>
<td>Solves a system of linear equations with triangular form, i.e.
<em>A</em> is triangular.</td>
</tr>
<tr>
<td><code>_g_mv<br />
_s_mv<br />
_h_mv</code></td>
<td><code>y = a * prod (A, x) + b * y</code> or<code><br />
y = a * prod (trans (A), x) + b * y</code> or<code><br />
y = a * prod (herm (A), x) + b * y</code></td>
<td><em>y <- a A x + b y</em> or<em><br />
y <- a A</em><sup><em>T</em></sup> <em>x + b y<br />
y <- a A</em><sup><em>H</em></sup> <em>x + b y</em></td>
<td>Adds the scaled product of a matrix with a vector.</td>
</tr>
<tr>
<td><code>_g_r<br />
_g_ru<br />
_g_rc</code></td>
<td><code>A += a * outer_prod (x, y)</code> or<code><br />
A += a * outer_prod (x, conj (y))</code></td>
<td><em>A <- a x y</em><sup><em>T</em></sup> <em>+ A</em>
or<em><br />
A <- a x y</em><sup><em>H</em></sup> <em>+ A</em></td>
<td>Performs a rank <em>1</em> update.</td>
</tr>
<tr>
<td><code>_s_r<br />
_h_r</code></td>
<td><code>A += a * outer_prod (x, x)</code> or<code><br />
A += a * outer_prod (x, conj (x))</code></td>
<td><em>A <- a x x</em><sup><em>T</em></sup> <em>+ A</em>
or<em><br />
A <- a x x</em><sup><em>H</em></sup> <em>+ A</em></td>
<td>Performs a symmetric or hermitian rank <em>1</em> update.</td>
</tr>
<tr>
<td><code>_s_r2<br />
_h_r2</code></td>
<td><code>A += a * outer_prod (x, y) +<br />
a * outer_prod (y, x))</code> or<code><br />
A += a * outer_prod (x, conj (y)) +<br />
conj (a) * outer_prod (y, conj (x)))</code></td>
<td><em>A <- a x y</em><sup><em>T</em></sup> <em>+ a y
x</em><sup><em>T</em></sup> <em>+ A</em> or<em><br />
A <- a x y</em><sup><em>H</em></sup> <em>+
a</em><sup><em>-</em></sup> <em>y x</em><sup><em>H</em></sup> <em>+
A</em></td>
<td>Performs a symmetric or hermitian rank <em>2</em> update.</td>
</tr>
</tbody>
</table>
<h4>Blas Level 3</h4>
<table border="1" summary="level 3 blas">
<tbody>
<tr>
<th align="left">BLAS Call</th>
<th align="left">Mapped Library Expression</th>
<th align="left">Mathematical Description</th>
<th align="left">Comment</th>
</tr>
<tr>
<td><code>_t_mm</code></td>
<td><code>B = a * prod (A, B)</code> or<br />
<code>B = a * prod (trans (A), B)</code> or<br />
<code>B = a * prod (A, trans (B))</code> or<br />
<code>B = a * prod (trans (A), trans (B))</code> or<br />
<code>B = a * prod (herm (A), B)</code> or<br />
<code>B = a * prod (A, herm (B))</code> or<br />
<code>B = a * prod (herm (A), trans (B))</code> or<br />
<code>B = a * prod (trans (A), herm (B))</code> or<br />
<code>B = a * prod (herm (A), herm (B))</code></td>
<td><em>B <- a op (A) op (B)</em> with<br />
<em>op (X) = X</em> or<br />
<em>op (X) = X</em><sup><em>T</em></sup> or<br />
<em>op (X) = X</em><sup><em>H</em></sup></td>
<td>Computes the scaled product of two matrices.</td>
</tr>
<tr>
<td><code>_t_sm</code></td>
<td><code>C = solve (A, B, tag)</code> or<br />
<code>inplace_solve (A, B, tag)</code> or<br />
<code>C = solve (trans (A), B, tag)</code> or<code><br />
inplace_solve (trans (A), B, tag)</code> or<code><br />
C = solve (herm (A), B, tag)</code> or<code><br />
inplace_solve (herm (A), B, tag)</code></td>
<td><em>C <- A</em><sup><em>-1</em></sup> <em>B</em>
or<em><br />
B <- A</em><sup><em>-1</em></sup> <em>B</em> or<em><br />
C <-
A</em><sup><em>T</em></sup><sup><sup><em>-1</em></sup></sup>
<em>B</em> or<em><br />
B <- A</em><sup><em>-1</em></sup> <em>B</em> or<em><br />
C <-
A</em><sup><em>H</em></sup><sup><sup><em>-1</em></sup></sup>
<em>B</em> or<em><br />
B <-
A</em><sup><em>H</em></sup><sup><sup><em>-1</em></sup></sup>
<em>B</em></td>
<td>Solves a system of linear equations with triangular form, i.e.
<em>A</em> is triangular.</td>
</tr>
<tr>
<td><code>_g_mm<br />
_s_mm<br />
_h_mm</code></td>
<td><code>C = a * prod (A, B) + b * C</code> or<br />
<code>C = a * prod (trans (A), B) + b * C</code> or<br />
<code>C = a * prod (A, trans (B)) + b * C</code> or<br />
<code>C = a * prod (trans (A), trans (B)) + b * C</code> or<br />
<code>C = a * prod (herm (A), B) + b * C</code> or<br />
<code>C = a * prod (A, herm (B)) + b * C</code> or<br />
<code>C = a * prod (herm (A), trans (B)) + b * C</code> or<br />
<code>C = a * prod (trans (A), herm (B)) + b * C</code> or<br />
<code>C = a * prod (herm (A), herm (B)) + b * C</code></td>
<td><em>C <- a op (A) op (B) + b C</em> with<br />
<em>op (X) = X</em> or<br />
<em>op (X) = X</em><sup><em>T</em></sup> or<br />
<em>op (X) = X</em><sup><em>H</em></sup></td>
<td>Adds the scaled product of two matrices.</td>
</tr>
<tr>
<td><code>_s_rk<br />
_h_rk</code></td>
<td><code>B = a * prod (A, trans (A)) + b * B</code> or<br />
<code>B = a * prod (trans (A), A) + b * B</code> or<br />
<code>B = a * prod (A, herm (A)) + b * B</code> or<br />
<code>B = a * prod (herm (A), A) + b * B</code></td>
<td><em>B <- a A A</em><sup><em>T</em></sup> <em>+ b B</em>
or<em><br />
B <- a A</em><sup><em>T</em></sup> <em>A + b B</em> or<br />
<em>B <- a A A</em><sup><em>H</em></sup> <em>+ b B</em>
or<em><br />
B <- a A</em><sup><em>H</em></sup> <em>A + b B</em></td>
<td>Performs a symmetric or hermitian rank <em>k</em> update.</td>
</tr>
<tr>
<td><code>_s_r2k<br />
_h_r2k</code></td>
<td><code>C = a * prod (A, trans (B)) +<br />
a * prod (B, trans (A)) + b * C</code> or<br />
<code>C = a * prod (trans (A), B) +<br />
a * prod (trans (B), A) + b * C</code> or<br />
<code>C = a * prod (A, herm (B)) +<br />
conj (a) * prod (B, herm (A)) + b * C</code> or<br />
<code>C = a * prod (herm (A), B) +<br />
conj (a) * prod (herm (B), A) + b * C</code></td>
<td><em>C <- a A B</em><sup><em>T</em></sup> <em>+ a B
A</em><sup><em>T</em></sup> <em>+ b C</em> or<em><br />
C <- a A</em><sup><em>T</em></sup> <em>B + a
B</em><sup><em>T</em></sup> <em>A + b C</em> or<em><br />
C <- a A B</em><sup><em>H</em></sup> <em>+
a</em><sup><em>-</em></sup> <em>B A</em><sup><em>H</em></sup> <em>+
b C</em> or<em><br />
C <- a A</em><sup><em>H</em></sup> <em>B +
a</em><sup><em>-</em></sup> <em>B</em><sup><em>H</em></sup> <em>A +
b C</em></td>
<td>Performs a symmetric or hermitian rank <em>2 k</em>
update.</td>
</tr>
</tbody>
</table>
<h2>Storage Layout</h2>
<p>uBLAS supports may different storage layouts. The full details can be
found at the <a href="types_overview.htm">Overview of Types</a>. Most types like
<code>vector<double></code> and <code>matrix<double></code> are
by default compatible to C arrays, but can also be configured to contain
FORTAN compatible data.
</p>
<h2>Compatibility</h2>
<p>For compatibility reasons we provide array like indexing for vectors and matrices. For some types (hermitian, sparse etc) this can be expensive for matrices due to the needed temporary proxy objects.</p>
<p>uBLAS uses STL compatible allocators for the allocation of the storage required for it's containers.</p>
<h2>Benchmark Results</h2>
<p>The following tables contain results of one of our benchmarks.
This benchmark compares a native C implementation ('C array') and
some library based implementations. The safe variants based on the
library assume aliasing, the fast variants do not use temporaries
and are functionally equivalent to the native C implementation.
Besides the generic vector and matrix classes the benchmark
utilizes special classes <code>c_vector</code> and
<code>c_matrix</code>, which are intended to avoid every overhead
through genericity.</p>
<p>The benchmark program <strong>bench1</strong> was compiled with GCC 4.0 and run on an Athlon 64 3000+. Times are scales for reasonable precision by running <strong>bench1 100</strong>.</p>
<p>First we comment the results for double vectors and matrices of dimension 3 and 3 x 3, respectively.</p>
<table border="1" summary="1st benchmark">
<tbody>
<tr>
<th align="left">Comment</th>
</tr>
<tr>
<td rowspan="3">inner_prod</td>
<td>C array</td>
<td align="right">0.61</td>
<td align="right">782</td>
<td rowspan="3">Some abstraction penalty</td>
</tr>
<tr>
<td>c_vector</td>
<td align="right">0.86</td>
<td align="right">554</td>
</tr>
<tr>
<td>vector<unbounded_array></td>
<td align="right">1.02</td>
<td align="right">467</td>
</tr>
<tr>
<td rowspan="5">vector + vector</td>
<td>C array</td>
<td align="right">0.51</td>
<td align="right">1122</td>
<td rowspan="5">Abstraction penalty: factor 2</td>
</tr>
<tr>
<td>c_vector fast</td>
<td align="right">1.17</td>
<td align="right">489</td>
</tr>
<tr>
<td>vector<unbounded_array> fast</td>
<td align="right">1.32</td>
<td align="right">433</td>
</tr>
<tr>
<td>c_vector safe</td>
<td align="right">2.02</td>
<td align="right">283</td>
</tr>
<tr>
<td>vector<unbounded_array> safe</td>
<td align="right">6.95</td>
<td align="right">82</td>
</tr>
<tr>
<td rowspan="5">outer_prod</td>
<td>C array</td>
<td align="right">0.59</td>
<td align="right">872</td>
<td rowspan="5">Some abstraction penalty</td>
</tr>
<tr>
<td>c_matrix, c_vector fast</td>
<td align="right">0.88</td>
<td align="right">585</td>
</tr>
<tr>
<td>matrix<unbounded_array>, vector<unbounded_array> fast</td>
<td align="right">0.90</td>
<td align="right">572</td>
</tr>
<tr>
<td>c_matrix, c_vector safe</td>
<td align="right">1.66</td>
<td align="right">310</td>
</tr>
<tr>
<td>matrix<unbounded_array>, vector<unbounded_array> safe</td>
<td align="right">2.95</td>
<td align="right">175</td>
</tr>
<tr>
<td rowspan="5">prod (matrix, vector)</td>
<td>C array</td>
<td align="right">0.64</td>
<td align="right">671</td>
<td rowspan="5">No significant abstraction penalty</td>
</tr>
<tr>
<td>c_matrix, c_vector fast</td>
<td align="right">0.70</td>
<td align="right">613</td>
</tr>
<tr>
<td>matrix<unbounded_array>, vector<unbounded_array> fast</td>
<td align="right">0.79</td>
<td align="right">543</td>
</tr>
<tr>
<td>c_matrix, c_vector safe</td>
<td align="right">0.95</td>
<td align="right">452</td>
</tr>
<tr>
<td>matrix<unbounded_array>, vector<unbounded_array> safe</td>
<td align="right">2.61</td>
<td align="right">164</td>
</tr>
<tr>
<td rowspan="5">matrix + matrix</td>
<td>C array</td>
<td align="right">0.75</td>
<td align="right">686</td>
<td rowspan="5">No significant abstraction penalty</td>
</tr>
<tr>
<td>c_matrix fast</td>
<td align="right">0.99</td>
<td align="right">520</td>
</tr>
<tr>
<td>matrix<unbounded_array> fast</td>
<td align="right">1.29</td>
<td align="right">399</td>
</tr>
<tr>
<td>c_matrix safe</td>
<td align="right">1.7</td>
<td align="right">303</td>
</tr>
<tr>
<td>matrix<unbounded_array> safe</td>
<td align="right">3.14</td>
<td align="right">164</td>
</tr>
<tr>
<td rowspan="5">prod (matrix, matrix)</td>
<td>C array</td>
<td align="right">0.94</td>
<td align="right">457</td>
<td rowspan="5">No significant abstraction penalty</td>
</tr>
<tr>
<td>c_matrix fast</td>
<td align="right">1.17</td>
<td align="right">367</td>
</tr>
<tr>
<td>matrix<unbounded_array> fast</td>
<td align="right">1.34</td>
<td align="right">320</td>
</tr>
<tr>
<td>c_matrix safe</td>
<td align="right">1.56</td>
<td align="right">275</td>
</tr>
<tr>
<td>matrix<unbounded_array> safe</td>
<td align="right">2.06</td>
<td align="right">208</td>
</tr>
</tbody>
</table>
<p>We notice a two fold performance loss for small vectors and matrices: first the general abstraction penalty for using classes, and then a small loss when using the generic vector and matrix classes. The difference w.r.t. alias assumptions is also significant.</p>
<p>Next we comment the results for double vectors and matrices of
dimension 100 and 100 x 100, respectively.</p>
<table border="1" summary="2nd benchmark">
<tbody>
<tr>
<th align="left">Operation</th>
<th align="left">Implementation</th>
<th align="left">Elapsed [s]</th>
<th align="left">MFLOP/s</th>
<th align="left">Comment</th>
</tr>
<tr>
<td rowspan="3">inner_prod</td>
<td>C array</td>
<td align="right">0.64</td>
<td align="right">889</td>
<td rowspan="3">No significant abstraction penalty</td>
</tr>
<tr>
<td>c_vector</td>
<td align="right">0.66</td>
<td align="right">862</td>
</tr>
<tr>
<td>vector<unbounded_array></td>
<td align="right">0.66</td>
<td align="right">862</td>
</tr>
<tr>
<td rowspan="5">vector + vector</td>
<td>C array</td>
<td align="right">0.64</td>
<td align="right">894</td>
<td rowspan="5">No significant abstraction penalty</td>
</tr>
<tr>
<td>c_vector fast</td>
<td align="right">0.66</td>
<td align="right">867</td>
</tr>
<tr>
<td>vector<unbounded_array> fast</td>
<td align="right">0.66</td>
<td align="right">867</td>
</tr>
<tr>
<td>c_vector safe</td>
<td align="right">1.14</td>
<td align="right">501</td>
</tr>
<tr>
<td>vector<unbounded_array> safe</td>
<td align="right">1.23</td>
<td align="right">465</td>
</tr>
<tr>
<td rowspan="5">outer_prod</td>
<td>C array</td>
<td align="right">0.50</td>
<td align="right">1144</td>
<td rowspan="5">No significant abstraction penalty</td>
</tr>
<tr>
<td>c_matrix, c_vector fast</td>
<td align="right">0.71</td>
<td align="right">806</td>
</tr>
<tr>
<td>matrix<unbounded_array>, vector<unbounded_array> fast</td>
<td align="right">0.57</td>
<td align="right">1004</td>
</tr>
<tr>
<td>c_matrix, c_vector safe</td>
<td align="right">1.91</td>
<td align="right">300</td>
</tr>
<tr>
<td>matrix<unbounded_array>, vector<unbounded_array> safe</td>
<td align="right">0.89</td>
<td align="right">643</td>
</tr>
<tr>
<td rowspan="5">prod (matrix, vector)</td>
<td>C array</td>
<td align="right">0.65</td>
<td align="right">876</td>
<td rowspan="5">No significant abstraction penalty</td>
</tr>
<tr>
<td>c_matrix, c_vector fast</td>
<td align="right">0.65</td>
<td align="right">876</td>
</tr>
<tr>
<td>matrix<unbounded_array>, vector<unbounded_array>
fast</td>
<td align="right">0.66</td>
<td align="right">863</td>
</tr>
<tr>
<td>c_matrix, c_vector safe</td>
<td align="right">0.66</td>
<td align="right">863</td>
</tr>
<tr>
<td>matrix<unbounded_array>, vector<unbounded_array>
safe</td>
<td align="right">0.66</td>
<td align="right">863</td>
</tr>
<tr>
<td rowspan="5">matrix + matrix</td>
<td>C array</td>
<td align="right">0.96</td>
<td align="right">596</td>
<td rowspan="5">No significant abstraction penalty</td>
</tr>
<tr>
<td>c_matrix fast</td>
<td align="right">1.21</td>
<td align="right">473</td>
</tr>
<tr>
<td>matrix<unbounded_array> fast</td>
<td align="right">1.00</td>
<td align="right">572</td>
</tr>
<tr>
<td>c_matrix safe</td>
<td align="right">2.44</td>
<td align="right">235</td>
</tr>
<tr>
<td>matrix<unbounded_array> safe</td>
<td align="right">1.30</td>
<td align="right">440</td>
</tr>
<tr>
<td rowspan="5">prod (matrix, matrix)</td>
<td>C array</td>
<td align="right">0.70</td>
<td align="right">813</td>
<td rowspan="5">No significant abstraction penalty</td>
</tr>
<tr>
<td>c_matrix fast</td>
<td align="right">0.73</td>
<td align="right">780</td>
</tr>
<tr>
<td>matrix<unbounded_array> fast</td>
<td align="right">0.76</td>
<td align="right">749</td>
</tr>
<tr>
<td>c_matrix safe</td>
<td align="right">0.75</td>
<td align="right">759</td>
</tr>
<tr>
<td>matrix<unbounded_array> safe</td>
<td align="right">0.76</td>
<td align="right">749</td>
</tr>
</tbody>
</table>
<p>For larger vectors and matrices the general abstraction penalty
for using classes seems to decrease, the small loss when using
generic vector and matrix classes seems to remain. The difference
w.r.t. alias assumptions remains visible, too.</p>
<hr />
<p>Copyright (©) 2000-2002 Joerg Walter, Mathias Koch<br />
Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies.
This document is provided ``as is'' without express or implied
warranty, and with no claim as to its suitability for any
purpose.</p>
</body>
</html>
|