1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
|
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd" [
<!ENTITY % thread.entities SYSTEM "entities.xml">
%thread.entities;
]>
<!-- Copyright (c) 2002-2003 William E. Kempf, Michael Glassford
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE-1.0 or http://www.boost.org/LICENSE-1.0)
-->
<section id="thread.concepts" last-revision="$Date: 2007/01/02 21:44:39 $">
<title>Concepts</title>
<para>&Boost.Thread; currently supports two types of mutex concepts:
ordinary <link linkend="thread.concepts.mutexes">Mutexes</link>,
which allow only one thread at a time to access a resource, and
<link linkend="thread.concepts.read-write-mutexes">Read/Write Mutexes</link>,
which allow only one thread at a time to access a resource when it is
being modified (the "Write" part of Read/Write), but allows multiple threads
to access a resource when it is only being referenced (the "Read" part of
Read/Write).</para>
<note> Unfortunately it turned out that the current implementation of Read/Write Mutex has
some serious problems. So it was decided not to put this implementation into
release grade code. Also discussions on the mailing list led to the
conclusion that the current concepts need to be rethought. In particular
the schedulings <link linkend="thread.concepts.read-write-scheduling-policies.inter-class">
Inter-Class Scheduling Policies</link> are deemed unnecessary.
There seems to be common belief that a fair scheme suffices.
The following documentation has been retained however, to give
readers of this document the opportunity to study the original design.
</note>
<section id="thread.concepts.mutexes">
<title>Mutexes</title>
<note>Certain changes to the mutexes and lock concepts are
currently under discussion. In particular, the combination of
the multiple lock concepts into a single lock concept
is likely, and the combination of the multiple mutex
concepts into a single mutex concept is also possible.</note>
<para>A mutex (short for mutual-exclusion) object is used to serialize
access to a resource shared between multiple threads. The
<link linkend="thread.concepts.Mutex">Mutex</link> concept, with
<link linkend="thread.concepts.TryMutex">TryMutex</link> and
<link linkend="thread.concepts.TimedMutex">TimedMutex</link> refinements,
formalize the requirements. A model that implements Mutex and its
refinements has two states: <emphasis role="bold">locked</emphasis> and
<emphasis role="bold">unlocked</emphasis>. Before using a shared resource, a
thread locks a &Boost.Thread; mutex object
(an object whose type is a model of
<link linkend="thread.concepts.Mutex">Mutex</link> or one of it's
refinements), ensuring
<link linkend="thread.glossary.thread-safe">thread-safe</link> access to
the shared resource. When use of the shared resource is complete, the thread
unlocks the mutex object, allowing another thread to acquire the lock and
use the shared resource.</para>
<para>Traditional C thread APIs, like POSIX threads or the Windows thread
APIs, expose functions to lock and unlock a mutex object. This is dangerous
since it's easy to forget to unlock a locked mutex. When the flow of control
is complex, with multiple return points, the likelihood of forgetting to
unlock a mutex object becomes even greater. When exceptions are thrown,
it becomes nearly impossible to ensure that the mutex object is unlocked
properly when using these traditional API's. The result is
<link linkend="thread.glossary.deadlock">deadlock</link>.</para>
<para>Many C++ threading libraries use a pattern known as <emphasis>Scoped
Locking</emphasis> &cite.SchmidtStalRohnertBuschmann; to free the programmer from
the need to explicitly lock and unlock mutex objects. With this pattern, a
<link linkend="thread.concepts.lock-concepts">Lock</link> concept is employed where
the lock object's constructor locks the associated mutex object and the
destructor automatically does the unlocking. The
&Boost.Thread; library takes this pattern to
the extreme in that Lock concepts are the only way to lock and unlock a
mutex object: lock and unlock functions are not exposed by any
&Boost.Thread; mutex objects. This helps to
ensure safe usage patterns, especially when code throws exceptions.</para>
<section id="thread.concepts.locking-strategies">
<title>Locking Strategies</title>
<para>Every mutex object follows one of several locking strategies. These
strategies define the semantics for the locking operation when the calling
thread already owns a lock on the mutex object.</para>
<section id="thread.concepts.recursive-locking-strategy">
<title>Recursive Locking Strategy</title>
<para>With a recursive locking strategy, when a thread attempts to acquire
a lock on the mutex object for which it already owns a lock, the operation
is successful. Note the distinction between a thread, which may have
multiple locks outstanding on a recursive mutex object, and a lock object,
which even for a recursive mutex object cannot have any of its lock
functions called multiple times without first calling unlock.</para>
<para>Internally a lock count is maintained and the owning thread must
unlock the mutex object the same number of times that it locked it before
the mutex object's state returns to unlocked. Since mutex objects in
&Boost.Thread; expose locking
functionality only through lock concepts, a thread will always unlock a
mutex object the same number of times that it locked it. This helps to
eliminate a whole set of errors typically found in traditional C style
thread APIs.</para>
<para>Classes <classname>boost::recursive_mutex</classname>,
<classname>boost::recursive_try_mutex</classname> and
<classname>boost::recursive_timed_mutex</classname> use this locking
strategy.</para>
</section>
<section id="thread.concepts.checked-locking-strategy">
<title>Checked Locking Strategy</title>
<para>With a checked locking strategy, when a thread attempts to acquire a
lock on the mutex object for which the thread already owns a lock, the
operation will fail with some sort of error indication. Further, attempts
by a thread to unlock a mutex object that was not locked by the thread
will also return some sort of error indication. In
&Boost.Thread;, an exception of type
<classname>boost::lock_error</classname>
would be thrown in these cases.</para>
<para>&Boost.Thread; does not currently
provide any mutex objects that use this strategy.</para>
</section>
<section id="thread.concepts.unchecked-locking-strategy">
<title>Unchecked Locking Strategy</title>
<para>With an unchecked locking strategy, when a thread attempts to acquire
a lock on a mutex object for which the thread already owns a lock the
operation will
<link linkend="thread.glossary.deadlock">deadlock</link>. In general
this locking strategy is less safe than a checked or recursive strategy,
but it's also a faster strategy and so is employed by many libraries.</para>
<para>&Boost.Thread; does not currently
provide any mutex objects that use this strategy.</para>
</section>
<section id="thread.concepts.unspecified-locking-strategy">
<title>Unspecified Locking Strategy</title>
<para>With an unspecified locking strategy, when a thread attempts to
acquire a lock on a mutex object for which the thread already owns a lock
the operation results in
<link linkend="thread.glossary.undefined-behavior">undefined behavior</link>.
</para>
<para>In general a mutex object with an unspecified locking strategy is
unsafe, and it requires programmer discipline to use the mutex object
properly. However, this strategy allows an implementation to be as fast as
possible with no restrictions on its implementation. This is especially
true for portable implementations that wrap the native threading support
of a platform. For this reason, the classes
<classname>boost::mutex</classname>,
<classname>boost::try_mutex</classname> and
<classname>boost::timed_mutex</classname> use this locking strategy
despite the lack of safety.</para>
</section>
</section>
<section id="thread.concepts.sheduling-policies">
<title>Scheduling Policies</title>
<para>Every mutex object follows one of several scheduling policies. These
policies define the semantics when the mutex object is unlocked and there is
more than one thread waiting to acquire a lock. In other words, the policy
defines which waiting thread shall acquire the lock.</para>
<section id="thread.concepts.FIFO-scheduling-policy">
<title>FIFO Scheduling Policy</title>
<para>With a FIFO ("First In First Out") scheduling policy, threads waiting
for the lock will acquire it in a first-come-first-served order.
This can help prevent a high priority thread from starving lower priority
threads that are also waiting on the mutex object's lock.</para>
</section>
<section id="thread.concepts.priority-driven-scheduling-policy">
<title>Priority Driven Policy</title>
<para>With a Priority Driven scheduling policy, the thread with the
highest priority acquires the lock. Note that this means that low-priority
threads may never acquire the lock if the mutex object has high contention
and there is always at least one high-priority thread waiting. This is
known as thread starvation. When multiple threads of the same priority are
waiting on the mutex object's lock one of the other scheduling priorities
will determine which thread shall acquire the lock.</para>
</section>
<section id="thread.concepts.unspecified-scheduling-policy">
<title>Unspecified Policy</title>
<para>The mutex object does not specify a scheduling policy. In order to
ensure portability, all &Boost.Thread;
mutex objects use an unspecified scheduling policy.</para>
</section>
</section>
<section id="thread.concepts.mutex-concepts">
<title>Mutex Concepts</title>
<section id="thread.concepts.Mutex">
<title>Mutex Concept</title>
<para>A Mutex object has two states: locked and unlocked. Mutex object
state can only be determined by a lock object meeting the
appropriate lock concept requirements
and constructed for the Mutex object.</para>
<para>A Mutex is
<ulink url="../../libs/utility/utility.htm#Class%20noncopyable">
NonCopyable</ulink>.</para>
<para>For a Mutex type <code>M</code>
and an object <code>m</code> of that type,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>Mutex Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry>M m;</entry>
<entry><para>Constructs a mutex object m.</para>
<para>Postcondition: m is unlocked.</para></entry>
</row>
<row>
<entry>(&m)->~M();</entry>
<entry>Precondition: m is unlocked. Destroys a mutex object
m.</entry>
</row>
<row>
<entry>M::scoped_lock</entry>
<entry>A model of
<link linkend="thread.concepts.ScopedLock">ScopedLock</link>
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.TryMutex">
<title>TryMutex Concept</title>
<para>A TryMutex is a refinement of
<link linkend="thread.concepts.Mutex">Mutex</link>.
For a TryMutex type <code>M</code>
and an object <code>m</code> of that type,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>TryMutex Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry>M::scoped_try_lock</entry>
<entry>A model of
<link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link>
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.TimedMutex">
<title>TimedMutex Concept</title>
<para>A TimedMutex is a refinement of
<link linkend="thread.concepts.TryMutex">TryMutex</link>.
For a TimedMutex type <code>M</code>
and an object <code>m</code> of that type,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>TimedMutex Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry>M::scoped_timed_lock</entry>
<entry>A model of
<link
linkend="thread.concepts.ScopedTimedLock">ScopedTimedLock</link>
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
</section>
<section id="thread.concepts.mutex-models">
<title>Mutex Models</title>
<para>&Boost.Thread; currently supplies six models of
<link linkend="thread.concepts.Mutex">Mutex</link>
and its refinements.</para>
<table>
<title>Mutex Models</title>
<tgroup cols="3">
<thead>
<row>
<entry>Concept</entry>
<entry>Refines</entry>
<entry>Models</entry>
</row>
</thead>
<tbody>
<row>
<entry><link linkend="thread.concepts.Mutex">Mutex</link></entry>
<entry></entry>
<entry>
<para><classname>boost::mutex</classname></para>
<para><classname>boost::recursive_mutex</classname></para>
</entry>
</row>
<row>
<entry><link linkend="thread.concepts.TryMutex">TryMutex</link></entry>
<entry><link linkend="thread.concepts.Mutex">Mutex</link></entry>
<entry>
<para><classname>boost::try_mutex</classname></para>
<para><classname>boost::recursive_try_mutex</classname></para>
</entry>
</row>
<row>
<entry><link linkend="thread.concepts.TimedMutex">TimedMutex</link></entry>
<entry><link linkend="thread.concepts.TryMutex">TryMutex</link></entry>
<entry>
<para><classname>boost::timed_mutex</classname></para>
<para><classname>boost::recursive_timed_mutex</classname></para>
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.lock-concepts">
<title>Lock Concepts</title>
<para>A lock object provides a safe means for locking and unlocking a mutex
object (an object whose type is a model of <link
linkend="thread.concepts.Mutex">Mutex</link> or one of its refinements). In
other words they are an implementation of the <emphasis>Scoped
Locking</emphasis> &cite.SchmidtStalRohnertBuschmann; pattern. The <link
linkend="thread.concepts.ScopedLock">ScopedLock</link>,
<link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link>, and
<link linkend="thread.concepts.ScopedTimedLock">ScopedTimedLock</link>
concepts formalize the requirements.</para>
<para>Lock objects are constructed with a reference to a mutex object and
typically acquire ownership of the mutex object by setting its state to
locked. They also ensure ownership is relinquished in the destructor. Lock
objects also expose functions to query the lock status and to manually lock
and unlock the mutex object.</para>
<para>Lock objects are meant to be short lived, expected to be used at block
scope only. The lock objects are not <link
linkend="thread.glossary.thread-safe">thread-safe</link>. Lock objects must
maintain state to indicate whether or not they've been locked and this state
is not protected by any synchronization concepts. For this reason a lock
object should never be shared between multiple threads.</para>
<section id="thread.concepts.Lock">
<title>Lock Concept</title>
<para>For a Lock type <code>L</code>
and an object <code>lk</code>
and const object <code>clk</code> of that type,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>Lock Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>(&lk)->~L();</code></entry>
<entry><code>if (locked()) unlock();</code></entry>
</row>
<row>
<entry><code>(&clk)->operator const void*()</code></entry>
<entry>Returns type void*, non-zero if the associated mutex
object has been locked by <code>clk</code>, otherwise 0.</entry>
</row>
<row>
<entry><code>clk.locked()</code></entry>
<entry>Returns a <code>bool</code>, <code>(&clk)->operator
const void*() != 0</code></entry>
</row>
<row>
<entry><code>lk.lock()</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if <code>locked()</code>.</para>
<para>If the associated mutex object is
already locked by some other thread, places the current thread in the
<link linkend="thread.glossary.thread-state">Blocked</link> state until
the associated mutex is unlocked, after which the current thread
is placed in the <link
linkend="thread.glossary.thread-state">Ready</link> state,
eventually to be returned to the <link
linkend="thread.glossary.thread-state">Running</link> state. If
the associated mutex object is already locked by the same thread
the behavior is dependent on the <link
linkend="thread.concepts.locking-strategies">locking
strategy</link> of the associated mutex object.</para>
<para>Postcondition: <code>locked() == true</code></para>
</entry>
</row>
<row>
<entry><code>lk.unlock()</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if <code>!locked()</code>.</para>
<para>Unlocks the associated mutex.</para>
<para>Postcondition: <code>!locked()</code></para></entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.ScopedLock">
<title>ScopedLock Concept</title>
<para>A ScopedLock is a refinement of <link
linkend="thread.concepts.Lock">Lock</link>.
For a ScopedLock type <code>L</code>
and an object <code>lk</code> of that type,
and an object <code>m</code> of a type meeting the
<link linkend="thread.concepts.Mutex">Mutex</link> requirements,
and an object <code>b</code> of type <code>bool</code>,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>ScopedLock Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>L lk(m);</code></entry>
<entry>Constructs an object <code>lk</code>, and associates mutex
object <code>m</code> with it, then calls
<code>lock()</code></entry>
</row>
<row>
<entry><code>L lk(m,b);</code></entry>
<entry>Constructs an object <code>lk</code>, and associates mutex
object <code>m</code> with it, then if <code>b</code>, calls
<code>lock()</code></entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.TryLock">
<title>TryLock Concept</title>
<para>A TryLock is a refinement of <link
linkend="thread.concepts.Lock">Lock</link>.
For a TryLock type <code>L</code>
and an object <code>lk</code> of that type,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>TryLock Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>lk.try_lock()</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if locked().</para>
<para>Makes a
non-blocking attempt to lock the associated mutex object,
returning <code>true</code> if the lock attempt is successful,
otherwise <code>false</code>. If the associated mutex object is
already locked by the same thread the behavior is dependent on the
<link linkend="thread.concepts.locking-strategies">locking
strategy</link> of the associated mutex object.</para>
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.ScopedTryLock">
<title>ScopedTryLock Concept</title>
<para>A ScopedTryLock is a refinement of <link
linkend="thread.concepts.TryLock">TryLock</link>.
For a ScopedTryLock type <code>L</code>
and an object <code>lk</code> of that type,
and an object <code>m</code> of a type meeting the
<link linkend="thread.concepts.TryMutex">TryMutex</link> requirements,
and an object <code>b</code> of type <code>bool</code>,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>ScopedTryLock Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>L lk(m);</code></entry>
<entry>Constructs an object <code>lk</code>, and associates mutex
object <code>m</code> with it, then calls
<code>try_lock()</code></entry>
</row>
<row>
<entry><code>L lk(m,b);</code></entry>
<entry>Constructs an object <code>lk</code>, and associates mutex
object <code>m</code> with it, then if <code>b</code>, calls
<code>lock()</code></entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.TimedLock">
<title>TimedLock Concept</title>
<para>A TimedLock is a refinement of <link
linkend="thread.concepts.TryLock">TryLock</link>.
For a TimedLock type <code>L</code>
and an object <code>lk</code> of that type,
and an object <code>t</code> of type <classname>boost::xtime</classname>,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>TimedLock Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>lk.timed_lock(t)</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if locked().</para>
<para>Makes a blocking attempt
to lock the associated mutex object, and returns <code>true</code>
if successful within the specified time <code>t</code>, otherwise
<code>false</code>. If the associated mutex object is already
locked by the same thread the behavior is dependent on the <link
linkend="thread.concepts.locking-strategies">locking
strategy</link> of the associated mutex object.</para>
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.ScopedTimedLock">
<title>ScopedTimedLock Concept</title>
<para>A ScopedTimedLock is a refinement of <link
linkend="thread.concepts.TimedLock">TimedLock</link>.
For a ScopedTimedLock type <code>L</code>
and an object <code>lk</code> of that type,
and an object <code>m</code> of a type meeting the
<link linkend="thread.concepts.TimedMutex">TimedMutex</link> requirements,
and an object <code>b</code> of type <code>bool</code>,
and an object <code>t</code> of type <classname>boost::xtime</classname>,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>ScopedTimedLock Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>L lk(m,t);</code></entry>
<entry>Constructs an object <code>lk</code>, and associates mutex
object <code>m</code> with it, then calls
<code>timed_lock(t)</code></entry>
</row>
<row>
<entry><code>L lk(m,b);</code></entry>
<entry>Constructs an object <code>lk</code>, and associates mutex
object <code>m</code> with it, then if <code>b</code>, calls
<code>lock()</code></entry>
</row>
</tbody>
</tgroup>
</table>
</section>
</section>
<section id="thread.concepts.lock-models">
<title>Lock Models</title>
<para>&Boost.Thread; currently supplies twelve models of
<link linkend="thread.concepts.Lock">Lock</link>
and its refinements.</para>
<table>
<title>Lock Models</title>
<tgroup cols="3">
<thead>
<row>
<entry>Concept</entry>
<entry>Refines</entry>
<entry>Models</entry>
</row>
</thead>
<tbody>
<row>
<entry><link linkend="thread.concepts.Lock">Lock</link></entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry><link linkend="thread.concepts.ScopedLock">ScopedLock</link></entry>
<entry><link linkend="thread.concepts.Lock">Lock</link></entry>
<entry>
<para><classname>boost::mutex::scoped_lock</classname></para>
<para><classname>boost::recursive_mutex::scoped_lock</classname></para>
<para><classname>boost::try_mutex::scoped_lock</classname></para>
<para><classname>boost::recursive_try_mutex::scoped_lock</classname></para>
<para><classname>boost::timed_mutex::scoped_lock</classname></para>
<para><classname>boost::recursive_timed_mutex::scoped_lock</classname></para>
</entry>
</row>
<row>
<entry><link linkend="thread.concepts.TryLock">TryLock</link></entry>
<entry><link linkend="thread.concepts.Lock">Lock</link></entry>
<entry></entry>
</row>
<row>
<entry><link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link></entry>
<entry><link linkend="thread.concepts.TryLock">TryLock</link></entry>
<entry>
<para><classname>boost::try_mutex::scoped_try_lock</classname></para>
<para><classname>boost::recursive_try_mutex::scoped_try_lock</classname></para>
<para><classname>boost::timed_mutex::scoped_try_lock</classname></para>
<para><classname>boost::recursive_timed_mutex::scoped_try_lock</classname></para>
</entry>
</row>
<row>
<entry><link linkend="thread.concepts.TimedLock">TimedLock</link></entry>
<entry><link linkend="thread.concepts.TryLock">TryLock</link></entry>
<entry></entry>
</row>
<row>
<entry><link linkend="thread.concepts.ScopedTimedLock">ScopedTimedLock</link></entry>
<entry><link linkend="thread.concepts.TimedLock">TimedLock</link></entry>
<entry>
<para><classname>boost::timed_mutex::scoped_timed_lock</classname></para>
<para><classname>boost::recursive_timed_mutex::scoped_timed_lock</classname></para>
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
</section>
<section id="thread.concepts.read-write-mutexes">
<title>Read/Write Mutexes</title>
<note> Unfortunately it turned out that the current implementation has
some serious problems. So it was decided not to put this implementation into
release grade code. Also discussions on the mailing list led to the
conclusion that the current concepts need to be rethought. In particular
the schedulings <link linkend="thread.concepts.read-write-scheduling-policies.inter-class">
Inter-Class Scheduling Policies</link> are deemed unnecessary.
There seems to be common belief that a fair scheme suffices.
The following documentation has been retained however, to give
readers of this document the opportunity to study the original design.
</note>
<para>A read/write mutex (short for reader/writer mutual-exclusion) object
is used to serialize access to a resource shared between multiple
threads, where multiple "readers" can share simultaneous access, but
"writers" require exclusive access. The
<link linkend="thread.concepts.ReadWriteMutex">ReadWriteMutex</link> concept, with
<link linkend="thread.concepts.TryReadWriteMutex">TryReadWriteMutex</link> and
<link linkend="thread.concepts.TimedReadWriteMutex"> TimedReadWriteMutex</link>
refinements formalize the requirements. A model that implements
ReadWriteMutex and its refinements has three states:
<emphasis role="bold">read-locked</emphasis>,
<emphasis role="bold">write-locked</emphasis>, and
<emphasis role="bold">unlocked</emphasis>.
Before reading from a shared resource, a thread
<emphasis role="bold">read-locks</emphasis>
a &Boost.Thread; read/write mutex object
(an object whose type is a model of
<link linkend="thread.concepts.ReadWriteMutex">ReadWriteMutex</link>
or one of it's refinements), ensuring
<link linkend="thread.glossary.thread-safe">thread-safe</link>
access for reading from the shared resource. Before writing
to a shared resource, a thread
<emphasis role="bold">write-locks</emphasis> a &Boost.Thread;
read/write mutex object
(an object whose type is a model of
<link linkend="thread.concepts.ReadWriteMutex">ReadWriteMutex</link>
or one of it's refinements), ensuring
<link linkend="thread.glossary.thread-safe">thread-safe</link>
access for altering the shared resource. When use of the shared
resource is complete, the thread unlocks the mutex object,
allowing another thread to acquire the lock and use the shared
resource.</para>
<para>Traditional C thread APIs that provide read/write mutex
primitives (like POSIX threads) expose functions to lock and unlock a
mutex object. This is dangerous since it's easy to forget to unlock a
locked mutex. When the flow of control is complex, with multiple
return points, the likelihood of forgetting to unlock a mutex object
becomes even greater. When exceptions are thrown, it becomes nearly
impossible to ensure that the mutex object is unlocked
properly when using these traditional API's. The result is
<link linkend="thread.glossary.deadlock">deadlock</link>.</para>
<para>Many C++ threading libraries use a pattern known as <emphasis>Scoped
Locking</emphasis> &cite.SchmidtStalRohnertBuschmann; to free the
programmer from the need to explicitly lock and unlock
read/write mutex objects. With this pattern, a
<link linkend="thread.concepts.read-write-lock-concepts">Read/Write Lock</link>
concept is employed where the lock object's constructor locks
the associated read/write mutex object
and the destructor automatically does the unlocking. The
&Boost.Thread; library takes this pattern to
the extreme in that
<link linkend="thread.concepts.read-write-lock-concepts">Read/Write Lock</link>
concepts are the only way to lock and unlock a read/write mutex
object: lock and unlock functions are not exposed by any
&Boost.Thread; read/write mutex objects. This helps to
ensure safe usage patterns, especially when code throws exceptions.</para>
<section id="thread.concepts.read-write-locking-strategies">
<title>Locking Strategies</title>
<para>Every read/write mutex object follows one of several locking
strategies. These strategies define the semantics for the locking
operation when the calling thread already owns a lock on the
read/write mutex object.</para>
<section id="thread.concepts.read-write-locking-strategies.recursive">
<title>Recursive Locking Strategy</title>
<para>With a recursive locking strategy, when a thread attempts
to acquire a lock on a read/write mutex object
for which it already owns a lock, the operation is successful,
except in the case where a thread holding a read-lock
attempts to obtain a write lock, in which case a
<classname>boost::lock_error</classname> exception will
be thrown. Note the distinction between a thread, which may have
multiple locks outstanding on a recursive read/write mutex object,
and a lock object, which even for a recursive read/write mutex
object cannot have any of its lock functions called multiple
times without first calling unlock.</para>
<informaltable>
<tgroup cols="3">
<thead>
<row>
<entry>Lock Type Held</entry>
<entry>Lock Type Requested</entry>
<entry>Action</entry>
</row>
</thead>
<tbody>
<row>
<entry>read-lock</entry>
<entry>read-lock</entry>
<entry>Grant the read-lock immediately</entry>
</row>
<row>
<entry>read-lock</entry>
<entry>write-lock</entry>
<entry>If this thread is the only holder of the read-lock,
grants the write lock immediately. Otherwise throws a
<classname>boost::lock_error</classname> exception.</entry>
</row>
<row>
<entry>write-locked</entry>
<entry>read-lock</entry>
<entry>Grants the (additional) read-lock immediately.</entry>
</row>
<row>
<entry>write-locked</entry>
<entry>write-lock</entry>
<entry> Grant the write-lock immediately</entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>Internally a lock count is maintained and the owning
thread must unlock the mutex object the same number of times
that it locked it before the mutex object's state returns
to unlocked. Since mutex objects in &Boost.Thread; expose
locking functionality only through lock concepts, a thread
will always unlock a mutex object the same number of times
that it locked it. This helps to eliminate a whole set of
errors typically found in traditional C style thread APIs.
</para>
<para>&Boost.Thread; does not currently provide any read/write mutex objects
that use this strategy. A successful implementation of this locking strategy
may require
<link linkend="thread.concepts.read-write-locking-strategies.thread-identification">thread identification</link>.
</para>
</section>
<section id="thread.concepts.read-write-locking-strategies.checked">
<title>Checked Locking Strategy</title>
<para>With a checked locking strategy, when a thread attempts
to acquire a lock on the mutex object for which the thread
already owns a lock, the operation will fail with some sort of
error indication, except in the case of multiple read-lock
acquisition which is a normal operation for ANY ReadWriteMutex.
Further, attempts by a thread to unlock a mutex that was not
locked by the thread will also return some sort of error
indication. In &Boost.Thread;, an exception of type
<classname>boost::lock_error</classname> would be thrown in
these cases.</para>
<informaltable>
<tgroup cols="3">
<thead>
<row>
<entry>Lock Type Held</entry>
<entry>Lock Type Requested</entry>
<entry>Action</entry>
</row>
</thead>
<tbody>
<row>
<entry>read-lock</entry>
<entry>read-lock</entry>
<entry>Grant the read-lock immediately</entry>
</row>
<row>
<entry>read-lock</entry>
<entry>write-lock</entry>
<entry>Throw <classname>boost::lock_error</classname></entry>
</row>
<row>
<entry>write-locked</entry>
<entry>read-lock</entry>
<entry>Throw <classname>boost::lock_error</classname></entry>
</row>
<row>
<entry>write-locked</entry>
<entry>write-lock</entry>
<entry> Throw <classname>boost::lock_error</classname></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>&Boost.Thread; does not currently provide any read/write mutex objects
that use this strategy. A successful implementation of this locking strategy
may require
<link linkend="thread.concepts.read-write-locking-strategies.thread-identification">thread identification</link>.
</para>
</section>
<section id="thread.concepts.read-write-locking-strategies.unchecked">
<title>Unchecked Locking Strategy</title>
<para>With an unchecked locking strategy, when a thread
attempts to acquire a lock on the read/write mutex object
for which the thread already owns a lock, the operation
will <link linkend="thread.glossary.deadlock">deadlock</link>.
In general this locking strategy is less safe than a checked
or recursive strategy, but it can be a faster strategy and so
is employed by many libraries.</para>
<informaltable>
<tgroup cols="3">
<thead>
<row>
<entry>Lock Type Held</entry>
<entry>Lock Type Requested</entry>
<entry>Action</entry>
</row>
</thead>
<tbody>
<row>
<entry>read-lock</entry>
<entry>read-lock</entry>
<entry>Grant the read-lock immediately</entry>
</row>
<row>
<entry>read-lock</entry>
<entry>write-lock</entry>
<entry><link linkend="thread.glossary.deadlock">Deadlock</link></entry>
</row>
<row>
<entry>write-locked</entry>
<entry>read-lock</entry>
<entry><link linkend="thread.glossary.deadlock">Deadlock</link></entry>
</row>
<row>
<entry>write-locked</entry>
<entry>write-lock</entry>
<entry><link linkend="thread.glossary.deadlock">Deadlock</link></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>&Boost.Thread; does not currently provide any mutex
objects that use this strategy. For ReadWriteMutexes on
platforms that contain natively recursive synchronization
primitives, implementing a guaranteed-deadlock can actually
involve extra work, and would likely require
<link linkend="thread.concepts.read-write-locking-strategies.thread-identification">thread identification</link>.
</para>
</section>
<section id="thread.concepts.read-write-locking-strategies.unspecified">
<title>Unspecified Locking Strategy</title>
<para>With an unspecified locking strategy, when a thread
attempts to acquire a lock on a read/write mutex object for
which the thread already owns a lock, the operation results
in <link linkend="thread.glossary.undefined-behavior">undefined behavior</link>.
When a read/write mutex object has an unspecified locking
strategy the programmer must assume that the read/write mutex
object instead uses an unchecked strategy as the worse case,
although some platforms may exhibit a mix of unchecked and
recursive behavior.</para>
<informaltable>
<tgroup cols="3">
<thead>
<row>
<entry>Lock Type Held</entry>
<entry>Lock Type Requested</entry>
<entry>Action</entry>
</row>
</thead>
<tbody>
<row>
<entry>read-lock</entry>
<entry>read-lock</entry>
<entry>Grant the read-lock immediately</entry>
</row>
<row>
<entry>read-lock</entry>
<entry>write-lock</entry>
<entry>
<link linkend="thread.glossary.undefined-behavior">Undefined</link>, but generally <link linkend="thread.glossary.deadlock">deadlock</link>
</entry>
</row>
<row>
<entry>write-locked</entry>
<entry>read-lock</entry>
<entry><link linkend="thread.glossary.undefined-behavior">Undefined</link>, but generally <link linkend="thread.glossary.deadlock">deadlock</link></entry>
</row>
<row>
<entry>write-locked</entry>
<entry>write-lock</entry>
<entry><link linkend="thread.glossary.undefined-behavior">Undefined</link>, but generally <link linkend="thread.glossary.deadlock">deadlock</link></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>In general a read/write mutex object with an unspecified
locking strategy is unsafe, and it requires programmer discipline
to use the read/write mutex object properly. However, this strategy
allows an implementation to be as fast as possible with no restrictions
on its implementation. This is especially true for portable implementations
that wrap the native threading support of a platform. For this reason, the
classes
<classname>read_write_mutex</classname>,
<classname>try_read_write_mutex</classname>, and
<classname>timed_read_write_mutex</classname>
use this locking strategy despite the lack of safety.</para>
</section>
<section id="thread.concepts.read-write-locking-strategies.thread-identification">
<title>Thread Identification</title>
<para>ReadWriteMutexes can support specific Locking Strategies
(recursive and checked) which help to detect and protect against
self-deadlock. Self-deadlock can occur when a holder of a locked
ReadWriteMutex attempts to obtain another lock. Given an
implemention <emphasis>I</emphasis> which is susceptible to
self-deadlock but otherwise correct and efficient, a recursive or
checked implementation <emphasis>Ir</emphasis> or
<emphasis>Ic</emphasis> can use the same basic implementation,
but make special checks against self-deadlock by tracking the
identities of thread(s) currently holding locks. This approach
makes deadlock detection othrogonal to the basic ReadWriteMutex
implementaion.</para>
<para>Alternatively, a different basic implementation for
ReadWriteMutex concepts,
<emphasis>I'</emphasis> (I-Prime) may exist which uses recursive
or checked versions of synchronization primitives to produce
a recursive or checked ReadWriteMutex while still providing
flexibility in terms of Scheduling Policies. </para>
<para>Please refer to the &Boost.Thread;
<link linkend="thread.concepts.read-write-mutex-concepts">read/write mutex concept</link>
documentation for a discussion of locking strategies.
The read/write mutex supports only the
<link linkend="thread.concepts.read-write-locking-strategies.unspecified">unspecified</link>
locking strategy. ReadWriteMutexes are parameterized on a
Mutex type which they use to control write-locking
and access to internal state.</para>
</section>
<section id="thread.concepts.read-write-locking-strategies.promotion">
<title>Lock Promotion</title>
<para>ReadWriteMutexes can support lock promotion, where a
mutex which is in the read-locked state transitions to a
write-locked state without releasing the lock. Lock
promotion can be tricky to implement; for instance,
extra care must be taken to ensure that only one thread holding a
read-lock can block awaiting promotion at any given time. If
more than one read-lock holder is allowed to enter a blocked
state while waiting to be promoted, deadlock will result since
both threads will be waiting for the other to release their read-lock.
</para>
<para>Currently, &Boost.Thread; supports lock promotion
through <code>promote()</code>, <code>try_promote()</code>,
and <code>timed_promote()</code> operations.</para>
</section>
<section id="thread.concepts.read-write-locking-strategies.demotion">
<title>Lock Demotion</title>
<para>ReadWriteMutexes can support lock demotion, where a
mutex which is in the write-locked state transitions to a
read-locked state without releasing the lock.
Since by definition only one thread at a time may hold
a write-lock, the problem with deadlock that can occur
during lock promotion is not a problem for lock
demotion.</para>
<para>Currently, &Boost.Thread; supports lock demotion
through <code>demote()</code>, <code>try_demote()</code>,
and <code>timed_demote()</code> operations.</para>
</section>
</section>
<section id="thread.concepts.read-write-scheduling-policies">
<title>Scheduling Policies</title>
<para>Every read/write mutex object follows one of several scheduling
policies. These policies define the semantics when the mutex object
is unlocked and there is more than one thread waiting to acquire a
lock. In other words, the policy defines which waiting thread shall
acquire the lock. For a read/write mutex, it is particularly important
to define the behavior when threads are requesting both read and
write access simultaneously. This will be referred to as "inter-class
scheduling" because it describes the scheduling between two
classes of threads (those waiting for a read lock and those
waiting for a write lock).</para>
<para>For some types of inter-class scheduling, an "intra-class"
scheduling policy can also be defined that will describe the order
in which waiting threads of the same class (i.e., those
waiting for the same type of lock) will acquire the thread.
</para>
<section id="thread.concepts.read-write-scheduling-policies.inter-class">
<title>Inter-Class Scheduling Policies</title>
<section id="thread.concepts.read-write-scheduling-policies.reader-priority">
<title>ReaderPriority</title>
<para>With ReaderPriority scheduling, any pending request for
a read-lock will have priority over a pending request for a
write-lock, irrespective of the current lock state of the
read/write mutex, and irrespective of the relative order
that the pending requests arrive.</para>
<informaltable>
<tgroup cols="3">
<thead>
<row>
<entry>Current mutex state</entry>
<entry>Request Type</entry>
<entry>Action</entry>
</row>
</thead>
<tbody>
<row>
<entry>unlocked</entry>
<entry>read-lock</entry>
<entry>Grant the read-lock immediately</entry>
</row>
<row>
<entry>read-locked</entry>
<entry>read-lock</entry>
<entry>Grant the additional read-lock immediately.</entry>
</row>
<row>
<entry>write-locked</entry>
<entry>read-lock</entry>
<entry>Wait to acquire the lock until the thread
holding the write-lock releases its lock (or until
the specified time, if any). A
read-lock will be granted to all pending readers
before any other thread can acquire a write-lock.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>unlocked</entry>
<entry>write-lock</entry>
<entry>Grant the write-lock immediately, if and
only if there are no pending read-lock requests.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>read-locked</entry>
<entry>write-lock</entry>
<entry> Wait to acquire the lock until all
threads holding read-locks release their locks
<emphasis role="bold">AND</emphasis> no requests
for read-locks exist. If other write-lock
requests exist, the lock is granted in accordance
with the intra-class scheduling policy.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>write-locked</entry>
<entry>write-lock</entry>
<entry>Wait to acquire the lock until the thread
holding the write-lock releases its lock
<emphasis role="bold">AND</emphasis> no requests
for read-locks exist. If other write-lock
requests exist, the lock is granted in accordance
with the intra-class scheduling policy.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>read-locked</entry>
<entry>promote</entry>
<entry><para>TODO</para></entry>
</row>
<row>
<entry>write-locked</entry>
<entry>demote</entry>
<entry><para>TODO</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</section>
<section id="thread.concepts.read-write-scheduling-policies.writer-priority">
<title>WriterPriority</title>
<para>With WriterPriority scheduling, any pending request
for a write-lock will have priority over a pending request
for a read-lock, irrespective of the current lock state
of the read/write mutex, and irrespective of the relative
order that the pending requests arrive.</para>
<informaltable>
<tgroup cols="3">
<thead>
<row>
<entry>Current mutex state</entry>
<entry>Request Type</entry>
<entry>Action</entry>
</row>
</thead>
<tbody>
<row>
<entry>unlocked</entry>
<entry>read-lock</entry>
<entry>Grant the read-lock immediately.</entry>
</row>
<row>
<entry>read-locked</entry>
<entry>read-lock</entry>
<entry>Grant the additional read-lock immediately,
<emphasis role="bold">IF</emphasis> no outstanding
requests for a write-lock exist; otherwise TODO.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>write-locked</entry>
<entry>read-lock</entry>
<entry> Wait to acquire the lock until the
thread holding the write-lock
releases its lock. The read lock will be granted
once no other outstanding write-lock requests
exist.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>unlocked</entry>
<entry>write-lock</entry>
<entry>Grant the write-lock immediately.</entry>
</row>
<row>
<entry>read-locked</entry>
<entry>write-lock</entry>
<entry>Wait to acquire the lock until all
threads holding read-locks release their locks.
If other write-lock requests exist, the lock
is granted in accordance with the intra-class
scheduling policy. This request will be granted
before any new read-lock requests are granted.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>write-locked</entry>
<entry>write-lock</entry>
<entry>Wait to acquire the lock until the thread
holding the write-lock releases its lock. If
other write-lock requests exist, the lock is
granted in accordance with the intra-class
scheduling policy. This request will be granted
before any new read-lock requests are granted.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>read-locked</entry>
<entry>promote</entry>
<entry><para>TODO</para></entry>
</row>
<row>
<entry>write-locked</entry>
<entry>demote</entry>
<entry><para>TODO</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</section>
<section id="thread.concepts.read-write-scheduling-policies.alternating-many-reads">
<title>AlternatingPriority/ManyReads</title>
<para>With AlternatingPriority/ManyReads scheduling, reader
or writer starvation is avoided by alternatively granting read
or write access when pending requests exist for both types of
locks. Outstanding read-lock requests are treated as a group
when it is the "readers' turn"</para>
<informaltable>
<tgroup cols="3">
<thead>
<row>
<entry>Current mutex state</entry>
<entry>Request Type</entry>
<entry>Action</entry>
</row>
</thead>
<tbody>
<row>
<entry>unlocked</entry>
<entry>read-lock</entry>
<entry>Grant the read-lock immediately.</entry>
</row>
<row>
<entry>read-locked</entry>
<entry>read-lock</entry>
<entry>Grant the additional read-lock immediately,
<emphasis role="bold">IF</emphasis> no outstanding
requests for a write-lock exist. If outstanding
write-lock requests exist, this lock will not
be granted until at least one of the
write-locks is granted and released. If other
read-lock requests exist, all read-locks will be
granted as a group.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>write-locked</entry>
<entry>read-lock</entry>
<entry> Wait to acquire the lock until the thread
holding the write-lock releases its lock. If other
outstanding write-lock requests exist, they will
have to wait until all current read-lock requests
are serviced.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>unlocked</entry>
<entry>write-lock</entry>
<entry>Grant the write-lock immediately.</entry>
</row>
<row>
<entry>read-locked</entry>
<entry>write-lock</entry>
<entry>
<para>Wait to acquire the lock until all threads
holding read-locks release their locks.</para>
<para>If other write-lock requests exist, this
lock will be granted to one of them in accordance
with the intra-class scheduling policy.</para>
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>write-locked</entry>
<entry>write-lock</entry>
<entry>Wait to acquire the lock until the thread
holding the write-lock releases its lock. If
other outstanding read-lock requests exist, this
lock will not be granted until all of the
currently waiting read-locks are granted and
released. If other write-lock requests exist,
this lock will be granted in accordance with the
intra-class scheduling policy.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>read-locked</entry>
<entry>promote</entry>
<entry><para>TODO</para></entry>
</row>
<row>
<entry>write-locked</entry>
<entry>demote</entry>
<entry><para>TODO</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</section>
<section id="thread.concepts.read-write-scheduling-policies.alternating-single-read">
<title>AlternatingPriority/SingleRead</title>
<para>With AlternatingPriority/SingleRead scheduling, reader
or writer starvation is avoided by alternatively granting read
or write access when pending requests exist for both types of
locks. Outstanding read-lock requests are services one at a
time when it is the "readers' turn"</para>
<informaltable>
<tgroup cols="3">
<thead>
<row>
<entry>Current mutex state</entry>
<entry>Request Type</entry>
<entry>Action</entry>
</row>
</thead>
<tbody>
<row>
<entry>unlocked</entry>
<entry>read-lock</entry>
<entry>Grant the read-lock immediately.</entry>
</row>
<row>
<entry>read-locked</entry>
<entry>read-lock</entry>
<entry>Grant the additional read-lock immediately,
<emphasis role="bold">IF</emphasis> no outstanding
requests for a write-lock exist. If outstanding
write-lock requests exist, this lock will not
be granted until at least one of the write-locks
is granted and released.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>write-locked</entry>
<entry>read-lock</entry>
<entry>
<para>Wait to acquire the lock until the thread
holding the write-lock releases its lock.</para>
<para>If other outstanding write-lock requests
exist, exactly one read-lock request will be
granted before the next write-lock is granted.
</para>
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>unlocked</entry>
<entry>write-lock</entry>
<entry>Grant the write-lock immediately.</entry>
</row>
<row>
<entry>read-locked</entry>
<entry>write-lock</entry>
<entry>
<para>Wait to acquire the lock until all
threads holding read-locks release their
locks.</para>
<para>If other write-lock requests exist,
this lock will be granted to one of them
in accordance with the intra-class
scheduling policy.</para></entry>
<para>TODO: try-lock, timed-lock.</para>
</row>
<row>
<entry>write-locked</entry>
<entry>write-lock</entry>
<entry>Wait to acquire the lock until the
thread holding the write-lock releases its
lock. If other outstanding read-lock requests
exist, this lock can not be granted until
exactly one read-lock request is granted and
released. If other write-lock requests exist,
this lock will be granted in accordance with
the intra-class scheduling policy.
<para>TODO: try-lock, timed-lock.</para>
</entry>
</row>
<row>
<entry>read-locked</entry>
<entry>promote</entry>
<entry><para>TODO</para></entry>
</row>
<row>
<entry>write-locked</entry>
<entry>demote</entry>
<entry><para>TODO</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</section>
</section>
<section id="thread.concepts.read-write-scheduling-policies.intra-class">
<title>Intra-Class Scheduling Policies</title>
<para>Please refer to
<xref linkend="thread.concepts.sheduling-policies" />
for a discussion of mutex scheduling policies, which are identical to
read/write mutex intra-class scheduling policies.</para>
<para>For threads waiting to obtain write-locks, the read/write mutex
supports only the
<link linkend="thread.concepts.unspecified-scheduling-policy">Unspecified</link>
intra-class scheduling policy. That is, given a set of threads
waiting for write-locks, the order, relative to one another, in
which they receive the write-lock is unspecified.</para>
<para>For threads waiting to obtain read-locks, the read/write mutex
supports only the
<link linkend="thread.concepts.unspecified-scheduling-policy">Unspecified</link>
intra-class scheduling policy. That is, given a set of threads
waiting for read-locks, the order, relative to one another, in
which they receive the read-lock is unspecified.</para>
</section>
</section>
<section id="thread.concepts.read-write-mutex-concepts">
<title>Mutex Concepts</title>
<section id="thread.concepts.ReadWriteMutex">
<title>ReadWriteMutex Concept</title>
<para>A ReadWriteMutex object has three states: read-locked,
write-locked, and unlocked. ReadWriteMutex object state can
only be determined by a lock object meeting the appropriate lock concept
requirements and constructed for the ReadWriteMutex object.</para>
<para>A ReadWriteMutex is
<ulink url="../../libs/utility/utility.htm#Class%20noncopyable">NonCopyable</ulink>.
</para>
<para>For a ReadWriteMutex type <code>M</code>,
and an object <code>m</code> of that type,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>ReadWriteMutex Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>M m;</code></entry>
<entry>Constructs a read/write mutex object <code>m</code>.
Post-condition: <code>m</code> is unlocked.</entry>
</row>
<row>
<entry><code>(&m)->~M();</code></entry>
<entry>Precondition: <code>m</code> is unlocked.
Destroys a read/write mutex object <code>m</code>.
</entry>
</row>
<row>
<entry><code>M::scoped_read_write_lock</code></entry>
<entry>A type meeting the
<link linkend="thread.concepts.ScopedReadWriteLock">ScopedReadWriteLock</link>
requirements. </entry>
</row>
<row>
<entry><code>M::scoped_read_lock</code></entry>
<entry>A type meeting the
<link linkend="thread.concepts.ScopedLock">ScopedLock</link>
requirements. </entry>
</row>
<row>
<entry><code>M::scoped_write_lock</code></entry>
<entry>A type meeting the
<link linkend="thread.concepts.ScopedLock">ScopedLock</link>
requirements. </entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.TryReadWriteMutex">
<title>TryReadWriteMutex Concept</title>
<para>A TryReadWriteMutex is a refinement of
<link linkend="thread.concepts.ReadWriteMutex">ReadWriteMutex</link>.
For a TryReadWriteMutex type <code>M</code>
and an object <code>m</code> of that type,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>TryReadWriteMutex Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>M::scoped_try_read_write_lock</code></entry>
<entry>A type meeting the
<link linkend="thread.concepts.ScopedTryReadWriteLock">ScopedTryReadWriteLock</link>
requirements.</entry>
</row>
<row>
<entry><code>M::scoped_try_read_lock</code></entry>
<entry>A type meeting the
<link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link>
requirements.</entry>
</row>
<row>
<entry><code>M::scoped_try_write_lock</code></entry>
<entry>A type meeting the
<link linkend="thread.concepts.ScopedTryLock">ScopedTryLock</link>
requirements.</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.TimedReadWriteMutex">
<title>TimedReadWriteMutex Concept</title>
<para>A TimedReadWriteMutex is a refinement of
<link linkend="thread.concepts.TryReadWriteMutex">TryReadWriteMutex</link>.
For a TimedReadWriteMutex type <code>M</code>
and an object <code>m</code> of that type
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>TimedReadWriteMutex Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>M::scoped_timed_read_write_lock</code></entry>
<entry>A type meeting the
<link linkend="thread.concepts.ScopedTimedReadWriteLock">ScopedTimedReadWriteLock</link>
requirements.</entry>
</row>
<row>
<entry><code>M::scoped_timed_read_lock</code></entry>
<entry>A type meeting the
<link linkend="thread.concepts.ScopedTimedLock">ScopedTimedLock</link>
requirements.</entry>
</row>
<row>
<entry><code>M::scoped_timed_write_lock</code></entry>
<entry>A type meeting the
<link linkend="thread.concepts.ScopedTimedLock">ScopedTimedLock</link>
requirements.</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
</section>
<section id="thread.concepts.read-write-mutex-models">
<title>Mutex Models</title>
<para>&Boost.Thread; currently supplies three models of
<link linkend="thread.concepts.ReadWriteMutex">ReadWriteMutex</link>
and its refinements.</para>
<table>
<title>Mutex Models</title>
<tgroup cols="3">
<thead>
<row>
<entry>Concept</entry>
<entry>Refines</entry>
<entry>Models</entry>
</row>
</thead>
<tbody>
<row>
<entry><link linkend="thread.concepts.ReadWriteMutex">ReadWriteMutex</link></entry>
<entry></entry>
<entry><classname>boost::read_write_mutex</classname></entry>
</row>
<row>
<entry><link linkend="thread.concepts.TryReadWriteMutex">TryReadWriteMutex</link></entry>
<entry><link linkend="thread.concepts.ReadWriteMutex">ReadWriteMutex</link></entry>
<entry><classname>boost::try_read_write_mutex</classname></entry>
</row>
<row>
<entry><link linkend="thread.concepts.TimedReadWriteMutex">TimedReadWriteMutex</link></entry>
<entry><link linkend="thread.concepts.TryReadWriteMutex">TryReadWriteMutex</link></entry>
<entry><classname>boost::timed_read_write_mutex</classname></entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.read-write-lock-concepts">
<title>Lock Concepts</title>
<para>A read/write lock object provides a safe means for locking
and unlocking a read/write mutex object (an object whose type is
a model of
<link linkend="thread.concepts.ReadWriteMutex">ReadWriteMutex</link>
or one of its refinements). In other words they are an
implementation of the <emphasis>Scoped Locking</emphasis>
&cite.SchmidtStalRohnertBuschmann; pattern. The
<link linkend="thread.concepts.ScopedReadWriteLock">ScopedReadWriteLock</link>,
<link linkend="thread.concepts.ScopedTryReadWriteLock">ScopedTryReadWriteLock</link>, and
<link linkend="thread.concepts.ScopedTimedReadWriteLock">ScopedTimedReadWriteLock</link>
concepts formalize the requirements.</para>
<para>Read/write lock objects are constructed with a reference to a
read/write mutex object and typically acquire ownership of the
read/write mutex object by setting its state to locked. They also
ensure ownership is relinquished in the destructor. Lock objects
also expose functions to query the lock status and to manually lock
and unlock the read/write mutex object.</para>
<para>Read/write lock objects are meant to be short lived, expected
to be used at block scope only. The read/write lock objects are not
<link linkend="thread.glossary.thread-safe">thread-safe</link>.
Read/write lock objects must maintain state to indicate whether or
not they've been locked and this state is not protected by any
synchronization concepts. For this reason a read/write lock object
should never be shared between multiple threads.</para>
<section id="thread.concepts.ReadWriteLock">
<title>ReadWriteLock Concept</title>
<para>For a read/write lock type <code>L</code>
and an object <code>lk</code>
and const object <code>clk</code> of that type,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>ReadWriteLock Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>(&lk)->~L();</code></entry>
<entry><code>if (locked()) unlock();</code></entry>
</row>
<row>
<entry><code>(&clk)->operator const void*()</code></entry>
<entry>Returns type void*, non-zero if the associated read/write
mutex object has been either read-locked or write-locked by
<code>clk</code>, otherwise 0.</entry>
</row>
<row>
<entry><code>clk.locked()</code></entry>
<entry>Returns a <code>bool</code>, <code>(&clk)->operator
const void*() != 0</code></entry>
</row>
<row>
<entry><code>clk.state()</code></entry>
<entry>Returns an enumeration constant of type <code>read_write_lock_state</code>:
<code>read_write_lock_state::read_locked</code> if the associated read/write mutex object has been
read-locked by <code>clk</code>, <code>read_write_lock_state::write_locked</code> if it
has been write-locked by <code>clk</code>, and <code>read_write_lock_state::unlocked</code>
if has not been locked by <code>clk</code>.</entry>
</row>
<row>
<entry><code>clk.read_locked()</code></entry>
<entry>Returns a <code>bool</code>, <code>(&clk)->state() == read_write_lock_state::read_locked</code>.</entry>
</row>
<row>
<entry><code>clk.write_locked()</code></entry>
<entry>Returns a <code>bool</code>, <code>(&clk)->state() == read_write_lock_state::write_locked</code>.</entry>
</row>
<row>
<entry><code>lk.read_lock()</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if <code>locked()</code>.</para>
<para>If the associated read/write mutex
object is already read-locked by some other
thread, the effect depends on the
<link linkend="thread.concepts.read-write-scheduling-policies.inter-class">inter-class scheduling policy</link>
of the associated read/write mutex:
either immediately obtains an additional
read-lock on the associated read/write
mutex, or places the current thread in the
<link linkend="thread.glossary.thread-state">Blocked</link>
state until the associated read/write mutex
is unlocked, after which the current thread
is placed in the
<link linkend="thread.glossary.thread-state">Ready</link>
state, eventually to be returned to the
<link linkend="thread.glossary.thread-state">Running</link>
state.</para>
<para>If the associated read/write mutex
object is already write-locked by some other
thread, places the current thread in the
<link linkend="thread.glossary.thread-state">Blocked</link>
state until the associated read/write mutex
is unlocked, after which the current thread
is placed in the
<link linkend="thread.glossary.thread-state">Ready</link>
state, eventually to be returned to the
<link linkend="thread.glossary.thread-state">Running</link>
state.</para>
<para>If the associated read/write mutex
object is already locked by the same thread
the behavior is dependent on the
<link linkend="thread.concepts.read-write-locking-strategies">locking strategy</link>
of the associated read/write mutex object.
</para>
<para>Postcondition: <code>state() == read_write_lock_state::read_locked</code></para>
</entry>
</row>
<row>
<entry><code>lk.write_lock()</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if <code>locked()</code>.</para>
<para>If the associated read/write mutex
object is already locked by some other
thread, places the current thread in the
<link linkend="thread.glossary.thread-state">Blocked</link>
state until the associated read/write mutex
is unlocked, after which the current thread
is placed in the
<link linkend="thread.glossary.thread-state">Ready</link>
state, eventually to be returned to the
<link linkend="thread.glossary.thread-state">Running</link>
state.</para>
<para>If the associated read/write mutex
object is already locked by the same thread
the behavior is dependent on the
<link linkend="thread.concepts.read-write-locking-strategies">locking strategy</link>
of the associated read/write mutex object.
</para>
<para>Postcondition: <code>state() == read_write_lock_state::write_locked</code></para>
</entry>
</row>
<row>
<entry><code>lk.demote()</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if <code>state() != read_write_lock_state::write_locked</code>.</para>
<para>Converts the lock held on the associated read/write mutex
object from a write-lock to a read-lock without releasing
the lock.</para>
<para>Postcondition: <code>state() == read_write_lock_state::read_locked</code></para>
</entry>
</row>
<row>
<entry><code>lk.promote()</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if <code>state() != read_write_lock_state::read_locked</code>
or if the lock cannot be promoted because another lock
on the same mutex is already waiting to be promoted.</para>
<para>Makes a blocking attempt to convert the lock held on the associated
read/write mutex object from a read-lock to a write-lock without releasing
the lock.</para>
</entry>
</row>
<row>
<entry><code>lk.unlock()</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if <code>!locked()</code>.</para>
<para>Unlocks the associated read/write mutex.</para>
<para>Postcondition: <code>!locked()</code></para>
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.ScopedReadWriteLock">
<title>ScopedReadWriteLock Concept</title>
<para>A ScopedReadWriteLock is a refinement of
<link linkend="thread.concepts.ReadWriteLock">ReadWriteLock</link>.
For a ScopedReadWriteLock type <code>L</code>
and an object <code>lk</code> of that type,
and an object <code>m</code> of a type meeting the
<link linkend="thread.concepts.ReadWriteMutex">ReadWriteMutex</link> requirements,
and an object <code>s</code> of type <code>read_write_lock_state</code>,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>ScopedReadWriteLock Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>L lk(m,s);</code></entry>
<entry>Constructs an object <code>lk</code> and associates read/write mutex
object <code>m</code> with it, then: if <code>s == read_write_lock_state::read_locked</code>, calls
<code>read_lock()</code>; if <code>s==read_write_lock_state::write_locked</code>,
calls <code>write_lock()</code>.</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.TryReadWriteLock">
<title>TryReadWriteLock Expressions</title>
<para>A TryReadWriteLock is a refinement of
<link linkend="thread.concepts.ReadWriteLock">ReadWriteLock</link>.
For a TryReadWriteLock type <code>L</code>
and an object <code>lk</code> of that type,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>TryReadWriteLock Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>lk.try_read_lock()</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if locked().</para>
<para>Makes a non-blocking attempt to read-lock the associated read/write
mutex object, returning <code>true</code> if the attempt is successful,
otherwise <code>false</code>. If the associated read/write mutex object is
already locked by the same thread the behavior is dependent on the
<link linkend="thread.concepts.locking-strategies">locking
strategy</link> of the associated read/write mutex object.</para>
</entry>
</row>
<row>
<entry><code>lk.try_write_lock()</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if locked().</para>
<para>Makes a non-blocking attempt to write-lock the associated read/write
mutex object, returning <code>true</code> if the attempt is successful,
otherwise <code>false</code>. If the associated read/write mutex object is
already locked by the same thread the behavior is dependent on the
<link linkend="thread.concepts.locking-strategies">locking
strategy</link> of the associated read/write mutex object.</para>
</entry>
</row>
<row>
<entry><code>lk.try_demote()</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if <code>state() != read_write_lock_state::write_locked</code>.</para>
<para>Makes a non-blocking attempt to convert the lock held on the associated
read/write mutex object from a write-lock to a read-lock without releasing
the lock, returning <code>true</code> if the attempt is successful,
otherwise <code>false</code>.</para>
</entry>
</row>
<row>
<entry><code>lk.try_promote()</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if <code>state() != read_write_lock_state::read_locked</code>.</para>
<para>Makes a non-blocking attempt to convert the lock held on the associated
read/write mutex object from a read-lock to a write-lock without releasing
the lock, returning <code>true</code> if the attempt is successful,
otherwise <code>false</code>.</para>
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.ScopedTryReadWriteLock">
<title>ScopedTryReadWriteLock Expressions</title>
<para>A ScopedTryReadWriteLock is a refinement of
<link linkend="thread.concepts.TryReadWriteLock">TryReadWriteLock</link>.
For a ScopedTryReadWriteLock type <code>L</code>
and an object <code>lk</code> of that type,
and an object <code>m</code> of a type meeting the
<link linkend="thread.concepts.TryMutex">TryReadWriteMutex</link> requirements,
and an object <code>s</code> of type <code>read_write_lock_state</code>,
and an object <code>b</code> of type <code>blocking_mode</code>,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>ScopedTryReadWriteLock Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>L lk(m,s,b);</code></entry>
<entry>Constructs an object <code>lk</code> and associates read/write mutex
object <code>m</code> with it, then: if <code>s == read_write_lock_state::read_locked</code>, calls
<code>read_lock()</code> if <code>b</code>, otherwise <code>try_read_lock()</code>;
if <code>s==read_write_lock_state::write_locked</code>, calls <code>write_lock()</code> if <code>b</code>,
otherwise <code>try_write_lock</code>.</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.TimedReadWriteLock">
<title>TimedReadWriteLock Concept</title>
<para>A TimedReadWriteLock is a refinement of
<link linkend="thread.concepts.TryReadWriteLock">TryReadWriteLock</link>.
For a TimedReadWriteLock type <code>L</code>
and an object <code>lk</code> of that type,
and an object <code>t</code> of type <classname>boost::xtime</classname>,
the following expressions must be well-formed
and have the indicated effects.</para>
<table>
<title>TimedReadWriteLock Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>lk.timed_read_lock(t)</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if locked().</para>
<para>Makes a blocking attempt to read-lock the associated read/write mutex object,
and returns <code>true</code> if successful within the specified time <code>t</code>,
otherwise <code>false</code>. If the associated read/write mutex object is already
locked by the same thread the behavior is dependent on the <link
linkend="thread.concepts.locking-strategies">locking
strategy</link> of the associated read/write mutex object.</para>
</entry>
</row>
<row>
<entry><code>lk.timed_write_lock(t)</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if locked().</para>
<para>Makes a blocking attempt to write-lock the associated read/write mutex object,
and returns <code>true</code> if successful within the specified time <code>t</code>,
otherwise <code>false</code>. If the associated read/write mutex object is already
locked by the same thread the behavior is dependent on the <link
linkend="thread.concepts.locking-strategies">locking
strategy</link> of the associated read/write mutex object.</para>
</entry>
</row>
<row>
<entry><code>lk.timed_demote(t)</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if <code>state() != read_write_lock_state::write_locked</code>.</para>
<para>Makes a blocking attempt to convert the lock held on the associated
read/write mutex object from a write-lock to a read-lock without releasing
the lock, returning <code>true</code> if the attempt is successful
in the specified time <code>t</code>, otherwise <code>false</code>.</para>
</entry>
</row>
<row>
<entry><code>lk.timed_promote(t)</code></entry>
<entry>
<para>Throws <classname>boost::lock_error</classname>
if <code>state() != read_write_lock_state::read_locked</code>.</para>
<para>Makes a blocking attempt to convert the lock held on the associated
read/write mutex object from a read-lock to a write-lock without releasing
the lock, returning <code>true</code> if the attempt is successful
in the specified time <code>t</code>, otherwise <code>false</code>.</para>
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
<section id="thread.concepts.ScopedTimedReadWriteLock">
<title>ScopedTimedReadWriteLock Concept</title>
<para>A ScopedTimedReadWriteLock is a refinement of
<link linkend="thread.concepts.TimedReadWriteLock">TimedReadWriteLock</link>.
For a ScopedTimedReadWriteLock type <code>L</code>
and an object <code>lk</code> of that type,
and an object <code>m</code> of a type meeting the
<link linkend="thread.concepts.TimedReadWriteMutex">TimedReadWriteMutex</link> requirements,
and an object <code>s</code> of type <code>read_write_lock_state</code>,
and an object <code>t</code> of type <classname>boost::xtime</classname>,
and an object <code>b</code> of type <code>blocking_mode</code>,
the following expressions must be well-formed and have the
indicated effects.</para>
<table>
<title>ScopedTimedReadWriteLock Expressions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Expression</entry>
<entry>Effects</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>L lk(m,s,b);</code></entry>
<entry>Constructs an object <code>lk</code> and associates read/write mutex
object <code>m</code> with it, then: if <code>s == read_write_lock_state::read_locked</code>, calls
<code>read_lock()</code> if <code>b</code>, otherwise <code>try_read_lock()</code>;
if <code>s==read_write_lock_state::write_locked</code>, calls <code>write_lock()</code> if <code>b</code>,
otherwise <code>try_write_lock</code>.</entry>
</row>
<row>
<entry><code>L lk(m,s,t);</code></entry>
<entry>Constructs an object <code>lk</code> and associates read/write mutex
object <code>m</code> with it, then: if <code>s == read_write_lock_state::read_locked</code>, calls
<code>timed_read_lock(t)</code>; if <code>s==read_write_lock_state::write_locked</code>,
calls <code>timed_write_lock(t)</code>.</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
</section>
<section id="thread.concepts.read-write-lock-models">
<title>Lock Models</title>
<para>&Boost.Thread; currently supplies six models of
<link linkend="thread.concepts.ReadWriteLock">ReadWriteLock</link>
and its refinements.</para>
<table>
<title>Lock Models</title>
<tgroup cols="3">
<thead>
<row>
<entry>Concept</entry>
<entry>Refines</entry>
<entry>Models</entry>
</row>
</thead>
<tbody>
<row>
<entry><link linkend="thread.concepts.ReadWriteLock">ReadWriteLock</link></entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry><link linkend="thread.concepts.ScopedReadWriteLock">ScopedReadWriteLock</link></entry>
<entry><link linkend="thread.concepts.ReadWriteLock">ReadWriteLock</link></entry>
<entry>
<para><classname>boost::read_write_mutex::scoped_read_write_lock</classname></para>
<para><classname>boost::try_read_write_mutex::scoped_read_write_lock</classname></para>
<para><classname>boost::timed_read_write_mutex::scoped_read_write_lock</classname></para>
</entry>
</row>
<row>
<entry><link linkend="thread.concepts.TryReadWriteLock">TryReadWriteLock</link></entry>
<entry><link linkend="thread.concepts.ReadWriteLock">ReadWriteLock</link></entry>
<entry></entry>
</row>
<row>
<entry><link linkend="thread.concepts.ScopedTryReadWriteLock">ScopedTryReadWriteLock</link></entry>
<entry><link linkend="thread.concepts.TryReadWriteLock">TryReadWriteLock</link></entry>
<entry>
<para><classname>boost::try_read_write_mutex::scoped_try_read_write_lock</classname></para>
<para><classname>boost::timed_read_write_mutex::scoped_try_read_write_lock</classname></para>
</entry>
</row>
<row>
<entry><link linkend="thread.concepts.TimedReadWriteLock">TimedReadWriteLock</link></entry>
<entry><link linkend="thread.concepts.TryReadWriteLock">TryReadWriteLock</link></entry>
<entry></entry>
</row>
<row>
<entry><link linkend="thread.concepts.ScopedTimedReadWriteLock">ScopedTimedReadWriteLock</link></entry>
<entry><link linkend="thread.concepts.TimedReadWriteLock">TimedReadWriteLock</link></entry>
<entry>
<para><classname>boost::timed_read_write_mutex::scoped_timed_read_write_lock</classname></para>
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
</section>
</section>
|