File: vector_expression.htm

package info (click to toggle)
boost 1.34.1-14
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 116,412 kB
  • ctags: 259,566
  • sloc: cpp: 642,395; xml: 56,450; python: 17,612; ansic: 14,520; sh: 2,265; yacc: 858; perl: 481; makefile: 478; lex: 94; sql: 74; csh: 6
file content (959 lines) | stat: -rw-r--r-- 31,396 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta name="generator" content=
"HTML Tidy for Linux/x86 (vers 1st March 2004), see www.w3.org" />
<meta http-equiv="Content-Type" content=
"text/html; charset=us-ascii" />
<link href="ublas.css" type="text/css" />
<title>Vector Expressions</title>
</head>
<body>
<h1><img src="../../../../boost.png" align="middle" />
Vector Expressions</h1>
<h2><a name="vector_expression" id="vector_expression"></a>Vector Expression</h2>
<h4>Description</h4>
<p>The templated class <code>vector_expression&lt;E&gt;</code>
is required to be a public base of all classes which model the Vector Expression concept.</p>
<h4>Definition</h4>
<p>Defined in the header expression_types.hpp.</p>
<h4>Template parameters</h4>
<table border="1" summary="parameters">
<tbody>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
<tr>
<td><code>E</code></td>
<td>The type of the vector expression.</td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
<h4>Model of</h4>
<p>None. <u>Not a Vector Expression</u>!
</p>
<h4>Type requirements</h4>
<p>None.</p>
<h4>Public base classes</h4>
<p>None.</p>
<h4>Members</h4>
<table border="1" summary="members">
<tbody>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
<tr>
<td><code>const expression_type &amp;operator () ()
const</code></td>
<td>Returns a <code>const</code> reference of the expression.</td>
</tr>
<tr>
<td><code>expression_type &amp;operator () ()</code></td>
<td>Returns a reference of the expression.</td>
</tr>
</tbody>
</table>
<h4>Notes</h4>
<p>The <code>range</code>, <code>slice</code> and <code>project</code> functions have been removed. Use the free functions defined in <a href="vector_proxy.htm">vector proxy</a> instead.</p>

<h2><a name="vector_container" id="vector_container"></a>Vector Container</h2>
<h4>Description</h4>
<p>The templated class <code>vector_container&lt;C&gt;</code>
is required to be a public base of all classes which model the Vector concept.
This includes the class <code>vector</code> itself.</p>
<h4>Definition</h4>
<p>Defined in the header expression_types.hpp.</p>
<h4>Template parameters</h4>
<table border="1" summary="parameters">
<tbody>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
<tr>
<td><code>C</code></td>
<td>The type of the vector container.</td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
<h4>Model of</h4>
<p>None. <u>Not a Vector Expression OR Vector</u>!
</p>
<h4>Type requirements</h4>
<p>None.</p>
<h4>Public base classes</h4>
<p><code>vector_expression&lt;C&gt;</code></p>
<h4>Members</h4>
<table border="1" summary="members">
<tbody>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
<tr>
<td><code>const container_type &amp;operator () ()
const</code></td>
<td>Returns a <code>const</code> reference of the container.</td>
</tr>
<tr>
<td><code>container_type &amp;operator () ()</code></td>
<td>Returns a reference of the container.</td>
</tr>
</tbody>
</table>

<h2><a name="vector_references" id="vector_references"></a>Vector References</h2>
<h3>Reference</h3>
<h4>Description</h4>
<p>The templated class <code>vector_reference&lt;E&gt;</code>
contains a reference to a vector expression.</p>
<h4>Definition</h4>
<p>Defined in the header vector_expression.hpp.</p>
<h4>Template parameters</h4>
<table border="1" summary="parameters">
<tbody>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
<tr>
<td><code>E</code></td>
<td>The type of the vector expression.</td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
<h4>Model of</h4>
<p><a href="expression_concept.htm#vector_expression">Vector Expression</a>
.</p>
<h4>Type requirements</h4>
<p>None, except for those imposed by the requirements of <a href=
"expression_concept.htm#vector_expression">Vector Expression</a> .</p>
<h4>Public base classes</h4>
<p><code>vector_expression&lt;vector_reference&lt;E&gt;
&gt;</code></p>
<h4>Members</h4>
<table border="1" summary="members">
<tbody>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
<tr>
<td><code>vector_reference (expression_type &amp;e)</code></td>
<td>Constructs a reference of the expression.</td>
</tr>
<tr>
<td><code>void resize (size_type size)</code></td>
<td>Resizes the expression to hold at most <code>size</code>
elements.</td>
</tr>
<tr>
<td><code>size_type size () const</code></td>
<td>Returns the size of the expression.</td>
</tr>
<tr>
<td><code>const_reference operator () (size_type i)
const</code></td>
<td>Returns the value of the <code>i</code>-th element.</td>
</tr>
<tr>
<td><code>reference operator () (size_type i)</code></td>
<td>Returns a reference of the <code>i</code>-th element.</td>
</tr>
<tr>
<td><code>const_iterator begin () const</code></td>
<td>Returns a <code>const_iterator</code> pointing to the beginning
of the expression.</td>
</tr>
<tr>
<td><code>const_iterator end () const</code></td>
<td>Returns a <code>const_iterator</code> pointing to the end of
the expression.</td>
</tr>
<tr>
<td><code>iterator begin ()</code></td>
<td>Returns a <code>iterator</code> pointing to the beginning of
the expression.</td>
</tr>
<tr>
<td><code>iterator end ()</code></td>
<td>Returns a <code>iterator</code> pointing to the end of the
expression.</td>
</tr>
<tr>
<td><code>const_reverse_iterator rbegin () const</code></td>
<td>Returns a <code>const_reverse_iterator</code> pointing to the
beginning of the reversed expression.</td>
</tr>
<tr>
<td><code>const_reverse_iterator rend () const</code></td>
<td>Returns a <code>const_reverse_iterator</code> pointing to the
end of the reversed expression.</td>
</tr>
<tr>
<td><code>reverse_iterator rbegin ()</code></td>
<td>Returns a <code>reverse_iterator</code> pointing to the
beginning of the reversed expression.</td>
</tr>
<tr>
<td><code>reverse_iterator rend ()</code></td>
<td>Returns a <code>reverse_iterator</code> pointing to the end of
the reversed expression.</td>
</tr>
</tbody>
</table>
<h2><a name="vector_operations" id="vector_operations"></a>Vector Operations</h2>
<h3>Unary Operation Description</h3>
<h4>Description</h4>
<p>The templated class <code>vector_unary&lt;E, F&gt;</code>
describes a unary vector operation.</p>
<h4>Definition</h4>
<p>Defined in the header vector_expression.hpp.</p>
<h4>Template parameters</h4>
<table border="1" summary="parameters">
<tbody>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
<tr>
<td><code>E</code></td>
<td>The type of the vector expression.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><code>F</code></td>
<td>The type of the operation.</td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
<h4>Model of</h4>
<p><a href="expression_concept.htm#vector_expression">Vector Expression</a>
.</p>
<h4>Type requirements</h4>
<p>None, except for those imposed by the requirements of <a href=
"expression_concept.htm#vector_expression">Vector Expression</a> .</p>
<h4>Public base classes</h4>
<p><code>vector_expression&lt;vector_unary&lt;E, F&gt;
&gt;</code></p>
<h4>Members</h4>
<table border="1" summary="members">
<tbody>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
<tr>
<td><code>vector_unary (const expression_type &amp;e)</code></td>
<td>Constructs a description of the expression.</td>
</tr>
<tr>
<td><code>size_type size () const</code></td>
<td>Returns the size of the expression.</td>
</tr>
<tr>
<td><code>const_reference operator () (size_type i)
const</code></td>
<td>Returns the value of the <code>i</code>-th element.</td>
</tr>
<tr>
<td><code>const_iterator begin () const</code></td>
<td>Returns a <code>const_iterator</code> pointing to the beginning
of the expression.</td>
</tr>
<tr>
<td><code>const_iterator end () const</code></td>
<td>Returns a <code>const_iterator</code> pointing to the end of
the expression.</td>
</tr>
<tr>
<td><code>const_reverse_iterator rbegin () const</code></td>
<td>Returns a <code>const_reverse_iterator</code> pointing to the
beginning of the reversed expression.</td>
</tr>
<tr>
<td><code>const_reverse_iterator rend () const</code></td>
<td>Returns a <code>const_reverse_iterator</code> pointing to the
end of the reversed expression.</td>
</tr>
</tbody>
</table>
<h3>Unary Operations</h3>
<h4>Prototypes</h4>
<pre>
<code>template&lt;class E, class F&gt;
    struct vector_unary_traits {
        typedef vector_unary&lt;typename E::const_closure_type, F&gt; expression_type;
        typedef expression_type result_type;
     };

    // (- v) [i] = - v [i]
    template&lt;class E&gt;
     typename vector_unary_traits&lt;E, scalar_negate&lt;typename E::value_type&gt; &gt;::result_type
    operator - (const vector_expression&lt;E&gt; &amp;e);

    // (conj v) [i] = conj (v [i])
    template&lt;class E&gt;
     typename vector_unary_traits&lt;E, scalar_conj&lt;typename E::value_type&gt; &gt;::result_type
    conj (const vector_expression&lt;E&gt; &amp;e);

    // (real v) [i] = real (v [i])
    template&lt;class E&gt;
     typename vector_unary_traits&lt;E, scalar_real&lt;typename E::value_type&gt; &gt;::result_type
    real (const vector_expression&lt;E&gt; &amp;e);

    // (imag v) [i] = imag (v [i])
    template&lt;class E&gt;
     typename vector_unary_traits&lt;E, scalar_imag&lt;typename E::value_type&gt; &gt;::result_type
    imag (const vector_expression&lt;E&gt; &amp;e);

    // (trans v) [i] = v [i]
    template&lt;class E&gt;
     typename vector_unary_traits&lt;E, scalar_identity&lt;typename E::value_type&gt; &gt;::result_type
    trans (const vector_expression&lt;E&gt; &amp;e);

    // (herm v) [i] = conj (v [i])
    template&lt;class E&gt;
     typename vector_unary_traits&lt;E, scalar_conj&lt;typename E::value_type&gt; &gt;::result_type
    herm (const vector_expression&lt;E&gt; &amp;e);</code>
</pre>
<h4>Description</h4>
<p><code>operator -</code> computes the additive inverse of a
vector expression. <code>conj</code> computes the complex conjugate
of a vector expression. <code>real</code> and <code>imag</code>
compute the real and imaginary parts of a vector expression.
<code>trans</code> computes the transpose of a vector expression.
<code>herm</code> computes the hermitian, i.e. the complex
conjugate of the transpose of a vector expression.</p>
<h4>Definition</h4>
<p>Defined in the header vector_expression.hpp.</p>
<h4>Type requirements</h4>
<ul>
<li><code>E</code> is a model of <a href=
"expression_concept.htm#vector_expression">Vector Expression</a> .</li>
</ul>
<h4>Preconditions</h4>
<p>None.</p>
<h4>Complexity</h4>
<p>Linear depending from the size of the vector expression.</p>
<h4>Examples</h4>
<pre>
#include &lt;boost/numeric/ublas/vector.hpp&gt;
#include &lt;boost/numeric/ublas/io.hpp&gt;

int main () {
    using namespace boost::numeric::ublas;
    vector&lt;std::complex&lt;double&gt; &gt; v (3);
    for (unsigned i = 0; i &lt; v.size (); ++ i)
        v (i) = std::complex&lt;double&gt; (i, i);

    std::cout &lt;&lt; - v &lt;&lt; std::endl;
    std::cout &lt;&lt; conj (v) &lt;&lt; std::endl;
    std::cout &lt;&lt; real (v) &lt;&lt; std::endl;
    std::cout &lt;&lt; imag (v) &lt;&lt; std::endl;
    std::cout &lt;&lt; trans (v) &lt;&lt; std::endl;
    std::cout &lt;&lt; herm (v) &lt;&lt; std::endl;
}
</pre>
<h3>Binary Operation Description</h3>
<h4>Description</h4>
<p>The templated class <code>vector_binary&lt;E1, E2, F&gt;</code>
describes a binary vector operation.</p>
<h4>Definition</h4>
<p>Defined in the header vector_expression.hpp.</p>
<h4>Template parameters</h4>
<table border="1" summary="parameters">
<tbody>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
<tr>
<td><code>E1</code></td>
<td>The type of the first vector expression.</td>
<td></td>
</tr>
<tr>
<td><code>E2</code></td>
<td>The type of the second vector expression.</td>
<td></td>
</tr>
<tr>
<td><code>F</code></td>
<td>The type of the operation.</td>
<td></td>
</tr>
</tbody>
</table>
<h4>Model of</h4>
<p><a href="expression_concept.htm#vector_expression">Vector Expression</a>
.</p>
<h4>Type requirements</h4>
<p>None, except for those imposed by the requirements of <a href=
"expression_concept.htm#vector_expression">Vector Expression</a> .</p>
<h4>Public base classes</h4>
<p><code>vector_expression&lt;vector_binary&lt;E1, E2, F&gt;
&gt;</code></p>
<h4>Members</h4>
<table border="1" summary="members">
<tbody>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
<tr>
<td><code>vector_binary (const expression1_type &amp;e1, const
expression2_type &amp;e2)</code></td>
<td>Constructs a description of the expression.</td>
</tr>
<tr>
<td><code>size_type size () const</code></td>
<td>Returns the size of the expression.</td>
</tr>
<tr>
<td><code>const_reference operator () (size_type i)
const</code></td>
<td>Returns the value of the <code>i</code>-th element.</td>
</tr>
<tr>
<td><code>const_iterator begin () const</code></td>
<td>Returns a <code>const_iterator</code> pointing to the beginning
of the expression.</td>
</tr>
<tr>
<td><code>const_iterator end () const</code></td>
<td>Returns a <code>const_iterator</code> pointing to the end of
the expression.</td>
</tr>
<tr>
<td><code>const_reverse_iterator rbegin () const</code></td>
<td>Returns a <code>const_reverse_iterator</code> pointing to the
beginning of the reversed expression.</td>
</tr>
<tr>
<td><code>const_reverse_iterator rend () const</code></td>
<td>Returns a <code>const_reverse_iterator</code> pointing to the
end of the reversed expression.</td>
</tr>
</tbody>
</table>
<h3>Binary Operations</h3>
<h4>Prototypes</h4>
<pre>
<code>template&lt;class E1, class E2, class F&gt;
    struct vector_binary_traits {
        typedef vector_binary&lt;typename E1::const_closure_type,
                               typename E2::const_closure_type, F&gt; expression_type;
        typedef expression_type result_type;
     };

    // (v1 + v2) [i] = v1 [i] + v2 [i]
    template&lt;class E1, class E2&gt;
    typename vector_binary_traits&lt;E1, E2, scalar_plus&lt;typename E1::value_type,
                                                       typename E2::value_type&gt; &gt;::result_type
    operator + (const vector_expression&lt;E1&gt; &amp;e1,
                 const vector_expression&lt;E2&gt; &amp;e2);

    // (v1 - v2) [i] = v1 [i] - v2 [i]
    template&lt;class E1, class E2&gt;
    typename vector_binary_traits&lt;E1, E2, scalar_minus&lt;typename E1::value_type,
                                                        typename E2::value_type&gt; &gt;::result_type
    operator - (const vector_expression&lt;E1&gt; &amp;e1,
                 const vector_expression&lt;E2&gt; &amp;e2);</code>
</pre>
<h4>Description</h4>
<p><code>operator +</code> computes the sum of two vector
expressions. <code>operator -</code> computes the difference of two
vector expressions.</p>
<h4>Definition</h4>
<p>Defined in the header vector_expression.hpp.</p>
<h4>Type requirements</h4>
<ul>
<li><code>E1</code> is a model of <a href=
"expression_concept.htm#vector_expression">Vector Expression</a> .</li>
<li><code>E2</code> is a model of <a href=
"expression_concept.htm#vector_expression">Vector Expression</a> .</li>
</ul>
<h4>Preconditions</h4>
<ul>
<li><code>e1 ().size () == e2 ().size ()</code></li>
</ul>
<h4>Complexity</h4>
<p>Linear depending from the size of the vector expressions.</p>
<h4>Examples</h4>
<pre>
#include &lt;boost/numeric/ublas/vector.hpp&gt;
#include &lt;boost/numeric/ublas/io.hpp&gt;

int main () {
    using namespace boost::numeric::ublas;
    vector&lt;double&gt; v1 (3), v2 (3);
    for (unsigned i = 0; i &lt; std::min (v1.size (), v2.size ()); ++ i)
        v1 (i) = v2 (i) = i;

    std::cout &lt;&lt; v1 + v2 &lt;&lt; std::endl;
    std::cout &lt;&lt; v1 - v2 &lt;&lt; std::endl;
}
</pre>
<h3>Binary Outer Operation Description</h3>
<h4>Description</h4>
<p>The templated class <code>vector_matrix_binary&lt;E1, E2,
F&gt;</code> describes a binary outer vector operation.</p>
<h4>Definition</h4>
<p>Defined in the header matrix_expression.hpp.</p>
<h4>Template parameters</h4>
<table border="1" summary="parameters">
<tbody>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
<tr>
<td><code>E1</code></td>
<td>The type of the first vector expression.</td>
<td></td>
</tr>
<tr>
<td><code>E2</code></td>
<td>The type of the second vector expression.</td>
<td></td>
</tr>
<tr>
<td><code>F</code></td>
<td>The type of the operation.</td>
<td></td>
</tr>
</tbody>
</table>
<h4>Model of</h4>
<p><a href="expression_concept.htm#matrix_expression">Matrix Expression</a>
.</p>
<h4>Type requirements</h4>
<p>None, except for those imposed by the requirements of <a href=
"expression_concept.htm#matrix_expression">Matrix Expression</a> .</p>
<h4>Public base classes</h4>
<p><code>matrix_expression&lt;vector_matrix_binary&lt;E1, E2, F&gt;
&gt;</code></p>
<h4>Members</h4>
<table border="1" summary="members">
<tbody>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
<tr>
<td><code>vector_matrix_binary (const expression1_type &amp;e1,
const expression2_type &amp;e2)</code></td>
<td>Constructs a description of the expression.</td>
</tr>
<tr>
<td><code>size_type size1 () const</code></td>
<td>Returns the number of rows.</td>
</tr>
<tr>
<td><code>size_type size2 () const</code></td>
<td>Returns the number of columns.</td>
</tr>
<tr>
<td><code>const_reference operator () (size_type i, size_type j)
const</code></td>
<td>Returns the value of the <code>j</code>-th element in the
<code>i</code>-th row.</td>
</tr>
<tr>
<td><code>const_iterator1 begin1 () const</code></td>
<td>Returns a <code>const_iterator1</code> pointing to the
beginning of the expression.</td>
</tr>
<tr>
<td><code>const_iterator1 end1 () const</code></td>
<td>Returns a <code>const_iterator1</code> pointing to the end of
the expression.</td>
</tr>
<tr>
<td><code>const_iterator2 begin2 () const</code></td>
<td>Returns a <code>const_iterator2</code> pointing to the
beginning of the expression.</td>
</tr>
<tr>
<td><code>const_iterator2 end2 () const</code></td>
<td>Returns a <code>const_iterator2</code> pointing to the end of
the expression.</td>
</tr>
<tr>
<td><code>const_reverse_iterator1 rbegin1 () const</code></td>
<td>Returns a <code>const_reverse_iterator1</code> pointing to the
beginning of the reversed expression.</td>
</tr>
<tr>
<td><code>const_reverse_iterator1 rend1 () const</code></td>
<td>Returns a <code>const_reverse_iterator1</code> pointing to the
end of the reversed expression.</td>
</tr>
<tr>
<td><code>const_reverse_iterator2 rbegin2 () const</code></td>
<td>Returns a <code>const_reverse_iterator2</code> pointing to the
beginning of the reversed expression.</td>
</tr>
<tr>
<td><code>const_reverse_iterator2 rend2 () const</code></td>
<td>Returns a <code>const_reverse_iterator2</code> pointing to the
end of the reversed expression.</td>
</tr>
</tbody>
</table>
<h3>Binary Outer Operations</h3>
<h4>Prototypes</h4>
<pre>
<code>template&lt;class E1, class E2, class F&gt;
    struct vector_matrix_binary_traits {
        typedef vector_matrix_binary&lt;typename E1::const_closure_type,
                                      typename E2::const_closure_type, F&gt; expression_type;
        typedef expression_type result_type;
     };

    // (outer_prod (v1, v2)) [i] [j] = v1 [i] * v2 [j]
    template&lt;class E1, class E2&gt;
    typename vector_matrix_binary_traits&lt;E1, E2, scalar_multiplies&lt;typename E1::value_type, typename E2::value_type&gt; &gt;::result_type
    outer_prod (const vector_expression&lt;E1&gt; &amp;e1,
                 const vector_expression&lt;E2&gt; &amp;e2);</code>
</pre>
<h4>Description</h4>
<p><code>outer_prod</code> computes the outer product of two vector
expressions.</p>
<h4>Definition</h4>
<p>Defined in the header matrix_expression.hpp.</p>
<h4>Type requirements</h4>
<ul>
<li><code>E1</code> is a model of <a href=
"expression_concept.htm#vector_expression">Vector Expression</a> .</li>
<li><code>E2</code> is a model of <a href=
"expression_concept.htm#vector_expression">Vector Expression</a> .</li>
</ul>
<h4>Preconditions</h4>
<p>None.</p>
<h4>Complexity</h4>
<p>Quadratic depending from the size of the vector expressions.</p>
<h4>Examples</h4>
<pre>
#include &lt;boost/numeric/ublas/matrix.hpp&gt;
#include &lt;boost/numeric/ublas/io.hpp&gt;

int main () {
    using namespace boost::numeric::ublas;
    vector&lt;double&gt; v1 (3), v2 (3);
    for (unsigned i = 0; i &lt; std::min (v1.size (), v2.size ()); ++ i)
        v1 (i) = v2 (i) = i;

    std::cout &lt;&lt; outer_prod (v1, v2) &lt;&lt; std::endl;
}
</pre>
<h3>Scalar Vector Operation Description</h3>
<h4>Description</h4>
<p>The templated classes <code>vector_binary_scalar1&lt;E1, E2,
F&gt;</code> and <code>vector_binary_scalar2&lt;E1, E2,
F&gt;</code> describe binary operations between a scalar and a
vector.</p>
<h4>Definition</h4>
<p>Defined in the header vector_expression.hpp.</p>
<h4>Template parameters</h4>
<table border="1" summary="parameters">
<tbody>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
<tr>
<td><code>E1/E2</code></td>
<td>The type of the scalar expression.</td>
<td></td>
</tr>
<tr>
<td><code>E2/E1</code></td>
<td>The type of the vector expression.</td>
<td></td>
</tr>
<tr>
<td><code>F</code></td>
<td>The type of the operation.</td>
<td></td>
</tr>
</tbody>
</table>
<h4>Model of</h4>
<p><a href="expression_concept.htm#vector_expression">Vector Expression</a>
.</p>
<h4>Type requirements</h4>
<p>None, except for those imposed by the requirements of <a href=
"expression_concept.htm#vector_expression">Vector Expression</a> .</p>
<h4>Public base classes</h4>
<p><code>vector_expression&lt;vector_binary_scalar1&lt;E1, E2,
F&gt; &gt;</code> and
<code>vector_expression&lt;vector_binary_scalar2&lt;E1, E2, F&gt;
&gt;</code> resp.</p>
<h4>Members</h4>
<table border="1" summary="members">
<tbody>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
<tr>
<td><code>vector_binary_scalar1 (const expression1_type &amp;e1,
const expression2_type &amp;e2)</code></td>
<td>Constructs a description of the expression.</td>
</tr>
<tr>
<td><code>vector_binary_scalar2 (const expression1_type &amp;e1,
const expression2_type &amp;e2)</code></td>
<td>Constructs a description of the expression.</td>
</tr>
<tr>
<td><code>size_type size () const</code></td>
<td>Returns the size of the expression.</td>
</tr>
<tr>
<td><code>const_reference operator () (size_type i)
const</code></td>
<td>Returns the value of the <code>i</code>-th element.</td>
</tr>
<tr>
<td><code>const_iterator begin () const</code></td>
<td>Returns a <code>const_iterator</code> pointing to the beginning
of the expression.</td>
</tr>
<tr>
<td><code>const_iterator end () const</code></td>
<td>Returns a <code>const_iterator</code> pointing to the end of
the expression.</td>
</tr>
<tr>
<td><code>const_reverse_iterator rbegin () const</code></td>
<td>Returns a <code>const_reverse_iterator</code> pointing to the
beginning of the reversed expression.</td>
</tr>
<tr>
<td><code>const_reverse_iterator rend () const</code></td>
<td>Returns a <code>const_reverse_iterator</code> pointing to the
end of the reversed expression.</td>
</tr>
</tbody>
</table>
<h3>Scalar Vector Operations</h3>
<h4>Prototypes</h4>
<pre>
<code>template&lt;class T1, class E2, class F&gt;
    struct vector_binary_scalar1_traits {
        typedef vector_binary_scalar1&lt;scalar_const_reference&lt;T1&gt;,
                                      typename E2::const_closure_type, F&gt; expression_type;
        typedef expression_type result_type;
    };

    // (t * v) [i] = t * v [i]
    template&lt;class T1, class E2&gt;
    typename vector_binary_scalar1_traits&lt;T1, E2, scalar_multiplies&lt;T1, typename E2::value_type&gt; &gt;::result_type
    operator * (const T1 &amp;e1,
                const vector_expression&lt;E2&gt; &amp;e2);

    template&lt;class E1, class T2, class F&gt;
    struct vector_binary_scalar2_traits {
        typedef vector_binary_scalar2&lt;typename E1::const_closure_type,
                                      scalar_const_reference&lt;T2&gt;, F&gt; expression_type;
        typedef expression_type result_type;
    };

    // (v * t) [i] = v [i] * t
    template&lt;class E1, class T2&gt;
    typename vector_binary_scalar2_traits&lt;E1, T2, scalar_multiplies&lt;typename E1::value_type, T2&gt; &gt;::result_type
    operator * (const vector_expression&lt;E1&gt; &amp;e1,
                const T2 &amp;e2);

    // (v / t) [i] = v [i] / t
    template&lt;class E1, class T2&gt;
    typename vector_binary_scalar2_traits&lt;E1, T2, scalar_divides&lt;typename E1::value_type, T2&gt; &gt;::result_type
    operator / (const vector_expression&lt;E1&gt; &amp;e1,
                const T2 &amp;e2);</code>
</pre>
<h4>Description</h4>
<p><code>operator *</code> computes the product of a scalar and a
vector expression. <code>operator /</code> multiplies the vector
with the reciprocal of the scalar.</p>
<h4>Definition</h4>
<p>Defined in the header vector_expression.hpp.</p>
<h4>Type requirements</h4>
<ul>
<li><code>T1/T2</code> is a model of <a href=
"expression_concept.htm#scalar_expression">Scalar Expression</a> .</li>
<li><code>E2/E1</code> is a model of <a href=
"expression_concept.htm#vector_expression">Vector Expression</a> .</li>
</ul>
<h4>Preconditions</h4>
<p>None.</p>
<h4>Complexity</h4>
<p>Linear depending from the size of the vector expression.</p>
<h4>Examples</h4>
<pre>
#include &lt;boost/numeric/ublas/vector.hpp&gt;
#include &lt;boost/numeric/ublas/io.hpp&gt;

int main () {
    using namespace boost::numeric::ublas;
    vector&lt;double&gt; v (3);
    for (unsigned i = 0; i &lt; v.size (); ++ i)
        v (i) = i;

    std::cout &lt;&lt; 2.0 * v &lt;&lt; std::endl;
    std::cout &lt;&lt; v * 2.0 &lt;&lt; std::endl;
}
</pre>
<h2><a name="vector_reductions" id="vector_reductions"></a>Vector Reductions</h2>
<h3>Unary Reductions</h3>
<h4>Prototypes</h4>
<pre>
<code>template&lt;class E, class F&gt;
    struct vector_scalar_unary_traits {
         typedef typename F::result_type result_type;
    };

    // sum v = sum (v [i])
    template&lt;class E&gt;
    typename vector_scalar_unary_traits&lt;E, vector_sum&lt;typename E::value_type&gt; &gt;::result_type
    sum (const vector_expression&lt;E&gt; &amp;e);

    // norm_1 v = sum (abs (v [i]))
    template&lt;class E&gt;
    typename vector_scalar_unary_traits&lt;E, vector_norm_1&lt;typename E::value_type&gt; &gt;::result_type
    norm_1 (const vector_expression&lt;E&gt; &amp;e);

    // norm_2 v = sqrt (sum (v [i] * v [i]))
    template&lt;class E&gt;
    typename vector_scalar_unary_traits&lt;E, vector_norm_2&lt;typename E::value_type&gt; &gt;::result_type
    norm_2 (const vector_expression&lt;E&gt; &amp;e);

    // norm_inf v = max (abs (v [i]))
    template&lt;class E&gt;
    typename vector_scalar_unary_traits&lt;E, vector_norm_inf&lt;typename E::value_type&gt; &gt;::result_type
    norm_inf (const vector_expression&lt;E&gt; &amp;e);

    // index_norm_inf v = min (i: abs (v [i]) == max (abs (v [i])))
    template&lt;class E&gt;
    typename vector_scalar_unary_traits&lt;E, vector_index_norm_inf&lt;typename E::value_type&gt; &gt;::result_type
    index_norm_inf (const vector_expression&lt;E&gt; &amp;e);</code>
</pre>
<h4>Description</h4>
<p><code>sum</code> computes the sum of the vector expression's
elements. <code>norm_1</code>, <code>norm_2</code> and
<code>norm_inf</code> compute the corresponding
<em>||.||</em><sub><em>1</em></sub>,
<em>||.||</em><sub><em>2</em></sub> and
<em>||.||</em><sub><em>inf</em></sub> vector norms.
<code>index_norm_1</code> computes the index of the vector
expression's first element having maximal absolute value.</p>
<h4>Definition</h4>
<p>Defined in the header vector_expression.hpp.</p>
<h4>Type requirements</h4>
<ul>
<li><code>E</code> is a model of <a href=
"#vector_expression">Vector Expression</a> .</li>
</ul>
<h4>Preconditions</h4>
<p>None.</p>
<h4>Complexity</h4>
<p>Linear depending from the size of the vector expression.</p>
<h4>Examples</h4>
<pre>
#include &lt;boost/numeric/ublas/vector.hpp&gt;

int main () {
    using namespace boost::numeric::ublas;
    vector&lt;double&gt; v (3);
    for (unsigned i = 0; i &lt; v.size (); ++ i)
        v (i) = i;

    std::cout &lt;&lt; sum (v) &lt;&lt; std::endl;
    std::cout &lt;&lt; norm_1 (v) &lt;&lt; std::endl;
    std::cout &lt;&lt; norm_2 (v) &lt;&lt; std::endl;
    std::cout &lt;&lt; norm_inf (v) &lt;&lt; std::endl;
    std::cout &lt;&lt; index_norm_inf (v) &lt;&lt; std::endl;
}
</pre>
<h3>Binary Reductions</h3>
<h4>Prototypes</h4>
<pre>
<code>template&lt;class E1, class E2, class F&gt;
    struct vector_scalar_binary_traits {
        typedef typename F::result_type result_type;
    };

    // inner_prod (v1, v2) = sum (v1 [i] * v2 [i])
    template&lt;class E1, class E2&gt;
    typename vector_scalar_binary_traits&lt;E1, E2, vector_inner_prod&lt;typename E1::value_type,
                                                                   typename E2::value_type,
                                                                   typename promote_traits&lt;typename E1::value_type,
                                                                                           typename E2::value_type&gt;::promote_type&gt; &gt;::result_type
    inner_prod (const vector_expression&lt;E1&gt; &amp;e1,
                const vector_expression&lt;E2&gt; &amp;e2);

    template&lt;class E1, class E2&gt;
    typename vector_scalar_binary_traits&lt;E1, E2, vector_inner_prod&lt;typename E1::value_type,
                                                                   typename E2::value_type,
                                                                   typename type_traits&lt;typename promote_traits&lt;typename E1::value_type,
                                                                                                                typename E2::value_type&gt;::promote_type&gt;::precision_type&gt; &gt;::result_type
    prec_inner_prod (const vector_expression&lt;E1&gt; &amp;e1,
                     const vector_expression&lt;E2&gt; &amp;e2);</code>
</pre>
<h4>Description</h4>
<p><code>inner_prod</code> computes the inner product of the vector
expressions. <code>prec_inner_prod</code> computes the double
precision inner product of the vector expressions<code>.</code></p>
<h4>Definition</h4>
<p>Defined in the header vector_expression.hpp.</p>
<h4>Type requirements</h4>
<ul>
<li><code>E1</code> is a model of <a href=
"#vector_expression">Vector Expression</a> .</li>
<li><code>E2</code> is a model of <a href=
"#vector_expression">Vector Expression</a> .</li>
</ul>
<h4>Preconditions</h4>
<ul>
<li><code>e1 ().size () == e2 ().size ()</code></li>
</ul>
<h4>Complexity</h4>
<p>Linear depending from the size of the vector expressions.</p>
<h4>Examples</h4>
<pre>
#include &lt;boost/numeric/ublas/vector.hpp&gt;

int main () {
    using namespace boost::numeric::ublas;
    vector&lt;double&gt; v1 (3), v2 (3);
    for (unsigned i = 0; i &lt; std::min (v1.size (), v2.size ()); ++ i)
        v1 (i) = v2 (i) = i;

    std::cout &lt;&lt; inner_prod (v1, v2) &lt;&lt; std::endl;
}
</pre>
<hr />
<p>Copyright (&copy;) 2000-2002 Joerg Walter, Mathias Koch<br />
Permission to copy, use, modify, sell and distribute this document
is granted provided this copyright notice appears in all copies.
This document is provided ``as is'' without express or implied
warranty, and with no claim as to its suitability for any
purpose.</p>
</body>
</html>