1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
<HTML>
<!--
-- Copyright (c) Jeremy Siek 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
-->
<Head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<Title>Range Concepts</Title>
<link rel="stylesheet" href="style.css" type="text/css">
</HEAD>
<table border="0" >
<tr>
<td ><img src="../../../boost.png" border="0" ></td>
<td ><h1 align="center">Boost.Range </h1></td>
</tr>
</table>
<h2>Range concepts </h2>
<ul>
<li>
<a href="#overview">Overview</a>
<li>
<a href="#single_pass_range">Single Pass Range</a>
<li>
<a href="#forward_range">Forward Range</a>
<li>
<a href="#bidirectional_range">Bidirectional Range</a>
<li>
<a href="#random_access_range">Random Access Range</a>
<li>
<a href="#concept_checking">Concept Checking</a>
</ul>
<a name="overview"></a>
<hr>
<h3>Overview</h3>
<p>
A Range is a <i>concept</i> similar to the STL <a
href="http://www.sgi.com/Technology/STL/Container.html">Container</a> concept. A
Range provides iterators for accessing a half-open range
<code>[first,one_past_last)</code> of elements and provides
information about the number of elements in the Range. However, a Range has
fewer requirements than a Container.
</p>
<p>
The motivation for the Range concept is
that there are many useful Container-like types that do not meet the full
requirements of Container, and many algorithms that can be written with this
reduced set of requirements. In particular, a Range does not necessarily
<ul>
<li>
own the elements that can be accessed through it,
<li>
have copy semantics,
<!--
<li>
require that the associated reference type is a real C++ reference.
-->
</ul>
Because of the second requirement, a Range object must be passed by
(const or non-const) reference in generic code.
</p>
<p>
The operations that can be performed on a Range is dependent on the
<a href="../../iterator/doc/new-iter-concepts.html#iterator-traversal-concepts-lib-iterator-traversal">traversal
category</a> of the underlying iterator type. Therefore
the range concepts are named to reflect which traversal category its
iterators support. See also <a href="style.html">terminology and style guidelines.</a>
for more information about naming of ranges.</p>
<p> The concepts described below specifies associated types as
<a href="../../mpl/doc/refmanual/metafunction.html">metafunctions</a> and all
functions as free-standing functions to allow for a layer of indirection. </p>
<!--<p><i>Notice that these metafunctions must be defined in namespace </i>
<code>boost</code></p>-->
<hr>
<a name="single_pass_range">
<H2>Single Pass Range</H2>
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign="top"><code>X</code></TD>
<TD VAlign="top">A type that is a model of Single Pass Range.</TD>
</TR>
<TR>
<TD VAlign="top"><code>a</code></TD>
<TD VAlign="top">Object of type <code>X</code>.</TD>
</TR>
</table>
<h3>Description</h3>
<p>
A range X where <code>boost::range_iterator<X>::type</code> is a model of <a
href="../../iterator/doc/new-iter-concepts.html#single-pass-iterators-lib-single-pass-iterators">
Single Pass Iterator</a>
</p>
<h3>Associated types</h3>
<table border="1" cellpadding="5">
<TR>
<TD VAlign="top">Value type</TD>
<TD VAlign="top"><code>boost::range_value<X>::type</code></TD>
<TD VAlign="top">The type of the object stored in a Range.
</TR>
<TR>
<TD VAlign="top">Iterator type</TD>
<TD VAlign="top"><code>boost::range_iterator<X>::type</code></TD>
<TD VAlign="top">The type of iterator used to iterate through a Range's elements.
The iterator's value type is expected to be the Range's value type. A
conversion from the iterator type to the const iterator type must exist.
</TR>
<TR>
<TD VAlign="top">Const iterator type</TD>
<TD VAlign="top"><code>boost::range_const_iterator<X>::type</code></TD>
<TD VAlign="top">A type of iterator that may be used to examine, but not to
modify, a Range's elements.</TD>
</TR>
<!--
<TR>
<TD VAlign="top">Reference type</TD>
<TD VAlign="top"><code>reference_of<X>::type</code></TD>
<TD VAlign="top">A type that behaves like a reference to the Range's value type. <a href="#1">[1]</a></TD>
</TR>
-->
</table>
<h3>Valid expressions</h3>
The following expressions must be valid.
<p>
<Table border="1" cellpadding="5">
<TR>
<TH>Name</TH>
<TH>Expression</TH>
<TH>Return type</TH>
</TR>
<TR>
<TD VAlign="top">Beginning of range</TD>
<TD VAlign="top"><code>boost::begin(a)</code></TD>
<TD VAlign="top"><code>boost::range_iterator<X>::type</code> if
<code>a</code> is mutable, <code>boost::range_const_iterator<X>::type</code>
otherwise</TD> </TR>
<TR>
<TD VAlign="top">End of range</TD>
<TD VAlign="top"><code>boost::end(a)</code></TD>
<TD VAlign="top"><code>boost::range_iterator<X>::type</code> if
<code>a</code> is mutable, <code>boost::range_const_iterator<X>::type</code>
otherwise</TD>
</TR>
<tr>
<TD VAlign="top">Is range empty?</TD>
<TD VAlign="top"><code>boost::empty(a)</code></TD>
<TD VAlign="top">Convertible to <code>bool</code></TD>
</TR>
</table>
<h3>Expression semantics</h3>
<Table border>
<TR>
<TH>Expression</TH>
<TH>Semantics</TH>
<TH>Postcondition</TH>
</TR>
<TR>
<TD VAlign="top"><code>boost::begin(a)</code></TD>
<TD VAlign="top">Returns an iterator pointing to the first element in the Range.</TD>
<TD VAlign="top"><code>boost::begin(a)</code> is either dereferenceable or past-the-end.
It is past-the-end if and only if <code>boost::size(a) == 0</code>.</TD>
</TR>
<TR>
<TD VAlign="top"><code>boost::end(a)</code></TD>
<TD VAlign="top">Returns an iterator pointing one past the last element in the
Range.</TD>
<TD VAlign="top"><code>boost::end(a)</code> is past-the-end.</TD>
</TR>
<TR>
<TD VAlign="top"><code>boost::empty(a)</code></TD>
<TD VAlign="top">Equivalent to <code>boost::begin(a) == boost::end(a)</code>. (But possibly
faster.)</TD>
<TD VAlign="top"> - </TD>
</TR>
</table>
<h3>Complexity guarantees</h3>
All three functions are at most amortized linear time. For most practical
purposes, one can expect <code>boost::begin(a)</code>, <code>boost::end(a)</code> and <code>boost::empty(a)</code>
to be amortized constant time.
<h3>Invariants</h3>
<Table border>
<TR>
<TD VAlign="top">Valid range</TD>
<TD VAlign="top">For any Range <code>a</code>, <code>[boost::begin(a),boost::end(a))</code> is
a valid range, that is, <code>boost::end(a)</code> is reachable from <code>boost::begin(a)</code>
in a finite number of increments.</TD>
</TR>
<TR>
<TD VAlign="top">Completeness</TD>
<TD VAlign="top">An algorithm that iterates through the range <code>[boost::begin(a),boost::end(a))</code>
will pass through every element of <code>a</code>.</TD>
</tr>
</table>
<h3>See also</h3>
<p>
<A href="http://www.sgi.com/Technology/STL/Container.html">Container</A>
</p>
<p> <a href="boost_range.html#boost::range_value">implementation of
metafunctions </a></p>
<p> <a href="boost_range.html#begin">implementation of
functions </a></p>
<hr>
<a name=forward_range><h2>Forward Range</h2>
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign="top"><code>X</code></TD>
<TD VAlign="top">A type that is a model of Forward Range.</TD>
</TR>
<TR>
<TD VAlign="top"><code>a</code></TD>
<TD VAlign="top">Object of type <code>X</code>.</TD>
</TR>
</table>
<h3>Description</h3>
<p>
A range <code>X</code> where <code>boost::range_iterator<X>::type</code> is a model
of <a
href="../../iterator/doc/new-iter-concepts.html#forward-traversal-iterators-lib-forward-traversal-iterators">Forward Traversal Iterator</a>
</p>
<h3>Refinement of</h3> <a href="#single_pass_range">Single Pass
Range</a>
<h3>Associated types</h3>
<table cellpadding="5" border="1">
<TR>
<TD VAlign="top">Distance type</TD>
<TD VAlign="top"><code>boost::range_difference<X>::type</code></TD>
<TD VAlign="top">A signed integral type used to represent the distance between
two of the Range's iterators. This type must be the same as the iterator's
distance type.</TD>
</TR>
<TR>
<TD VAlign="top">Size type</TD>
<TD VAlign="top"><code>boost::range_size<X>::type</code></TD>
<TD VAlign="top">An unsigned integral type that can represent any nonnegative
value of the Range's distance type.</TD>
</tr>
</table>
<h3>Valid expressions</h3>
<table border="1" cellpadding="5">
<tr>
<th>Name</th>
<th>Expression</th>
<th>Return type</th>
</tr>
<TR>
<TD VAlign="top">Size of range</TD>
<TD VAlign="top"><code>boost::size(a)</code></TD>
<TD VAlign="top"><code>boost::range_size<X>::type</code></TD>
</TR>
</table>
<h3>Expression semantics </h3>
<table border="1" cellpadding="5">
<TR>
<TH>Expression</TH>
<TH>Semantics</TH>
<TH>Postcondition</TH>
</TR>
<tr>
<TD VAlign="top"><code>boost::size(a)</code></TD>
<TD VAlign="top">Returns the size of the Range, that is, its number
of elements. Note <code>boost::size(a) == 0u</code> is equivalent to
<code>boost::empty(a).</code></TD>
<TD VAlign="top"><code>boost::size(a) >= 0</TD>
</TR>
</table>
<h3>Complexity guarantees</h3>
<p><code>boost::size(a)</code> is at most amortized linear time.</p>
<h3>Invariants</h3>
<p>
<Table border="1" cellpadding="5">
<TR>
<TD VAlign="top">Range size</TD>
<TD VAlign="top"><code>boost::size(a)</code> is equal to the distance from <code>boost::begin(a)</code>
to <code>boost::end(a)</code>.</TD> </table>
</p>
<h3>See also</h3>
<p> <a href="boost_range.html#boost::range_difference">implementation of
metafunctions </a></p>
<p> <a href="boost_range.html#size">implementation of
functions </a></p>
<hr>
<a name="bidirectional_range"><h2>Bidirectional Range</h2>
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign="top"><code>X</code></TD>
<TD VAlign="top">A type that is a model of Bidirectional Range.</TD>
</TR>
<TR>
<TD VAlign="top"><code>a</code></TD>
<TD VAlign="top">Object of type <code>X</code>.</TD>
</TR>
</table>
<h3>Description</h3> This concept provides access to iterators that traverse in
both directions (forward and reverse). The
<code>boost::range_iterator<X>::type</code> iterator must meet all of the requirements
of <a
href="../../iterator/doc/new-iter-concepts.html#bidirectional-traversal-iterator
s-lib-bidirectional-traversal-iterators">Bidirectional Traversal Iterator.</a>
<h3>Refinement of</h3> <a href="#forward_range">Forward Range</a>
<h3>Associated types</h3>
<Table border>
<TR>
<TD VAlign="top">Reverse Iterator type</TD>
<TD VAlign="top"><code>boost::range_reverse_iterator<X>::type</code></TD>
<TD VAlign="top">The type of iterator used to iterate through a Range's elements
in reverse order. The iterator's value type is expected to be the Range's value
type. A conversion from the reverse iterator type to the const reverse iterator
type must exist. </TD>
</TR>
<TR>
<TD VAlign="top">Const reverse iterator type</TD>
<TD
VAlign="top"><code>boost::range_const_reverse_iterator<X>::type</code></TD>
<TD VAlign="top">A type of reverse iterator that may be used to examine, but not
to modify, a Range's elements.</TD>
</TR>
</table>
<h3>Valid expressions</h3>
<Table border>
<TR>
<TH>Name</TH>
<TH>Expression</TH>
<TH>Return type</TH>
<TH>Semantics</TH>
</TR>
<TR>
<TD VAlign="top">Beginning of range</TD>
<TD VAlign="top"><code>boost::rbegin(a)</code></TD>
<TD VAlign="top"><code>boost::range_reverse_iterator<X>::type</code> if
<code>a</code> is mutable, <code>boost::range_const_reverse_iterator<X>::type</code>
otherwise.</TD>
<TD VAlign="top">Equivalent to
<code>boost::range_reverse_iterator<X>::type(boost::end(a))</code>.</TD> </TR>
<TR>
<TD VAlign="top">End of range</TD>
<TD VAlign="top"><code>boost::rend(a)</code></TD>
<TD VAlign="top"><code>boost::range_reverse_iterator<X>::type</code> if
<code>a</code> is mutable, <code>boost::range_const_reverse_iterator<X>::type</code>
otherwise.</TD>
<TD VAlign="top">Equivalent to
<code>boost::range_reverse_iterator<X>::type(boost::begin(a))</code>.</TD> </tr>
</table>
<h3>Complexity guarantees</h3>
<code>boost::rbegin(a)</code> has the same complexity as <code>boost::end(a)</code> and <code>boost::rend(a)</code>
has the same complexity as <code>boost::begin(a)</code> from <a
href="#forward_range">Forward Range</a>.
<h3>Invariants</h3>
<p>
<Table border="1" cellpadding="5">
<TR>
<TD VAlign="top">Valid reverse range</TD>
<TD VAlign="top">For any Bidirectional Range <code>a</code>, <code>[boost::rbegin(a),boost::rend(a))</code>
is a valid range, that is, <code>boost::rend(a)</code> is reachable from <code>boost::rbegin(a)</code>
in a finite number of increments.</TD>
</TR>
<TR>
<TD VAlign="top">Completeness</TD>
<TD VAlign="top">An algorithm that iterates through the range <code>[boost::rbegin(a),boost::rend(a))</code>
will pass through every element of <code>a</code>.</TD>
</tr>
</table>
</p>
<h3>See also</h3>
<p> <a href="boost_range.html#boost::range_reverse_iterator">implementation of metafunctions </a></p>
<p> <a href="boost_range.html#rbegin">implementation of
functions </a></p>
<hr>
<a name=random_access_range><h2>Random Access Range</h2> <h3>Description</h3>
<p>
A range <code>X</code> where <code>boost::range_iterator<X>::type</code> is a model
of <a
href="../../iterator/doc/new-iter-concepts.html#random-access-traversal-iterators
-lib-random-access-traversal-iterators">Random Access Traversal Iterator</a>
</p>
<h3>Refinement of</h3>
<p>
<a href="#bidirectional_range">Bidirectional Range</a>
</p>
<hr>
<a name=concept_checking><h2>Concept Checking</h2>
Each of the range concepts has a corresponding concept checking
class in the file boost/range/concepts.hpp. These classes may be
used in conjunction with the <a
href="../../concept_check/concept_check.htm">Boost Concept
Check</a> library to insure that the type of a template parameter
is compatible with a range concept. If not, a meaningful compile
time error is generated. Checks are provided for the range
concepts related to iterator traversal categories. For example,
the following line checks that the type <code>T</code> models the
<a href="#forward_range">ForwardRange</a> concept.
<pre>
function_requires<ForwardRangeConcept<T> >();
</pre>
An additional concept check is required for the value access
property of the range based on the range's iterator type. For
example to check for a ForwardReadableRange, the following code is
required.
<pre>
function_requires<ForwardRangeConcept<T> >();
function_requires<
ReadableIteratorConcept<
typename range_iterator<T>::type
>
>();
</pre>
The following range concept checking classes are provided.
<ul>
<li>
Class <code>SinglePassRangeConcept</code> checks for <a
href="#single_pass_range">Single Pass Range</a>
<li>
Class <code>ForwardRangeConcept</code> checks for <a
href="#forward_range">Forward Range</a>
<li>
Class <code>BidirectionalRangeConcept</code> checks for <a
href="#bidirectional_range">Bidirectional Range</a>
<li>
Class <code>RandomAccessRangeConcept</code> checks for <a
href="#random_access_range">Random Access Range</a>
</ul>
<h3>See also</h3>
<p> <a href="style.html">Range Terminology and style guidelines</a></p>
<p> <a href="../../iterator/doc/iterator_concepts.html">Iterator Concepts</a></p>
<p> <a href="../../concept_check/concept_check.htm">Boost Concept Check library</a></p>
<hr>
<!--
<h3>Notes</h3>
<P>
<A name="1">[1]</A>
The reference type does not have to be a real C++ reference. The requirements of
the reference type is that it <i>behaves</i> like a real reference. Hence the
reference type must be convertible to the value_type and assignment through
<br>
<br>
<HR>
<br>
-->
<TABLE>
<TR valign="top">
<TD nowrap>Copyright © 2000</TD>
<TD><A HREF=http://www.boost.org/people/jeremy_siek.htm>Jeremy Siek</A>
</TR>
<tr >
<TD nowrap>Copyright © 2004</TD>
<TD>Thorsten Ottosen. Use, modification and distribution is subject to the Boost Software License, Version 1.0.
</TABLE>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
</BODY>
</HTML>
|